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ABSTRACT Multivariate statistical methods
are widely used to extract functional collective
motions from macromolecular molecular dynamics
(MD) simulations. In principal component analysis
(PCA), a covariance matrix of positional fluctua-
tions is diagonalized to obtain orthogonal eigenvec-
tors and corresponding eigenvalues. The first few
eigenvectors usually correspond to collective modes
that approximate the functional motions in the
protein. However, PCA representations are globally
coherent by definition and, for a large biomolecular
system, do not converge on the time scales acces-
sible to MD. Also, the forced orthogonalization of
modes leads to complex dependencies that are not
necessarily consistent with the symmetry of biologi-
cal macromolecules and assemblies. Here, we de-
scribe for the first time the application of local
feature analysis (LFA) to construct a topographic
representation of functional dynamics in terms of
local features. The LFA representations are low
dimensional, and like PCA provide a reduced basis
set for collective motions, but they are sparsely
distributed and spatially localized. This yields a
more reliable assignment of essential dynamics
modes across different MD time windows. Also, the
intrinsic dynamics of local domains is more exten-
sively sampled than that of globally coherent PCA
modes. Proteins 2006;64:391–403.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

Molecular dynamics (MD) is an important tool in the
study of the functional dynamics of proteins and macromo-
lecular complexes.1,2 One of the major limitations of MD is
the shortness of achievable simulation times, typically of
the order of tens to hundreds of nanoseconds. These times
are much shorter than the time scales of many important
biological processes, such as multidomain motions and
allosteric transitions, that take place on the millisecond
scale and beyond.3,4 Therefore, attempts have been made
to extract ‘essential’ functional features from the short
trajectories, with the hope to describe the motion in terms
of a small number of variables, sometimes called collective
coordinates or essential degrees of freedom.5–11

One widely used statistical approach to such dimension-
ality reduction is principal component analysis (PCA),12,13

also known as the Karhunen–Loeve expansion14 in time
series analysis. This statistical method was introduced to
the protein research community by McCammon, Karplus,
and their coworkers15,16 in the 1980s under the name
quasi-harmonic analysis. Since the early 1990s, PCA-
based essential dynamics techniques have enjoyed the
increasing enthusiasm of a large number of investiga-
tors7,8 who successfully applied them to investigate the
physical nature of protein dynamics and to sample the
conformational space.10,11

While there is general agreement about the heuristic
appeal of PCA for the prediction of functionally relevant
modes, it became necessary in the mid-1990s to investi-
gate the limitations of PCA conferred by the MD sampling
problem. Garcı́a and colleagues demonstrated that for
large systems the distribution of conformations becomes
multimodal9 (as suggested also by Go’s jumping-among-
minima model17), leading to a breakdown of the quasi-
harmonic assumption. Also, Clarage and colleagues showed
that correlations in low-frequency displacements are un-
der sampled by nanosecond MD simulations and asked the
question “How long is long enough?”18 An answer may be
found in experimental studies that suggest that the relax-
ation times of correlations for multidomain proteins are on
the order of milliseconds or longer.3,4 This led Balsera and
coworkers to conclude that PCA modes from short MD
trajectories are intrinsically unreliable.19

Here, we take the conciliatory view that PCA may serve
as a useful filter for identifying a reduced dimensional, or
essential subspace, although it is clear from the prior work
that individual PCA modes may overestimate the coher-
ence of long-distance motions due to limited sampling and
due to the global extent of the modes. The PCA filtering
enables a subsequent local representation of the dynamics
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described below. In this filtering role of PCA, it is not
necessary to know a priori which particular PCA mode
(or which linear combination of modes) is functionally
relevant. Our minimal assumption is that only the com-
bined subspace is relevant, as suggested by the findings of
Amadei and colleagues7 and by a recent survey of har-
monic (or normal mode) analysis of protein dynamics,
where observed conformational changes are most often
contained within the subspace of the first 12 low-frequency
modes.20

The global extent of individual PCA modes is problem-
atic not only because of the limited sampling of long-range
correlations, but also because of the forced orthogonaliza-
tion of the modes. Since the nth mode is always forced to be
orthogonal to the first n � 1 modes, complex causal
dependencies arise. For example, one can not claim that a
particular mode n is functionally isolated from (or less
relevant than) slower modes. In Balsera’s paper,19 it was
shown that even fast modes, whose relaxation time is well
within the MD sampling window, cannot be recovered by
PCA due to their dependence on the slower, undersampled
modes. The forced orthogonalization also has the undesir-
able effect of breaking the symmetry of large-scale macro-
molecular assemblies. For example, a three-fold symmet-
ric system should exhibit a symmetry related
representation (for each 120° rotation), instead PCA fixes
by numeric chance one of the three possible solutions and
forces all subsequent modes to be orthogonal, thereby
breaking the symmetry.

Due to the apparent limitations of global collective
coordinates, we were seeking an alternative statistical
theory that describes dynamic features locally and that
does not suffer from the sampling and orthogonalization
problems. A particularly promising recent approach is
non-negative matrix factorization (NMF)21,22 of image
data, which has been used for classification tasks in face
recognition. Compared to the global PCA representation
(eigenfaces), the NMF basis corresponds to recognizable
localized features such as parts of a face (eyes, nose, ears,
and mouth). Instead of the forced orthogonalization as in
PCA, NMF uses non-negativity constraints in the matrix
factorization, which lead to a parts-based representation
of the objects. Unfortunately, this promising concept is not
applicable to protein dynamics, as the elements in the
covariance matrix could have either sign and can not be
restricted to positive values as in gray value images.

Earlier, Penev and Atick developed an alternative statis-
tical technique, termed local feature analysis (LFA), to
construct a local topographic representation of objects
from the global PCA modes.23 It turns out that LFA is free
from non-negativity constraints, although this was not
exploited at the time. As in the case of NMF the LFA basis
functions are sparsely distributed and give a description of
objects in terms of local features and their positions. In
this article, we adapted for the first time the theoretical
framework of LFA to the study of protein dynamics. We
obtained local features that clearly correspond to seg-
mented dynamic domains in the protein. Also, LFA pro-

vides for a significant improvement in the reproducibility
and convergence of the statistical sampling.

The organization of this paper is as follows. Firstly we
will describe our adaptation of the theory of LFA, as well
as computational details for the MD simulation of a test
system, bacteriophage T4 lysozyme (T4L). Subsequently,
we provide results and a discussion regarding the perfor-
mance features of LFA. Finally, we provide concluding
remarks on the parameterization and future applicability
of the algorithm.

THEORY AND METHODS
Local Representations from PCA Modes

Assuming a protein structure, for simplicity we only
consider here the coordinates of a number N C� atoms.
Amadei and colleagues demonstrated that the identity of
the larger amplitude modes is robust under such C� coarse
graining.7,24 A generalization to all atoms is straightfor-
ward. After eliminating the overall translational and
rotational motion from the MD simulation as is customary
in PCA, the internal motion is described by a trajectory
x(t), where x is a 3N-dimensional column vector of the C�
atomic coordinates: {x1, x2, . . ., x3N}. The correlations of
atomic fluctuations are expressed in a covariance matrix

C�i, j� � ��xi�xj� � ��xi � �xi�� �xj � �xj���, (1)

where �� denotes an average over the time frames. In PCA,
we diagonalize the covariance matrix to produce the
orthogonal set of eigenvectors (PCA modes) �r(i), r 	 1, . . .,
3N and corresponding eigenvalues 
r:

C�i, j� � �
r 	 1

3N

�r�i�
r�r�j�. (2)

The displacements �xi can then be reconstructed from the
PCA modes

�xi � �
r 	 1

3N

Ar�r�i� with Ar � �
i 	 1

3N

�r�i��xi � �
i 	 1

3N

Kr�i��xi,

(3)

where Ar is the so-called output of the representation, that
is, the projection of atomic fluctuations onto the PCA mode
�r. PCA outputs are decorrelated in the sense that �ArAq�
	 
r�rq. Kr(i) is the so-called kernel of the PCA representa-
tion, in the case of PCA Kr(i) 	 �r(i). We choose to sort 
r in
a decreasing order, thus the first eigenvector represent the
motion that has the largest positional deviation. As ex-
plained above, we assume that a small number n(n �� 3N)
of modes are sufficient to describe the dominant dynamics.
This means we truncate the expansion (Eq. 3) early and
define the (approximate) reconstructed deviations:

�xi
rec � �

r 	 1

n

Ar�r�i�. (4)

The PCA representation offers a reduced dimensionality,
however, it is nonlocal. By this we mean that the kernel
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functions Kr(i) (Eq. 3) extend over the entire range of i (the
3N degrees of freedom of the protein), but nearby values in
the r index have no relationship among each other. For the
desired LFA, we recast the expansion into a new represen-
tation that obeys locality, that is, the kernel functions are
not labeled by the PCA mode index r, but by the index of
the degrees of freedom (DOF), i. The most general form for
the LFA kernel is

K�i, j� � �
r, s 	 1

n

�r�i�Qrs�s�j�, (5)

where Qrs is an arbitrary matrix. Similar to the PCA
outputs Ar in Equation 3, we define local outputs O(i)

O�i� � �
j 	 1

3N

K�i, j��xj � �
r, s 	 1

n

�r�i�QrsAs, (6)

but here O depends on i and not on r. We know that the
PCA outputs Ar are decorrelated by frequency, so likewise
we seek to decorrelate the local outputs O(i) by space.
Because the 3N outputs O(i) are derived from only n �� 3N
linearly independent Ar, the decorrelation condition
�O(i)O(j)� 	 �(i, j) is no longer satisfied. Instead we seek to
satisfy the condition of minimum correlation of the outputs
O(i) by minimizing the mean-square deviation

msd � �
i, j 	 1

3N

��O�i�O�j�� � ��i, j)�2 (7)

with respect to the matrix Q. One can show that Q must be

given by Qrs 	
1

�
r
Urs,

23 and Urs is any orthogonal matrix

satisfying UTU 	 1. In general, a variety of Urs may be
employed while preserving the decorrelation,25 but here

Fig. 1. Sparsification results of T4L. The first n PCA modes were used to perform LFA: (a) n 	 4; (b) n 	 8;
(c) n 	 12; (d) n 	 15. The selected C� atoms are represented by spheres. Red–green–blue colors indicate the
order of selection by the algorithm (the first selected C� atom is red, and the last one is blue). (e)
Root-mean-square fluctuations (RMSF) of C� atoms in T4L. Trajectory frames from 2 to 10 ns were used to
calculate the RMSF. Four seed atoms (C� � 21, C� � 52, C� � 109, and C� � 127) are indicated by black dots.
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we consider only the simplest choice Urs 	 �rs to remain
consistent with the PCA subspace. Thus, according to
Equation 6 the LFA outputs become

O�i� � �
j 	 1

3N � �
r 	 1

n

�r�i�
1

�
r
�r�j�� �xj � �

r 	 1

n Ar

�
r
�r�i�

(8)

and their residual correlation is given by

�O�i�O�j�� � �
r 	 1

n

�r�i��r�j� � P�i, j�. (9)

In the limit n 3 3N the LFA outputs are completely
decorrelated: P(i, j) 3 �(i, j). Finally, we have derived a
new kernel function

K�i, j� � �
r 	 1

n

�r�i�
1

�
r
�r�j�, (10)

which satisfies locality. We reconstruct �xi using these
kernels.

The matrices K and P are central to LFA and one can
derive from the above equations some additional notewor-
thy features. First, K is by definition the projection opera-
tor onto a local feature. In the limit n3 3N, the resulting
dimensionless projections (or outputs) O(i) become orthogo-
nal, as well as normalized to unity, as square-integrable

functions over the time domain. Second, it is straightfor-
ward to show from Equations 4 and 9 that

�
j 	 1

3N

P�i, j��xj � �xi
rec. (11)

This means that P serves a dual role both as the correla-
tion of the results of K (the LFA outputs) and as the
projection operator onto the low-frequency subspace
spanned by n PCA modes. Used as a projection operator
the results of P then have length units (unlike the results
of K that are dimensionless). Third, from Equations 4 and
8 we get

�xi
rec � �

j 	 1

3N

K��1��i, j�O�j�, (12)

where K(�1) 	 �
r	1

n �r(i)�
r�r(j) is the so-called reconstruc-

tor or inverse kernel of the representation.
In summary, the above LFA theory can be formulated in

a compact form as follows. If we define a family of functions

K(m)(i, j) 	 �
r	1

n �r(i) � 1

�
r
�m

�r(j), then it follows that

K(1)(i,j)  K(i, j) is the LFA kernel (Eq. 10); K(0)(i, j) 
P(i, j) is the residual output correlation (Eq. 9); K(�1)(i, j) is
the reconstructor (Eq. 12); and K(�2)(i, j)  C(i, j) is the
covariance matrix (Eq. 2).

Fig. 2. Output correlations (Eq. 16) between the seed atoms and the protein as a function of residue
number. Colors indicate selection orders of seed atoms: (1) black, (2) red, (3) green, and (4) blue. (a) n 	 4.
Black, C� � 109; red, C� �51; green, C� � 162; and blue, C� � 1. (b) n 	 8. Black, C� � 51; red, C� � 109;
green, C� � 162; and blue, C� � 1. (c) n 	 12. Black, C� � 52; red, C� � 109; green, C� � 162; and blue, C� �
21. (d) n 	 15. Black, C� � 162; red, C� � 109; green, C� � 52; and blue, C� � 21.
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Sparsification from Local Features

In the previous section, we replaced the n global PCA
modes with a much larger number 3N of local LFA output
functions O(i). Although locality was achieved, it came at a
price of expanding again to the full number of DOF.
Therefore, an additional dimensionality reduction step is
required in the LFA output space. This sparsification
takes advantage of the fact that neighboring outputs are
highly correlated. We approximate the entire 3N outputs
O(i) with only a small subset of {O(im)}i,m�� that corre-
spond to the strongest local features. The other O(i) can
then be reasonably well predicted via the correlations P(i,
im)  Pm(i).

We begin with an empty set �(0) 	 {0}. At each step, out
of the 3N total DOF we add a seed index to �, chosen
according to the criteria described below, the seed index
corresponds to either x, y, or z, coordinates of a given seed
atom. Given the current set �(m), we can reconstruct the
outputs:

Orec�i� � �
m 	 1

���

am(i)O(im). (13)

One can show23 that the optimal linear prediction coeffi-
cients am(i), defined to minimize the average reconstruc-
tion mean square error on O(i)

Erec � ��Oerr�i��2� � ��O�i� � Orec�i��2�, (14)

are given by

am�i� � �
l 	 1

���

P�i, il��P��1�lm, (15)

where P��1 is the inverse of a submatrix P� from P: P�lm 
P(il, im). Out of the 3N available DOF we chose the seed
index that has the maximum reconstruction error Oerr(im �

1) as the (m � 1)th index into �, under the condition that
the seed atom and its nearest neighbors are distinct from
atoms corresponding to previously found indices. We keep
adding seed indices to � until n indices are chosen (the
entire set of O(i) is reconstructed without error at this
time).

In principle, any n seed indices can recover the O(i)
without error. However, if we choose indices whose P(i, j)
overlap significantly, the {O(im)}im�� will be correlated and
the representation would be redundant in some regions
but insufficient in other regions. In the above sparsifica-
tion algorithm, we choose an index whose output is pre-
dicted worst by the already chosen ones. This assures that
the corresponding atom is dynamically decorrelated from
the atoms corresponding to already chosen indices.

COMPUTATIONAL DETAILS

The MD simulation and some of the subsequent analysis
were performed using the GROMACS package (version
3.1.4), using the GROMACS forcefield with united-atom
model.26,27 We selected bacteriophage T4 lysozyme (T4L)
as a test system. T4L is composed of two domains con-

nected by a long �-helix, there is a deep opening between
the N-terminal and C-terminal domains, which is the
active-site cleft.28 There are many experimental struc-
tures of T4L and its mutants that indicate a hinge-bending–
type domain motion.29,30

The crystal structure of T4L (PDB entry:2LZM) deter-
mined at 1.7 Å resolution was used as the starting
structure.31 Rectangular periodic boundary conditions were
used with box length of 6.356 nm � 6.287 nm � 7.303 nm
(the minimum distance between the solute and the box
boundary is 1.2 nm). SPC water molecules were added
from an equilibrated cubic box containing 216 water
molecules.32 The system, protein and water, was initially
energy-minimized using the steepest descent method,
until the maximum force on the atoms is smaller than
1000 kJ mol�1 nm�1. Eight Cl� ions were added to
compensate the net positive charge on the protein, and
these ions were introduced by replacing water molecules
with the most favorable electrostatic potential. The energy
was again minimized using the conjugate gradient algo-
rithm, until the maximum force is below 200 kJ mol�1

Fig. 3. T4L structures colored by output correlations (Eq. 16) between
the seed atom (represented by a blue sphere) and other C� atoms. Blue
indicates positive, white indicates 0, and red indicates negative correla-
tion values. n 	 4 PCA modes were used for LFA, and the four seed
atoms are shown by in order of selection. (a) C� � 109, (b) C� � 51, (c)
C� � 162, and (d) C� � 1.
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nm�1. The final system contains 1683 protein atoms, 8 Cl�

ions, and 8775 water molecules, leading to a total size of
28,016 atoms. A 100 ps positional-restraint equilibration
simulation was performed, with force constants 1000 kJ
mol�1 nm�2, and then followed by a 10 ns production run.
The last 8 ns of this run were used to perform PCA.

We used an isothermal–isobaric simulation algorithm.33

The three groups (protein, ions, and solvent) were coupled
separately to a temperature bath of reference temperature
300 K (relaxation time 0.1 ps). The pressure was also kept
constant by weak coupling to a reference value P0 	 1 bar
(relaxation time 1.0 ps). Covalent bonds in the protein
were constrained using the LINCS algorithm.34 van der
Waals interactions were treated using twin-range cutoff
radii (0.9 nm and 1.4 nm), and the pairlist was updated
every 10 fs. The long-range electrostatic interactions were
evaluated by using the particle mesh Ewald (PME)
method35 with a PME tolerance of 10�5 and a PME
interpolation order of 4.

RESULTS AND DISCUSSION
Local Dynamic Domains in T4 Lysozyme

The first n 	 4, 8, 12, and 15 PCA modes were used to
construct the LFA matrices P(i, j) (Eq. 9) and K(i, j) (Eq.
10). This was followed by the sparsification algorithm
described above to select n seed atoms. Results are visual-
ized using VMD36 (Fig. 1). The location and the order of the
selected atoms indicate that they are allocated predomi-
nantly at the most flexible regions of the protein, in close
agreements with the peaks of the root-mean-square fluctua-
tions (RMSF) of C� atoms [Fig. 1(e)]. The flexible N-
terminal and C-terminal atoms are selected in the four
cases (Fig. 1) owing to their structural variability. Other
seed atoms, such as C� � 21, C� � 52, C� � 109, and C� �
127 are also selected frequently (Fig. 1) for a larger
number of seed atoms selected. The functional motion of
these regions is interpreted in more detail below.

We intend to represent a local feature by one seed atom
and its neighboring correlated region (dynamic domain).
Considering a seed atom h, its LFA output (O� h) has three

Fig. 4. Locations and dynamics of
the local features in T4L during the
simulation. (a) Initial structure of the
simulation (t 	 0 ns), (b) t 	 4.00 ns,
and (c) t 	 8.25 ns. The first 15 PCA
modes were used for LFA (n 	 15).
Four local features are colored by red
(C� � 109), green (C� � 52), blue
(C� � 21), and purple (C� � 127),
respectively. Seed atoms are repre-
sented by spheres. The white cartoon
representation indicates the second-
ary structure elements.

Fig. 5. (a) Two-dimensional projections of T4L structures from the
PDB and of the MD trajectory frames onto the subspace defined by the
closure and twist modes. Thirtyeight crystal structures are indicated as
black dots. The extreme open (PDB entry: 178L) and closed (PDB entry:
152L) structures are labeled. Trajectory frames (see text) are shown as
brown dots, except for the configurations at t 	 0 ns, t 	 4.00 ns, and t 	
8.25 ns that are emphasized by red, green, and blue dots, respectively.
(b) The open structure (PDB entry: 178L), and (c) the closed structure
(PDB entry: 152L), with local features from the MD simulation highlighted
as in Figure 4.
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components: O(hd), d 	 1, 2, or 3. The correlation between
the seed atom and any other atom k (with LFA output O� k)
is:

�O� h � O� k� � �
d 	 1

3

�O�hd�O�kd�� � �
d 	 1

3

P�hd, kd�. (16)

Therefore, the correlation between any two atoms is
represented by a 3 � 3 submatrix within P(i, j). According
to Equation 16, the correlation coefficient between LFA
outputs of two atoms is the trace of this submatrix. We plot
these output correlations in Figure 2 for the first four seed
atoms found, and superimpose them in color onto the
structure of T4L, for the special case n 	 4, in Figure 3. It
can be seen from Figures 2 and 3, the seed atoms are
surrounded by prominent, spatially contiguous regions of
high positive correlation. As can be expected from the
asymptotic behavior of P(i, j), these dynamic domains
shrink in size and the peaks become sharper and higher in
amplitude with increasing n (Fig. 2). The user-defined
parameter n thus provides control over the size and
number of the desired dynamic domains.

In the originally envisioned applications of LFA in
image processing,23 the elements of the P and K matrices
are all positive. However, the elements of the covariance
matrix (Eq. 1) may be positive or negative in our case.
Therefore, we can observe a certain background noise level
of small amplitude positive and also negative correlations
outside of the dynamic domains (Figs. 2 and 3).

Defining a dynamic domain as the contiguous atoms
that have positive correlations with a seed atom, we have
identified the four local features associated with C� � 21,
C� � 52, C� � 109, and C� � 127, respectively. In Figure 4,
we highlight the four dynamic regions in the start struc-
ture and two selected time frames of the simulation. Our
goal was to identify similarities with the known functional
dynamics observed in T4L.

Both experimental and theoretical studies reveal that
T4L exhibits prominent open–close and twist motions
between the two major domains.29,30,37,38 More than 200
T4L structures have been deposited in the PDB, which
provide an ensemble of accessible conformations under
physiological conditions.30 As a representation of this
ensemble, a subset of 21 PDB entries with 38 unique
structures was selected.37,38 PCA on this subset of confor-
mations indicates that the first two principal modes contrib-
ute more than 90% to the total fluctuations. The first mode
(closure mode) corresponds to a open–close motion defined
by an effective hinge axis perpendicular to the line connect-
ing the centers of mass of the two domains. The second
mode (twist mode) consists of a propeller twist about the
line connecting the two centers of mass.

We projected the 38 experimental structures onto the
two-dimensional (2D) subspace defined by the two experi-
mentally observed modes. The structures to the left in
Figure 5(a) are open conformations, whereas the struc-
tures to the right are closed. In Figure 5(b, c), we highlight
the four local features in the most open (PDB entry: 178L)
and the most closed configuration (PDB entry: 152L),

respectively. Similar to the simulation results (Fig. 4), it
can be seen that these local features participate in the
experimentally observed functional domain motions in
T4L.

We also projected the MD simulation trajectory frames
onto the 2D subspace defined by the experimental closure
and twist modes in Figure 5(a). The trajectory is confined
to a small region of the experimentally accessible conforma-
tional space due to the limited sampling in the MD
simulation. Nevertheless, it is remarkable that LFA from
the short (10 ns) trajectory can identify the important local
domains that facilitate the much larger experimentally
observed variability of the structure.

The local features corresponding to C� � 21 and C� �
109 include the cross-domain active site of T4L, whereas
C� � 52 is located at the hinge bending region between the
two domains (Fig. 4). C� � 127 corresponds to two helices
that move as a single rigid body [Figs. 4, 5(b, c)]. In the
following we describe a detailed statistical analysis to
analyze the functional dynamics of these regions and to
compare the LFA results to the standard PCA method.

LFA and PCA Mode Overlap

It was shown earlier that individual PCA modes ob-
tained from MD simulations do not converge well within
the short simulation times,19 that is, the dominant modes
change from one sampling time window to another and the
modes obtained by PCA cannot predict long-time protein
dynamics. To test the robustness of LFA we compare the
overlap of both PCA and LFA modes across two time
windows. We partitioned the trajectory into two time
windows, 2 to 6 ns (I), and 6 to 10 ns (II) and performed
PCA and LFA, as described above, in each window.

To compare the PCA modes we calculate the inner
product

IPrs
PCA � �

i 	 1

3N

�r
I�i��s

II�i� � �
i 	 1

3N

Kr
I�i�Ks

II�i�, (17)

where �r
I is the rth mode obtained from window I, and �s

II is
the sth mode from window II. Because each mode is
normalized in PCA, the inner product is unity when the
two modes are identical. For the LFA modes we defined the
overlap likewise as the inner product of the kernels,

IPhk
LFA � �

d 	 1

3 �
i 	 1

3N

KI�hd, i�KII�kd, i�), (18)

where KI(hd) is a row corresponding to atom h in matrix K
from window I, and KII(kd) is a row corresponding to the
atom k in matrix K from window II. Each atom has three
rows in the matrix, so we summed them up. Since a row in
K is not normalized (because of n �� 3N), the actual value
range of Equation 18 depends on how many PCA modes (n)
are used to construct K. For the comparison with the PCA
modes we renormalized these local feature basis vectors
before calculating their overlaps.
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Figure 6(a) shows the overlap matrix between the two
sets of PCA modes. If the PCA modes would converge well,
the matrix should be nearly diagonal or block diagonal.
However, this is not the case, as was also shown earlier,19

due to the MD sampling problem. Although there is
sometimes overlap between nearby modes [Fig. 6(a)], it is
not possible to rearrange the PCA modes to make the
matrix more diagonal, due to the significant differences in
the associated eigenvalues. For example, the eigenvalue of
mode 3 in window I (3 � I) is 7 Å2, but that of 1 � II is 24
Å2, even though both modes do overlap significantly.
Likewise, the eigenvalue 1 � I is 24 Å2, whereas the
eigenvalue of the apparently similar mode 2 � II is 15 Å2.
Overall, the dominant modes are not conserved among MD
time windows, and there are also new modes observed in
either time window that are not observed in the other.

In Figure 6(b) we plot a similar overlap matrix for LFA,
demonstrating a dramatically improved diagonal prop-
erty. In the LFA matrix we can reorder the local features
in window II according to the local features in window I
because the LFA kernel functions K(i,j) are normalized by
the eigenvalues (Eq. 10). Both Figure 6(b) and Table I
indicate that the two time windows exhibit very similar
local features: 14 out of 15 seed atoms among the two
windows are the same or very close and have significant
positive overlaps. The dominant local feature in window I
is the C-terminal C� � 162, which has an overlap of 0.322
with window II, whereas the N-terminal seed atom C� � 1
(ranked third in window I) exhibits a higher overlap of
0.571. This indicates that the N-terminus, although less
variable [Fig. 1(e)], is more consistently sampled across
time windows. Also, the rigid-body double helix correspond-
ing to C� � 127 exhibits an overlap of 0.711, which
indicates a very good convergence of the sampling.

There are also some exceptions to the diagonal structure
of the LFA basis functions (Fig. 6 and Table I). As
mentioned in the above section, the local features C� � 21

and C� � 109 (and their corresponding seed atoms in
window II) are near the active site of T4L related to the
open–close domain motion. The dynamics of these local
features is not sufficiently well sampled, because it is
coupled to the large scale motion of the molecule that is
under sampled in the simulation relative to the experimen-
tal variability of the structure (cf., Figs. 4 and 5). There is
also one left-over feature in both cases, C� � 10 (I) and
C� � 60 (II), which does not correspond well to that of the
other time window and exhibited near-zero overlap (Table
I), but this selection is less significant in terms of overall
dynamics [Fig. 1(e)] and probably influenced by noise.

In summary, almost all LFA modes are well converged,
in stark contrast to PCA where none of the individual
modes are converged. The few outliers can be attributed to

Fig. 6. (a) Overlaps between the PCA modes from the two time windows (Eq. 17). The first 15 PCA modes
were computed and sorted by descending eigenvalues. (b) Overlaps between the local features (represented
by seed atoms) from the two time windows (Eq. 18). Fifteen seed atoms were computed for each time window.
The atoms in both time windows are sorted by the selection order of atoms in window I.

TABLE I. Overlaps between Local Features in the
Different Time Windows

Ia IIb Overlapc

162 162 0.322
21 23 0.151
1 1 0.571
52 52 0.473
30 32 0.436
127 127 0.711
69 69 0.479
40 40 0.705
136 137 0.456
116 119 0.383
92 93 0.546
107 109 0.219
10 60 �0.084
80 81 0.584
151 154 0.463
aThe seed atoms in window I are sorted by the order of selection.
bThe seed atoms in window II are sorted accordingly.
cThese overlap values are the diagonal elements in Figure 6 (b).
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under sampled global conformational changes that affect
the local dynamics, or to noise. We acknowledge that the
entire subspace of the first 10 to 15 PCA modes is more
robust between time windows39 compared to the indi-
vidual mode overlaps shown in Figure 6(a). In LFA, we
take advantage of this because the subspace of all localized
modes is identical to the standard subspace of the PCA
modes used (Eq. 10). This is one of the reasons why most of
the LFA modes are well converged even though individual
PCA modes are not.

Relaxation Times

To illustrate the actual dynamics observed along indi-
vidual modes, it is customary to project the MD trajectory

along the modes. In the above terminology, we are inter-
ested in the outputs of both PCA and LFA representations.
The PCA outputs Ar (Eq. 3) have length units and corre-
spond to the deformation of a structure along a mode,
whereas the LFA outputs O(i) (Eq. 6) are dimensionless,
raising the question about their physical meaning. The
LFA outputs preserve all information of the PCA outputs,
which are decorrelated and weighted by eigenvalue. �ArAq�
	 
r�rq. The factor 1/�
r then normalizes the PCA outputs
to unity, thus different Ar can be mixed by LFA (Eq. 8). So
the LFA outputs {Oi}, which are decorrelated only in the
asymptotic limit n 3 3N, give the contribution of each
DOF i to the protein dynamics in the low-dimensional
subspace n �� 3N.

Fig. 7. Projections of the trajectory along the first three PCA modes (left) and their autocorrelation functions
(right). (a) The first PCA mode, (b) the second PCA mode, and (c) the third PCA mode.
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To compare the performance of PCA and LFA, we first
plotted the projections of the trajectory onto the three
largest eigenvalue PCA modes and calculated their autocor-
relation functions (Fig. 7). The results show that the
projections along the low-frequency modes exhibit relax-
ation times which are longer than the sampling time
window, in agreement with Balsera and colleagues.19 For
the dynamics to converge, the autocorrelation function
should decay to 0 within the sampling time. This is not
observed because such global collective motions are under
sampled by MD.

Figure 8 illustrates output functions of three local

features (C� � 109, C� � 52, and C� � 21) and their
autocorrelation functions. Although the first two LFA
modes have relaxed better than their global PCA counter-
parts, the figure shows that the LFA modes still suffer
from long relaxation times. Because the LFA outputs
depend on the low-frequency subspace from PCA, it can
not be expected that they solve the MD sampling problem
simply by virtue of a different statistical analysis. For
example, there is a large fluctuation of the local feature
corresponding to C� � 109 in time window II (from about
6.5 to 8.5 ns, which is also visible in Figure 4(b,c) (red).
This rare event corresponding to a transient melting of an

Fig. 8. The output functions of local features (left), and their autocorrelation functions (right). The first 15
PCA modes were used for LFA (n 	 15 in Eq. 8). Each local feature is represented by a seed atom, and the
seed index selected by the sparsification algorithm: (a) x-component of C� � 109, (b) y-component of C� � 52,
and (c) y-component of C� � 21.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

400 Z. ZHANG AND W. WRIGGERS



�-helix prohibits short relaxation times of the correspond-
ing output.

The most significant reduction in relaxation times can
be achieved by focusing on the intrinsic motions of the
LFA domains. In Cartesian space, the results of PCA
and LFA rely on what reference is used for fitting of the
trajectory frames. In the above, we least-squares fitted
the structures by all C� atoms, reflecting the global
scope of the PCA modes. However, the assignment of
local dynamic domains enables us now to take advan-
tage of the local reference frames of the LFA modes.
After a P-weighted least-squared fitting, we recalcu-
lated the local feature outputs from Equation 8. The
results are shown in Figure 9. It can be noticed that the

decay of the autocorrelation is now clearly observed in
contrast to the globally fitted PCA and LFA modes.
Because we eliminated the interdomain motions (which
exhibit slower relaxation times), the remaining intrado-
main relaxation times are of the order of 1 ns, which
enables the internal motion to be sampled within the 8
ns simulation time frame.

CONCLUSIONS

This article represents the first application of LFA to the
study of protein dynamics. The algorithm enables a segmen-
tation of the system into local dynamic domains. In the
model system T4 lysozyme, these local features correspond
to the most flexible parts in the protein, and they can be

Fig. 9. Same as Figure 8, except that we used a P-weighted least-squares fitting of the dynamic domains.
In the weighting, negative values of the P matrix were set to 0.
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related to functional domain motions. The overall func-
tional motion can be well described by only a few of the
local features.

LFA is a promising tool to study protein dynamics in a
reduced dimensional space. One of the major limitations of
the traditional PCA-based statistics is the global support of
the output basis functions. This effect is due to the forced
orthogonalization of the successive modes. In LFA, we con-
struct a local topographic representation of objects in terms
of local features from the global PCA modes. The major
advantages of LFA are (1) the reproducibility of the modes
[different sampling time windows exhibit nearly the same
local features, see Figure 6(b) and Table I], and (2) the fast
relaxation times of intradomain motions when trajectory
frames are aligned by individual domains (Fig. 9).

Does LFA solve the MD sampling problem? As a statisti-
cal tool LFA can be used for trajectory analysis but it does
not by itself enhance sampling of rare or slow events that
are outside of the MD sampling window. However, the
method presents a robust way to isolate individual modes
that are under sampled, something that is not possible
with PCA: Because most LFA modes are converged, one
can identify in the overlap matrix the small subset of
modes that are affected by noise or by a coupling to an
under sampled large-scale motion in the biomolecule.

Do large proteins or macromolecular assemblies really
move as statistically independent dynamic domains? Un-
like PCA, the P-weighted LFA (Fig. 9) does not attempt to
estimate a coherence of motion across large distances in
biomolecules. Because the sampling of such interdomain
coherence is out of reach for short MD simulations, any
statistical technique would risk to overestimate such a
coherence in an under sampling situation. As a statistical
model the P-weighted LFA is focused mainly on the
sampling of the well-converged intradomain motion and
therefore it is better adapted to the short MD dynamics.
However, LFA does not rule out that long range interac-
tions exist on much longer time scales.

How many local features are needed to describe the
functional dynamics in the protein and how are the
dynamic domains defined? We may chose the first n PCA
modes that contribute to a certain percentage of the
overall motion in the protein. In our system T4 lysozyme,
the first 15 PCA modes out of 486 (about 3%) contribute to
more than 70% of the total fluctuation. Also, in the
sparsification algorithm, we can keep adding seed atoms
until the reconstruction error (Eq. 14) is below an accept-
able value. In our case, the reconstruction error decreases
about 60% after 5 seed atoms out of 15 are selected. These
five seed atoms are the C-terminal atom, C� � 109, C� �
52, C� � 21, and the N-terminal atom, respectively [Fig.
1(d)]. However, any n atoms can be used in principle to
reconstruct the O(i) without error.

One possible improvement of the sparsification would be
a simultaneous instead of a sequential optimization of the
seed atoms involving a criterion that directly minimizes
the correlation between the dynamic domains. Currently,
we define the boundary of a dynamic domain by the
contiguous atoms that have positive correlations with the

seed atom in terms of LFA theory. A threshold above the
background noise level of the correlation may be an
alternative. These issues will be subject of future research.
Overall, our initial work presented here demonstrates that
LFA shows much promise for many applications in predic-
tion, sampling and classification of large-scale macromo-
lecular structure and dynamics.
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