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Abstract: Events of scientific interest in molecular dynamics (MD) simulations, including
conformational changes, folding transitions, and translocations of ligands and reaction products,
often correspond to high-level structural rearrangements that alter contacts between molecules
or among different parts of a molecule. Due to advances in computer architecture and software,
MD trajectories representing such structure-changing events have become easier to generate,
but the length of these trajectories poses a challenge to scientific interpretation and analysis. In
this paper, we present automated methods for the detection of potentially important structure-
changing events in long MD trajectories. In contrast with traditional tools for the analysis of
such trajectories, our methods provide a detailed report of broken and formed contacts that
aids in the identification of specific time-dependent side-chain interactions. Our approach employs
a coarse-grained representation of amino acid side chains, a contact metric based on higher
order generalizations of Delaunay tetrahedralization, techniques for detecting significant shifts
in the resulting contact time series, and a new kernel-based measure of contact alteration activity.
The analysis methods we describe are incorporated in a newly developed package, called
TimeScapes, which is freely available and compatible with trajectories generated by a variety
of popular MD programs. Tests based on actual microsecond time scale simulations demonstrate
that the package can be used to efficiently detect and characterize important conformational
changes in realistic protein systems.

1. Introduction

As progress in computer technology has extended the reach
of molecular dynamics (MD) simulations1,2 from picoseconds
to nanoseconds and microseconds, complex and functionally
important biomolecular motions, such as protein folding and
ligand binding, have become more accessible, but the
resulting data sets have become increasingly large and
unwieldy. Routine MD simulations currently generate tra-
jectories consisting of thousands or millions of frames,
rendering both visual inspection and data analysis difficult
and time-consuming. We expect that, over time, the analysis

of these trajectories will require increasing automation, with
human intervention limited to selected events of scientific
interest.

We are particularly interested in the detection of significant
secondary or tertiary structure rearrangements of proteins,
as these motions are often of functional importance. Ex-
amples of such large-scale motions include allosteric con-
formational transitions and folding processes, which give rise
to substantial alterations in the interactions between amino
acid residues. To shed light on such phenomena, the work
described in this paper focuses largely on the automated
recognition of significant amino acid contact changes in MD
trajectories and on measurement of the actiVity, the total
number of such changes per unit time.

Our approach makes use of a particular type of “coarse-
grained” model to reduce the level of detail in the spatial
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representations of long MD trajectories. In particular, we
employ a coarse-grained model based on side chains, which
offers certain advantages over models based on R-carbon
atoms in the context of the present application. Three-
dimensional protein structures are described using a distance
matrix representation3,4 that records all pairwise distances
between the coarse-grained side chains. In contrast with
traditional methods based on the use of global root mean
square deviation (rmsd) measurements, the use of distance
matrices does not require the translational and rotational
alignment of protein structures and facilitates the identifica-
tion of local structural differences.5 Our approach decom-
poses structural changes into a set of key side-chain motions,
providing greater sensitivity to a wide range of significant
conformational changes than is typically obtained from
traditional rmsd-based metrics.

We introduce two alternative approaches to identifying
time-dependent contact graphs from distance matrices: a
method based on distance cutoffs, which proves useful for
detecting local contact formation and breaking activities, and
an approach based on Delaunay tetrahedralization, which is
better suited to the detection of global folding activities. A
recrossing filter is used to eliminate transiently appearing or
disappearing edges in the contact graph that are likely to
represent random fluctuations and not biologically significant
conformational changes.

In the remainder of this paper, we describe the essential
elements of our approach, using four microsecond-scale
simulations for illustrative purposes. For each trajectory
frame, we construct a graph representing all contacts between
amino acid side chains, computed using a spatially coarse-
grained representation. We track changes in this graph over
time, employing a median filter and a recrossing filter for
the counting of discrete events that are reflected in the time-
dependent contact graph. Finally, we use a kernel measure
to derive activity levels from the event data. Although in
this work we only examine protein trajectories, it should be
relatively straightforward to generalize our approach to, for
example, nucleic acids or carbohydrates.

2. Methods

2.1. Molecular Dynamics Simulations. We applied our
algorithms to four all-atom MD trajectories, each ap-
proximately 1 µs in length. (More detailed system parameters
are given in the Supporting Information.) Using the tradi-
tional metric of R-carbon rms deviation from the known
atomic structure, Figure 1 shows distinct dynamic behavior
among the chosen trajectories, which we found particularly
useful for method validation. Trajectory 1 (blue) results from
a 0.52 µs simulation of Src kinase. In this “generic”
trajectory, the system experiences a series of conformational
changes, forcing it to increasingly higher rms deviations of
up to 4 Å. The “stationary” trajectory 2 (red) corresponds
to a stable 1.0 µs simulation of the fast-folding triple mutant
K65(NLE), N68H, K70(NLE) of chicken villin subdomain
HP-35,6 where the system remains close to the initial
conformation (rms deviation ∼1 Å) over the entire length
of the simulation. The “diffusive” trajectory 3 (black) shows

the opposite behavior. Starting from an extended (unfolded)
villin chain, the system remains far from the native structure
during the full 4.3 µs simulation time, visiting various
unfolded conformations. Finally, trajectory 4 (green) corre-
sponds to a 2.5 µs “folding” simulation of villin. Together,
the four trajectories in Figure 1 cover several scenarios that
are commonly encountered in MD simulations of folded and
unfolded proteins.

2.2. Coarse-Graining of Side-Chain Contacts. Nonco-
valent interactions between side chains, such as hydrogen
bonds or salt bridges, play a critical role in protein dynamics.
Singh and Thornton have shown that each of the 400 possible
amino acid side chain pairings exhibits a pronounced peak
in its separation histogram at a distance of 5-8 Å.7 Following
this finding, we identify a representatiVe atom in each side
chain for an efficient calculation of such contact separation
distances. (Some side chains have more than one functional
group, but our current Delaunay tetrahedralization approach
relies on the choice of one representative atom per side
chain.) For most residues, we define the second heavy (non-
hydrogen) atom counted from the end of the chain as the
representative atom. This rule takes into account the fact that
in branched residues (e.g., Gln, Asp, or Arg) the end of the
chain may be ambiguous, whereas the second heavy atom
is straightforward to define in 14 amino acids. Of the
remaining six, three aromatic residues (His, Phe, and Tyr)
form special cases due to the presence of an aromatic ring;
here we pick the atom at the base of the ring (closest to the
main chain) as representative. The rare Trp is represented
by the epsilon-2 carbon at the center of the double ring.
Finally, the achiral Gly and cyclic Pro do not have extended
side chains. We represent them by the R- and γ-carbons,
respectively, to account for all amino acids.

The idea of reducing the level of detail is not unique to
our work, and a number of similar concepts have already
been described.8-13 One possibility is to consider the
hydrogen bonding network14 as a coarse representation of
relevant contacts. We have decided against using hydrogen

Figure 1. R-Carbon rms deviation from the native conforma-
tion as a function of simulation time: trajectory 1 (blue, Src
kinase); trajectory 2 (red, villin near-native); trajectory 3 (gray,
villin unfolded); trajectory 4 (green, villin folding). The double
logarithmic plot bridges between the various time and spatial
scales explored by the four trajectories.
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bonds because they tend to be very transient in MD
simulations15 and provide too much detail; it is often
sufficient to know which amino acids are interacting. Another
possibility is to select the centroids of side chains16 or the
R-carbon atoms instead of the representative atoms intro-
duced above. Due to the widely variable sizes of side chains,
however, the centroids or R-carbons are imprecise markers
for interactions with neighboring residues. Alternatively, one
could consider the five to seven spatial contact patterns
discovered by Singh and Thornton for each of the pairings
of amino acids in their Atlas of Side-Chain Interactions,7

but the enumeration of such patterns for every amino acid
candidate pair in every trajectory frame would be much more
expensive than our simple distance metric.

Given a coarse representation of the structure, an important
step in our analysis is to estimate the time-dependent contact
pattern (or graph) that captures interactions between repre-
sentative side-chain atoms. Any such graph approximates
the actual atomic interactions, so in practice we can expect
some inaccuracies in the assignment of contacts. We
introduce two possible approaches for identifying contact
graphs with this model: the distance cutoff and the so-called
generalized masked Delaunay (GMD) tetrahedralization.
Each of these graph-based concepts has its unique advantages
for event detection and activity monitoring. While the
distance cutoff approach is more selective with respect to
local proximity relationships, which is useful for tasks such
as distinguishing between the formation and breaking of
contacts, the GMD approach accounts for global geometric
changes and offers a way to monitor the overall structural
variability. For the assignment of the contact graph, it is
useful to consider advantages and limitations of these
concepts in more detail. Figure 2 provides a schematic
overview of proximity measures in two dimensions (the
generalization to three dimensions is straightforward). The
initial side-chain model is depicted in Figure 2A.

2.3. Distance Cutoff. The cutoff-based metric is the most
basic proximity criterion. Contacts are based on the Euclidean
distance between representative atoms, and atoms closer than
a given cutoff are considered in contact. Parts B and C of
Figure 2 illustrate the difficulties associated with identifying
contacts by a cutoff distance. If the cutoff is too short (Figure
2B), some valid contacts may be missed, producing false
negatives. If the cutoff is too long (Figure 2C), too many
undesired contacts are included in the graph, leading to false
positives. Such redundant graph edges are typically incon-
sistent with the actual nearest-neighbor interactions of side
chains. In practice, a compromise between these two extreme
cases must be found by adjusting the distance cutoff.

The acceptable tolerance for false positives or negatives
depends on the application. For example, in R-carbon-based
elastic network models, which exhibit a level of detail similar
to our side-chain model, the tolerance for false positives is
high. Hence, long cutoff distances of 10-15 Å are typically
applied in elastic networks, about twice the separation of
adjacent R-carbons.17 Ideally, however, we select in our
coarse model only those contacts that correspond to atomic
contacts between side chains, requiring us to use a shorter
cutoff and leading to a risk of false negatives (Figure 2B) in

the resulting contact graph. The distance cutoff criterion also
assumes that the side chains are densely packed and that the
packing density remains invariant, which is true only for
tightly folded proteins.

2.4. Generalized Masked Delaunay Tetrahedralization.
The Voronoi diagram (Figure 2D) and the related Delaunay
triangulation (Figure 2E) are well-known proximity measures
that automatically adapt to the packing density and do not
require cutoff parametrization. Voronoi cells correspond to
a nearest-neighbor tessellation of the embedding space:18

each Voronoi cell contains one representative atom (repre-
senting a single side chain) and the region of space that is
closer to that representative atom than to any other. A

Figure 2. Idealized depiction of computational geometry
concepts: (A) Coarse model (black, representative side-chain
atoms) superimposed over the “protein” (gray); (B) contacts
selected by distance cutoff (too short); (C) contacts selected
by distance cutoff (too long); (D) Voronoi cells; (E) Delaunay
triangulation; (F) Delaunay triangulation superimposed over
protein; (G) masked Delaunay triangulation graph superim-
posed over protein; (H) masked Delaunay triangulation graph.
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Delaunay graph is the “dual graph” of the Voronoi graph
for the same set of representative atoms; one obtains the
Delaunay graph by connecting representative atoms whose
Voronoi cells share a face or edge. It is straightforward to
generalize the first-order Voronoi cells in Figure 2D to higher
order; a second-order cell, for instance, corresponds to the
regions of space closest to a particular pair of representative
atoms. In general, kth-order cells correspond to regions in
space that are closest to a particular k-tuple.19 Such higher
order cells might be very small in size (for a depiction see
Figure 2 in ref 19).

The Delaunay graph (Figure 2E) appears to be well-suited
for our identification of adjacent contacts among representa-
tive atoms in three dimensions, but only a subgraph of the
Delaunay graph is embedded in the protein structure
(schematically shown in Figure 2F). We thus use the so-
called “masked Delaunay” tetrahedralization introduced by
Martinetz20 to represent the protein shape more accurately
(Figure 2G,H). The Martinetz masking algorithm takes
advantage of a theorem (theorem 3 in ref 21) stating that
the existence of a second-order Voronoi cell between two
representative atoms is equivalent to the presence of a
Delaunay edge between them (Figure 2E). An edge-defining
second-order Voronoi cell is identified when it contains at
least one point of a discretely sampled masking manifold.
In our application, the proposed mask is the protein structure
and the required discrete sampling is provided naturally by
the protein atoms. Figure 3A illustrates the three-dimensional
masked Delaunay tetrahedralization for villin.

The original masked Delaunay approach identifies a
second-order graph (Figure 3A), connecting pairs (1-sim-
plices) of adjacent representative atoms. We generalize the
masked Delaunay approach to higher order, connecting
triangles (Figure 3B), tetrahedra (Figure 3C), or, in general,
(k-1)-simplices, where k is the order of the generalized
masked Delaunay graph. This higher order generalization is
motivated by the need for a discrete metric for the separation
of arbitrary pairs of representative atoms in the GMD context;
we use as a metric the minimum order k of the GMD graph
for which the pair forms an edge. This discrete k-metric
enables us to establish a recrossing filter for accurate
detection of contact transitions (further discussed below). The
recrossing filter aims to suppress any time-dependent spuri-
ous variations in the graph and will also suppress the effect
of sampling granularity, i.e., the spacing of generic atoms
in the system that might lead to missing GMD edges. To
our knowledge, the GMD graph is a new concept, but the

related Voronoi cells have already been generalized to higher
order, as described above.

Following Martinetz’s original definition of the masked
Delaunay graph,20 and sampling the protein mask by the full
atom representation, we arrive at a compact formulation of
the order-k GMD as applied to biomolecular systems:

(i) Begin with the empty graph G, atom positions Vbi ∈ R3

(i ) 1, 2, ..., N), and representative side-chain atom positions
Vbj ∈ R3 (j ) 1, 2, ..., M).

(ii) For each atom position Vbi, identify a set of k indices
Si ) {j1, j2, ..., jk} and its complement Si

C, Si ∪ Si
C ) {1, 2,

..., M} with

(iii) Add the (k-1)-simplex with vertices (wbj1, wbj2, ..., wbjk)
to G; continue with (ii) until all atoms have been explored.

For a general order k, rule (ii) implies that an edge in the
GMD corresponds to a nonempty kth-order Voronoi cell,
where in our case the nonempty property refers to the
sampling by at least one atom in the system. The rule requires
only a partial sorting of the wbj, which can be efficiently
implemented with complexity O(NkM) per trajectory frame.
The proposed GMD algorithm is efficient since it does not
require an expensive geometric construction of Voronoi
polyhedra or Delaunay tetrahedra.

The effect of the GMD order k on the pair distance
distribution of the representative side-chain atom model is
demonstrated in Figure 4. The tail of the distribution arising
from the second-order GMD (a subgraph of the traditional
Delaunay tetrahedralization) reaches to distances as high as
10 Å. Figure 4 shows that a 10 Å cutoff would be too
permissive and would include many higher order (i.e.,
redundant) contacts. As a trade-off between false positives
and false negatives in cutoff-based graphs, we thus recom-
mend cutoff values of ∼7 Å, which would include the peak
of the second-order GMD and only a small number of third-
order GMD contacts.

2.5. Suppressing High-Frequency Motion. MD time
series exhibit a considerable amount of fluctuation on short
time scales, introducing noise in the conformational analysis.
This noise complicates the reliable identification of significant
“level shifts” in the distribution of representative atom pair
distances that are relevant over longer time scales (the term
“level shifts” is used in time series analysis for low-frequency
changes of a nonstationary signal22). Such shifts are impor-
tant both for the cutoff and GMD graphs since they affect

Figure 3. General masked Delaunay (GMD) tetrahedralization of side-chain contacts (blue) in villin (brown, PDB entry 2F4K;
see text): (A) Order 2 contacts; (B) order 3 contacts; (C) order 4 contacts. Molecular graphics were created with VMD.27

|Vbi - Vbj1
| < |Vbi-Vbj2

| < ...< |Vbi - Vbjk
| < |Vbi-Vbj| ( j ∈ Si

C)
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the time-dependent distance matrix and thereby determine
the formation and breaking of graph edges. Figure 5A shows
a separation distance time series of two representative atoms
exhibiting typical level shifts. The two side chains form a
contact from 600 to 1400 ns, but a direct assignment of
contact formation and breaking using a cutoff of, for example,
8 Å would yield many spurious transitions within this time
window due to the noise present on short time scales.

An abundance of alternative low-pass filtering and shift-
detection methods have been proposed.22,23 We tested two
well-known and efficient filters for smoothing the time series,
the moving average and the median, both defined within a
sliding window. In this work, the median is defined as the
smallest number in a series such that at least half the numbers
are no greater than it. The median is influenced only by the
ranking in the sample, making it robust against outliers. The
moving average, on the other hand, is a linear filter, and
thus it can be easily parallelized if desired. Figure 5B shows
the performance of the moving average and median filter as
applied to the level shift near 600 ns, indicating that the
nonlinear median filter offers a satisfactory preservation of
the shift.

In the following section, we implement the median filter
for suppressing high-frequency noise in the distance matrix
time series. The window half-width, δ, is an important time
scale parameter defined by the user which controls the
number of events that are detected. In preliminary testing,
we have found that half-widths on the order of 10-100 ns
provide a reduction of spurious transitions by 2-3 orders
of magnitude (Supporting Information Figure 1) relative to
the absence of a filter. The choice of δ depends on the time
scale of the molecular process investigated by the user.

2.6. Suppressing Trivial Recrossings. One of the well-
known problems in transition-state theory24 is the overcount-
ing of spurious recrossings at the boundary between two
states.12,25 Such recrossings may occur even after median

filtering, e.g., in the case of cutoff-based contact graphs when
the cutoff is close to the mean of a distance distribution.
The “event log” file (see Supporting Information) gives an
example of repeated formation and breaking of the same
contacts in the absence of any suppression of such recross-
ings. An overcounting of transitions occurs also for GMD-
based events, since the Delaunay tetrahedralization is sen-
sitive to representative atom motions. Several approaches
have been proposed to remedy this problem, including the
“almost Delaunay” triangulation by Bandyopadhyay and
Snoeyink.26 Here we take a different approach, exploiting
the time dependence of the underlying model.

A large number of recrossings is simply an indication that
a classification into contacts and noncontacts is not sufficient
for the intended purpose of tracking “significant” level shifts.
To compensate for these unwanted effects, we have devel-
oped a “trivial recrossing suppression” scheme (see Sup-
porting Information). The idea, discussed in the “stable states
picture” of chemical reactions25 and recently used in the
construction of Markov models from MD simulations,12 is
to introduce a buffer region and to track crossings until this
buffer has been crossed completely. Figure 6 provides an
overview of the nine possible paths crossing the buffer and
identifies the remaining “nontrivial” contact formation and
breaking events (green and red arrows, respectively), after
application of the recrossing filter. Numeric labels assigned
to the regions by our algorithm (Supporting Information) are
also shown.

The use of a buffer requires the definition of a “contact
metric” that separates the buffer from contacts and noncon-
tacts. The metric may be continuous, as in the case of cutoffs,
or discrete, as in the case of GMD graphs, where we use the
minimum GMD order of an edge as metric (the smallest
number k whose GMD includes the edge). The width of the
buffer region is a free parameter defined by the user. In tests
using cutoff-based contacts and the stationary trajectory 2
(which exhibits little activity and is thus a good test system
for detecting spurious recrossings), we have found that even
very small buffer zones of 0.3-0.5 Å are highly effective
in eliminating unwanted recrossings (Supporting Information
Figure 2). In the case of GMD, we found the smallest
possible buffer with a minimum order 2 (contacts), 3 (buffer),
and 4 or higher (noncontacts) to be effective; it will be
denoted as the “k ) 3” crossing buffer in the following
discussion.

2.7. Kernel-Based Activity Measure. The analysis de-
scribed so far yields a detailed listing of K broken and formed
contacts at corresponding times ti (i ) 1, ..., K). The cutoff-
or GMD-based activities (rates of events) are computed from
the event times by smoothing with a Gaussian kernel:

The activity a(t) is not normalized to unity as in probability
density estimation, but to K, the total number of events, such
that a gives the number of events per frame. The kernel
standard deviation σ is matched to the median half-width δ
as follows. The median filter can be considered a low-pass

Figure 4. Pair distance distribution histograms for the
representative side-chain atom model (see text). Histograms
are sorted by the minimum GMD order of a representative
atom pair (the smallest number k whose GMD includes the
edge). Shown in color: minimum GMD order 2 (green), 3 (red),
4 (blue), and >4 (gray). The frequency values were sampled
from trajectory 2 (peak distances and shapes of the pair
distribution functions are trajectory invariant).

a(t) ) 1

√2πσ
∑
i)1

K

e-(t - ti)2/2σ2
(1)
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filter that attenuates frequencies above (2δ)-1 (the inverse
of the median window width). The minimum sampling rate
(or Nyquist rate) should be twice this frequency, or δ-1,
according to the Nyquist-Shannon sampling theorem. The
“full width at half-maximum” (fwhm) parameter is com-
monly used to describe the resolving width of a kernel. This
width must be small enough to resolve Nyquist rate samples.
For the Gaussian kernel, the fwhm ) 2(2 ln 2)1/2σ is thus
matched to the inverse Nyquist rate: fwhm ) δ.

Although it would, in principle, be possible to sample
above the Nyquist rate (i.e., δ could be considered an upper
bound for the kernel fwhm), we note that the smoothness of
the activity curves is critical for estimating basin minima
and basin transitions corresponding to local extrema of a(t),
so the maximum fwhm ) δ is chosen in our application to

ensure the maximum smoothness of a(t) (see Results and
Discussion). The smoothing parameter δ thus corresponds
to both the half-width of a median filter and the fwhm of a
Gaussian kernel in our application.

2.8. Output. Our implementation provides a number of
output files for inspection, plotting, and visualization of the
methods described above: (a) a detailed log file of formation
and breaking of contacts (for an example, see Supporting
Information); (b) an activity time series data file containing
the frame number, combined activity a(t), and separate
activities derived from either formation or breaking events;
(c) trajectory files containing basin minima and basin
transitions corresponding to local extrema of the combined
activity a(t); (d) a VMD-readable27 contact graph for each
frame (Figure 3A), enabling animation of contact graphs.

In the following section, we illustrate the use of the
proposed analysis tools in practical MD applications.

3. Results and Discussion

The major idea associated with the tools introduced in the
previous section is their ability to decompose the overall
dynamics (expressed by the activity curves a(t) of eq 1) into
constituent individual events related to the breaking and
formation of amino acid side-chain contacts. Before assessing
the utility of detailed event logs in the practical analysis
workflow, it is useful to compare the activities a(t) to more
traditional rms alignment techniques. Any similarities with
the traditional techniques are nontrivial due to the different
methodological paths taken by our methods. Differences, on
the other hand, will suggest application areas for which our
strategies are uniquely specified. We will describe two
especially advantageous applications, the visualization of
activity measures and the identification of activity basins and
transitions in the trajectory.

3.1. Comparison of Tools for Activity Analysis. Figures
7 and 8 show the results of GMD-based (A) and cutoff-
based (B) activity analysis applied to the “generic” trajectory
1 and the “folding” trajectory 4 (results for trajectories 2
and 3 are shown in Supporting Information Figure 2 and in
Figure 9, respectively). For comparison with traditional

Figure 5. Smoothing of a typical contact time series (black) by moving average (red) and median filters (blue): (A) Full time
window; (B) detailed view of a level shift at 600 ns. Shown is the separation of model atoms representing Asp5 and Phe10 in
trajectory 3. The moving average and median filters used a sliding window of half-width ) 100 ns.

Figure 6. Suppression of trivial recrossings using a buffer
zone (blue) between contact (green) and noncontact (red)
zones. Nine types of buffer boundary crossings (thin black
arrows) are theoretically possible. The colored arrows mark
the time of four designated crossings (green, contact forma-
tion; red, contact breaking). All other crossings are suppressed
(see text). Red numbers show initial numeric values used in
the bidirectional tracking (see Supporting Information). Blue
numbers are the final labels assigned to each of the nine
crossing types. The metric for assigning zone boundaries may
be continuous (distance cutoff) or discrete (GMD minimum
order).

2600 J. Chem. Theory Comput., Vol. 5, No. 10, 2009 Wriggers et al.



techniques, Figures 7 and 8 present also the rms fluctuation
(C) and rms deviation from the native structure (D). The
rms fluctuation in C measures the all-atom variability of
consecutive frames in the trajectory weighted by a sliding
Gaussian envelope function. To provide comparable detail,
we have again matched the fwhm of the Gaussian envelope
to the smoothing parameter δ (see above). We note that the
unusual choice of a Gaussian envelope function for smooth-
ing the rms fluctuations is critical for allowing comparison
between these curves. If we used a more traditional sliding
box envelope for the rms fluctuations, the curves in C would
exhibit high-frequency noise (not shown), reducing the
similarity with those in A and B.

The “generic” Src kinase trajectory 1 in Figure 7 represents
a frequently encountered MD scenario and is thus of
particular utility for the comparison of analysis tools. We
describe similarities of analysis techniques by the Pearson
correlation coefficient. The GMD-based (A) and cutoff-based
activities (B) are quite similar in this case (correlation 0.86).
Likewise, both activities are similar to the time-dependent
rms fluctuation (C; correlations 0.90 and 0.84 for GMD- and
cutoff-based activity, respectively). It is reassuring that the
three measures (Figure 7A-C) are consistent in their
characterization of traditional MD trajectories, even though
there are considerable methodological differences in their

design. A minor difference from the two activity measures
is the elevated background level exhibited by the rms
fluctuation (Figure 7C), but this is inconsequential for
analysis. Differences are more pronounced when comparing
the three measures (Figure 7A-C) to the rms deviation. The
first three measures show increased activity preceding a
pronounced conformational change evident in the rms
deviation (Figure 7D) after 100 ns (see also below). The
subsequent activity peaks are not seen to have any major
effect on the rms deviation. For example, the peak at 420 ns
is due to local fluctuations in the disordered C-terminus
which do not affect the rms deviation, since the structure
has already moved far from the native conformation at this
point.

The villin folding trajectory 4 in Figure 8 offers an
opportunity to analyze a trajectory going from an extended
to a compact, native state. The rms deviation (D) shows that
the protein folds at 1400 ns. The GMD-based (A) and cutoff-
based (B) activities yield a more detailed picture of the
dynamic activity of the system up to 1400 ns, although the
measures exhibit striking differences in this case (correlation
0.64). The major difference at the beginning of the trajectory
is due to the fact that most contacts are outside the cutoff
range in the initial extended conformation, but such folding
events are included in the GMD, which does not depend on

Figure 7. Comparison of conformational analysis tools
applied to trajectory 1: (A) GMD-based activity (k ) 3 crossing
buffer); (B) cutoff-based activity (6.0-7.0 Å crossing buffer);
(C) rms fluctuation in a sliding window; (D) R-carbon rms
deviation from PDB entry 1Y57. The smoothing parameter δ
setting Gaussian fwhm and median half-widths (see text) was
12.5 ns.

Figure 8. Comparison of conformational analysis tools applied
to trajectory 4: (A) GMD-based activity (k ) 3 crossing buffer);
(B) cutoff-based activity (7.5-8.5 Å crossing buffer); (C) rms
fluctuation in a sliding window; (D) R-carbon rms deviation from
PDB entry 2F4K (with “A” variants of dual occupancy rotamers).
The smoothing parameter δ setting Gaussian fwhm and median
half-widths (see text) was 100 ns.
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the cutoff. This difference highlights the adaptive property
of contacts employed by the GMD approach. The rms
fluctuation (C) is more similar (correlation 0.91) to the GMD-
than to the cutoff-based activity (correlation 0.46). Despite
the relatively high correlation, the local variations of the rms
fluctuation (C) are significantly attenuated in this example
compared to the variations of the GMD activity (A), in
contrast to Figure 7, where the two measures show similar
variability. Also, a small activity peak at 2200 ns is missed
by the rms fluctuation. As described in subsection 3.2, this
activity peak corresponds to substantial fluctuations of the
first helix.

Our results suggest that the rms deviation is the least
reliable predictor of conformational transitions because it
misses some events detected by the other measures once the
rms deviation reaches high numeric values. Also, GMD- and
cutoff-based activities provide some additional information
one could not obtain from rms fluctuations. The GMD- and
cutoff-based activities differ especially in the folding trajec-
tory 4. We explore differences between GMD- and cutoff-
based activities further in subsection 3.3.

3.2. Utility of Detailed Event Logs. One important
advantage of the proposed analysis is that it provides a
detailed listing of constituent events that facilitates an
underlying structural interpretation of the activity, beyond
detection of periods of high activity itself. Traditional
analysis tools based on Cartesian coordinates are not able
to provide such detail. The cases of trajectories 1 and 4
illustrate the utility of event logs provided by the new
algorithms. These can be particularly useful when combined

with expert knowledge, for example from mutagenesis data,
of which residues are believed to play an important role.

The event logs of the Src kinase trajectory 1 indicate that
Phe405 undergoes a conformational change that results in
its exchange of packing partner during the 90-140 ns time
period. Initially, Phe405 is in proximity of Glu310, Val313,
Leu317, and Met314, contacts which are broken at 89, 90,
96, and 136 ns, respectively. The loss of contacts is
compensated by the formation of a new contact with His384
at 96 ns simulation time. This conformational change mainly
involving Phe405, His384, and Met314 is highly intriguing
and potentially important, since Phe405 and His384 belong
to the well-known DFG and HRD motifs that are almost
universally conserved among protein kinases, and Met314,
Phe405, and His384 are all part of a critical structural “spine”
that was identified to stabilize kinase active structures.28

For the villin folding trajectory 4, formation of helical
(i,i+3) and (i,i+4) contacts contribute substantially to the
activity in the initial part of the trajectory. This is not directly
followed by folding, but rather the protein appears tempo-
rarily trapped due to the formation of nonnative interactions.
Specifically, after approximately 600 ns, a contact forms
between the oppositely charged N- and C-terminal residues.
This contact, together with an overextension of helix 1
through to residue Thr13, characterizes a persistent nonnative
state between approximately 900 and 1100 ns that is
associated with a dip in activity (Figure 8). Exit from this
state is accompanied by the loss of the nonnative helical
contacts in helix 1 and the subsequent formation of helix 2.
The final event in folding is the unraveling and re-formation
of helix 1, together with a reorientation of the loop between
helices 1 and 2. This is accompanied by a burst of contact
formation between hydrophobic residues, including the Phe6-
Phe17 contact in the core, which is formed at ∼1400 ns.
After folding, helix 1 occasionally undergoes substantial
fluctuations, leading to the rise in activity at approximately
2200 ns visible in Figure 8. This involves the partial transient
loss of helical structure from helix 1, reflected in changes
in the contacts in that helix, accompanied by a change in
orientation of helix 1 with respect to the rest of the protein
that is reflected in changing contacts between residues at
the beginning of helix 1 with those near the beginning of
helix 2.

Once the contact formation or breaking events are identi-
fied, geometric inspection tools such as those provided by
VMD27 may add to the interpretation. It would have been
impossible to extract this highly specific information with
one of the traditional rms deviation or rms fluctuation
measures.

3.3. Visualization of Activity Results. Given the differ-
ences between GMD and cutoff when applied to folding
trajectory 4 (Figure 8B), we have investigated the discrep-
ancy further using the “diffusive” trajectory 3. Since the
original level shifts that give rise to activities can be separated
into formation and breaking events, we considered separately
the formation and breaking activities derived from the two
classes. The differences were striking for cutoff-based activity
levels (Supporting Information Figure 3; correlation 0.07
between formation and breaking), whereas in the case of

Figure 9. Activity levels exhibited by the diffusive trajectory
3 during the first 1.25 µs: total GMD activity (gray); cutoff-
based contact formation activity (green); cutoff-based contact
breaking activity (red, plotted in negative direction to simplify
comparison). A median filter (see text) was applied, using a
half-width of 100 ns. Recrossing suppression used a buffer
of 6.0-7.0 Å (cutoff) or in the case of GMD, a buffer of k ) 3
(see text). Snapshots of the trajectory above the plot cor-
respond to the initial conformation and to three local minima
of GMD activity that represent the basins directly below them.
Molecular graphics renderings were created with VMD.27 An
animated AVI version of this figure, showing the full length of
the trajectory, is available in the Supporting Information.
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GMD the formation and breaking contributions were very
similar (Supporting Information Figure 4; correlation 0.77).
This indicates that, at least in the case of folding trajectories,
the formation and breaking of cutoff-based contacts are
asymmetric and at times either one may be dominating,
whereas in the GMD graph the total number of contacts is
nearly constant. We thus propose to visualize separate
formation and breaking activities in the case of cutoff
contacts, and only the total activity of the GMD.

Figure 9 displays such a “combination plot” of activities
together with snapshots of the trajectory at low GMD
activity. An animated AVI version of this visualization is
available in the Supporting Information. One can observe at
several times the pronounced asymmetry in the cutoff activity
levels. A dominant formation of cutoff contacts, such as at
250, 700, and 1000 ns, typically precipitates a stabilization
of the system (as judged by low GMD activity at 350, 750,
and 1100 ns). Likewise, a dominant breaking of cutoff
contacts, such as at 500 and 800 ns, clearly favors subsequent
folding transitions (corresponding to high GMD activity at
600 and 900 ns). The proposed combination plot thus
provides a nuanced characterization of folding activity, in
which periods of stabilization or destabilization of the overall
fold can be matched with more detailed changes in the side-
chain packing.

The results suggest that inactive periods observed in
folding trajectories are caused by preceding periods of contact
formation of the structure, whereas large-scale folding
transitions follow after periods of contact destabilization. The
observed dependence of structural stability on contact
formation could be used to enhance sampling in folding
trajectories.

3.4. Segmentation of Activity Basins and Transitions.
Figure 9 suggests a natural segmentation of the trajectory
into quiescent “basins” separated by “transitions.” We
assigned local minima (basin centers) and local maxima
(transitions) using a finite difference approximation of the
first derivative of the total (GMD- or cutoff-based) activity
a(t). The local maxima correspond to highly active periods
of the trajectory that separate basins of inactivity. The local
minima roughly correspond to the structures with the greatest
contact similarity to the average structure of the local basin.
These minima are shown in Figure 9 above the GMD activity
plot, representing the inactive basins directly below them.
This strategy can also be applied (after Gaussian smoothing)
to the traditional rms fluctuation.

For typical MD trajectories such as trajectory 1, the
maxima and minima of a(t) are not very sensitive to the graph
method used. For example, 75% of the minima and transi-
tions derived from the GMD activity (Figure 7A) can be
found to be within 5 ns simulation time of like extrema
exhibited by the rms fluctuation (Figure 7C). The similarity
with the rms fluctuation was somewhat less pronounced for
the cutoff-based activity (63%; Figure 7B). As can be
expected, the observed conservation of minima and transi-
tions agrees qualitatively with the above Pearson correlation
analysis. We propose to use the GMD activities for the
assignment of basins and transitions whenever possible, due

to the more pronounced undulations relative to the rms
fluctuation (Figure 8A,C).

4. Conclusion

We have introduced tools for automated event detection and
activity monitoring in MD simulations and demonstrated their
application to state-of-the-art trajectories. Our method in-
troduces intuitive parameters to be defined by the user, as
follows:

(a) The type of contact graph. We recommend a cutoff-
based graph to detect detailed side-chain contact formation
and breaking, or a GMD-based graph to detect global activity.

(b) The designated crossing buffer. We recommend 6-7
Å cutoffs or GMD order k ) 3.

(c) The temporal smoothing parameter δ. This value
depends on the length of the simulation and the desired level
of detail.

(d) The side-chain atom selection. We provide a default
profile for standard amino acid residues, which may be
modified for specific systems or nonstandard residues.

All other steps in the methodology are automated, includ-
ing median filtering, suppression of trivial recrossings, kernel
activity estimation, calculation of basin minima and transi-
tions, and data file output.

Our current serial implementation is sufficiently efficient
to allow for the analysis of microsecond-scale trajectories.
An analysis of 4496 frames of trajectory 3 took only a few
minutes of compute time on a standard Linux workstation.
For much longer trajectories, we expect that parallelization
of the analysis may be required; such parallelization should
be straightforward using, for example, the recently developed
HiMach framework.29

Our implementation brings together state-of-the-art meth-
odologies from time-series analysis, computational geometry,
graph theory, and biochemistry to address the activity-
monitoring and event-detection problem. The limitations of
our methods include the focus on global rearrangements in
the structure; some events of scientific interest leave only
very small footprints in the surrounding protein matrix. Ion
and solvent diffusion through membrane channels, for
example, would require different detection techniques. In
addition, the parameters of our method have not yet been
optimized for lipids and nucleic acids, although it would in
principle be possible to generalize the coarse-grained model
to nonprotein contactssespecially in the case of GMD, which
is independent of specific cutoff distances.

An additional limitation of our analysis is that events are
still relatively frequent for human interpretation (about
100-1000 events were observed per microsecond). For
longer trajectories, it may be helpful to further reduce the
complexity of the contact patterns using one or more of the
following strategies: (i) ignoring contacts formed by residues
with nonexistent or short side chains such as Cys, Pro, and
Ala; (ii) substantially increasing the crossing buffer; (iii)
ranking events by the sequence conservation of participating
residues, the energy levels of participating residues, or a
correlation analysis of the motion of participating residues.

Our tests on four trajectories have revealed a number of
advantages of our activity-based calculations relative to the
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more traditional rms fluctuation. These include (i) a higher
sensitivity at low activity levels (Figure 8A,C); (ii) a reduced
background noise contribution (Figure 7A, C); (iii) a detailed
listing of individual events underlying the observed activity;
(iv) coarse model calculations that are roughly an order of
magnitude faster than an all-atom analysis; and (v) a
functionally relevant diversification of the tool arsenal: the
GMD activities show an overall fold rearrangement, the
cutoff activities measure contact formation and breaking, and
the traditional rms fluctuation measures the variability of
Cartesian coordinates of neighboring frames. The importance
of automated analysis techniques will only grow as efforts
in high-throughput MD simulationssuch as the “Dynameom-
ics” project30smake large numbers of MD trajectories
publicly available for mining and interrogation.

4.1. Dissemination. All tools described in this article
will be documented and freely distributed as part of the
Python-based “TimeScapes” package at URL http://
www.DEShawResearch.com (Resources). TimeScapes is
capable of reading the trajectories produced by many popular
MD programs, including AMBER, CHARMM, NAMD,
X-PLOR, Desmond, LAMMPS, and GROMACS, making
the package widely applicable.

Supporting Information Available: Supporting meth-
ods, supporting figures, an events log file, and an animation
in AVI format. This information is available free of charge
via the Internet at http://pubs.acs.org.
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