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We are describing efficient dynamics simulation methods for the characterization of functional motion of biomolecules on the
nanometer scale. Multivariate statistical methods are widely used to extract and enhance functional collective motions from
molecular dynamics (MD) simulations. A dimension reduction in MD is often realized through a principal component
analysis (PCA) or a singular value decomposition (SVD) of the trajectory. Normal mode analysis (NMA) is a related
collective coordinate space approach, which involves the decomposition of the motion into vibration modes based on an
elastic model. Using the myosin motor protein as an example we describe a hybrid technique termed amplified collective
motions (ACM) that enhances sampling of conformational space through a combination of normal modes with atomic level
MD. Unfortunately, the forced orthogonalization of modes in collective coordinate space leads to complex dependencies that
are not necessarily consistent with the symmetry of biological macromolecules and assemblies. In many biological
molecules, such as HIV-1 protease, reflective or rotational symmetries are present that are broken using standard orthogonal
basis functions. We present a method to compute the plane of reflective symmetry or the axis of rotational symmetry from the
trajectory frames. Moreover, we develop an SVD that best approximates the given trajectory while respecting the symmetry.
Finally, we describe a local feature analysis (LFA) to construct a topographic representation of functional dynamics in terms
of local features. The LFA representations are low-dimensional, and provide a reduced basis set for collective motions, but
unlike global collective modes they are sparsely distributed and spatially localized. This yields a more reliable assignment of
essential dynamics modes across different MD time windows.

Keywords: Principal component analysis; Normal modes; Singular value decomposition; Symmetry constraints; Local feature analysis;
Molecular dynamics

1. Introduction: molecular dynamics and the sampling

problem

One of the top ten challenges in computational biology is

the prediction and engineering of function from structure

of complex molecules [1]. This is not yet feasible on a

routine basis, but novel simulation and mining technolo-

gies bring the prediction of function from structure within

reach of biomedical researchers. The modeling of large

nanometer scale functional motions will lead to a precise

understanding of mutations and other biological vari-

ations, and the ability to design molecules for medical

nanotechnology. We investigate the conformational

dynamics of proteins and large-scale cellular machines

[2] that is relevant for their function. Nanoscale

biomolecules have been termed molecular machines due

to their property to undergo conformational changes while

transducing chemical energy into mechanical energy.

A casual glance into today’s journals reveals that concurrent

structural biology is, to large extent, concerned with the

quest to identify the moving parts of a biomolecular

machine—its springs, shafts, levers, and axles.

The motion of large biomolecules is notoriously

difficult to detect and to predict with conventional

experimental observations alone. Molecular dynamics

(MD), involving the numerical integration of Newton’s

equations of motion, is an important computational tool in

the study of the functional dynamics [3,4]. Once nanoscale

motions are generated or reproduced in silico, the

functional “machine parts” can be visualized in computer

graphics and structural fluctuations and transitions of

biomolecules can be described at the atomic level.

One of the well-known and major limitations of MD in

the application to large biomolecules is the shortness of

achievable simulation times, typically of the order of tens

to hundreds of nanoseconds, due to the femtosecond
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integration time step needed to time-resolve chemical

bond vibrations. These times are much shorter than the

time scales of many important biological processes, such

as multi-domain motions and allosteric transitions. In the

mid 1990s it became clear that correlations in low-

frequency displacements are under sampled by nanose-

cond MD simulations, which prompted the question “how

long is long enough?” [5]. An answer may be found in

experimental studies that suggest that the relaxation times

of correlations for multi-domain proteins are on the order

of milliseconds or longer [6,7]. Therefore, the difficulty

associated with their sampling limits the reliable

prediction of such nanoscale functional motions using

the traditional simulation techniques on much shorter time

scales.

The significant advancements of recent years in the

structural biology of large macromolecular assemblies of

.10 nm length, such as cytoskeletal filaments, nuclear

pores, the transcription machinery, and virus capsids [8],

have exposed a gap between MD capabilities and desired

biological relevance. This gap calls for novel compu-

tational methods that adequately represent the flexibility

of nanoscale biomolecules. Three areas of advancements

can be distinguished: (1) an increase in the MD integration

time step size, without significantly affecting the

dynamics [9–16], would bridge the time scale gap

between MD and relevant functional dynamics; (2) a

reduction in the complexity of the molecular models

(coarse graining) would bridge the spatial scale gap

[17–22] and reduce the number of degrees of freedom that

need to be explored in nanoscale systems; and (3) a more

sophisticated approach to boost sampling efficiency

through statistical mining and enhancement of the

dynamics [23–30], would enable the prediction of

nanoscale motions from short MD simulations. In this

review of recent methods developed and implemented

in our laboratories, we focus mainly on the last topic,

although this division is not exclusive: some recent hybrid

methods are based on principles from more than one

category.

The organization of this paper is as follows. Firstly, we

review well-known collective coordinate space techniques

that provide a dimension reduction via orthogonal basis

functions. Subsequently, we describe the hybrid amplified

collective motions (ACM) technique that enhances

conformational sampling through a low-frequency boost

of vibrational modes. We discuss limitations of collective

coordinates with respect to symmetry and coherence of the

predicted motion, before offering two solutions to this

problem. The first solution is an adaptation of singular

value decomposition (SVD) such that symmetric modes

can be extracted from—and symmetry be enforced on—

the MD trajectory. The second solution involves a

departure from global collective coordinates, instead we

propose the use of a local basis functions for functional

dynamics. Finally, we provide concluding remarks on the

parameterization and future applicability of the described

algorithms.

2. Protein dynamics in collective coordinate space

Over the years many researchers strived to extract

“essential” functional features from the short MD

trajectories, with the hope to describe the motion in

terms of a small number of variables, sometimes called

collective coordinates or essential degrees of freedom

[31–37]. One widely used statistical approach to such

dimensionality reduction is principal component analysis

(PCA) [38,39], also known as the Karhunen–Loeve

expansion [40] in time series analysis. PCA is based in

part on the related theory of SVD. After introducing SVD

and PCA, we will discuss similarities with the harmonic

description of protein dynamics in normal mode analysis

(NMA). All of these methods have in common that they

use an orthogonal set of global basis functions for

characterizing the dynamics, with the aim to truncate a

series expansion for a reduced, low-dimensional approxi-

mation of the dynamics.

2.1 Singular value decomposition

Given a trajectory S ¼ {x(t), t $ 0}, we assume that the

overall translational and rotational motion of the molecule

is eliminated from the trajectory as is customary in MD,

and that the mean of internal motion has been subtracted

from the coordinates, i.e. the trajectory S is centered at the

origin of R3N, where N is the number of atoms under

consideration. Often the full set of atoms is used, but

assuming a protein structure, one might consider only the

Ca atoms, since Amadei et al. demonstrated that the larger

amplitude “essential” modes are robust under such a

coarse graining [33,41].

For a system of N considered atoms, the Gramian (also

named covariance matrix or second moment matrix)

C ¼

ðT f

0

xðtÞxðtÞT dt ð1Þ

is a 3N £ 3N symmetric positive semi-definite matrix. The

eigensystem of C

C ¼ US2UT ð2Þ

provides an orthogonal basis via the columns of U and in

this basis we have the representation

xðtÞ ¼ USvðtÞ

with the components of v(t) being mutually orthogonal

square integrable functions on (0, Tf). If the diagonal

elements of S decay rapidly (assuming they are in

decreasing order) then a reduced basis representation of

the trajectory may be obtained by discarding the trailing

terms and considering the approximation xn ¼ UnSnvn(t),

where the subscript n denotes the leading n columns

and/or components ðnp 3NÞ.

This continuous case is approximated using snapshots

consisting of values x(tj) of the trajectory at discrete time
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points tj and forming the 3N £ m matrix

X ¼ ½xðt1Þ; xðt2Þ; . . . ; xðtmÞ�:

The SVD of X provides

X ¼ USVT < UnSnV
T
n

where

UTU ¼ VTV ¼ I; S ¼ diagðs1;s2; . . . ;s3NÞ;

I denotes the identity matrix, and the diagonal elements

are ordered s1 $ s2 $ · · · $ s3N . The left singular

vectors (columns of Un) of a truncated SVD then provide

the reduced basis. It can be shown that U and S, resulting

from SVD, are identical to the eigensystem of C in

equation (2).

The approximation of the idealized C to the discrete

time steps

C <
1

m
XXT ; kxxTl

is provided by a quadrature rule. Here and in the following

kl denotes an average over the time frames.

2.2 Principal component analysis

In PCA, we take advantage of the orthogonality of the

columns of U, ur(r ¼ 1, . . . , 3N), that form a basis for the

internal motion of the molecule. The basis functions are

often termed principal modes if resulting from the

eigensystem of C, or left-singular vectors if resulting

from SVD.

This statistical method was introduced in a related form

discussed below to the biomolecular simulation commu-

nity by McCammon, Karplus and their coworkers [42,43]

in the 1980s, initially under the name quasi-harmonic

analysis. Later, in the early 1990s the idea witnessed a

renaissance under the name essential dynamics and has

since enjoyed the increasing enthusiasm of a large number

of investigators [33,34] who successfully applied it to

sample the conformational space [36,37] and to

investigate the physical nature of protein dynamics.

Due to orthogonality of the principal modes the

components of the coordinates x can be reconstructed

from the modes:

xi ¼
X3N
r¼1

ArurðiÞ with

Ar ¼
X3N
i¼1

urðiÞxi ;
X3N
i¼1

KrðiÞxi; ð3Þ

where Ar is the so-called output of the representation, i.e.

the projection of atomic fluctuations onto the principal

mode ur. PCA outputs are decorrelated in the sense that

kArAsl ¼ s2
r drs. Kr(i) is the so-called kernel of the PCA

representation, in the case of PCA Kr(i) ¼ ur(i).

As explained above, the eigenvalues s2
r are ordered

in a decreasing sequence, and we assume that a small

number n ðnp 3NÞ of modes are sufficient to describe the

dominant dynamics. This means we truncate the

expansion (equation (3)) early and define the (approxi-

mate) reconstructed coordinates:

x rec
i ¼

Xn
r¼1

ArurðiÞ: ð4Þ

2.3 Quasi-harmonic and normal mode analysis

The original introduction of PCA to molecular modeling

by McCammon, Karplus, and their coworkers [42,43]

relied on a quasi-harmonic approximation of the potential

energy that would reproduce the observed second

moments of the atomic displacements C (equation (1)).

The quasi-harmonic force constant matrix, F, can be

written

F ¼ kBTC
21; ð5Þ

where kB is the Boltzmann constant and T is the

temperature. In the quasi-harmonic approximation the

potential energy W(x) of the system varies quadratically

about a given equilibrium conformation x0. Since the

gradient of the potential vanishes at x0, the Taylor series

expansion of W about x0 is given by:

WðxÞ ¼ Wðx0Þ þ
1

2
ðx2 x0Þ

TFðx2 x0Þ þ · · · ð6Þ

If third and higher order derivatives are ignored the

dynamics of the system can be described in terms of the

eigenvectors (normal modes) Vr and frequencies vr

(r ¼ 1, . . ., 3N). In Cartesian coordinates the Vi, vi satisfy

the eigensystem [44]

M21=2FM21=2Vr ¼ v2
rVr

VrVs ¼ drs ð7Þ

where M is a diagonal matrix of atomic masses mi.

In Cartesian coordinates solving equation (7) for N atoms

involves again a numerical diagonalization of a 3N £ 3N

matrix. If mi ¼ const (as in coarse-grained Ca based

representations), normal modes and principal modes from

PCA are identical. The normal modes Vr are ordered here

by increasing frequencies v1 # v2 # · · · # v3N . For a

given set of initial amplitudes ar and phases fr at time

t ¼ 0, the time evolution in the normal mode formulation

is then [44]

xiðtÞ ¼ xið0Þ þ
ffiffiffi
2

p X3N
r¼1

VrðiÞm
21=2
i ar cosðvrt þ frÞ: ð8Þ

It can be shown using statistical mechanics that the

amplitudes at thermal equilibrium are inversely pro-

portional to frequency [45]. Thus, the largest 1% of the

modes contributes up to 90% of the atomic fluctuations.

In practical situations it is therefore again sufficient to

extract only n p 3N lowest frequency modes.
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While there is general agreement about the appeal of

PCA and quasi-harmonic analysis for the prediction of

functionally relevant modes, it became clear in the 1990s

that such theories suffer from the MD sampling problem.

For large systems of interest the second moments C may

not converge on the short time scales accessible to MD.

Also, Garcı́a et al. demonstrated that for large systems the

distribution of conformations often becomes multi-modal

[35] (as suggested also by Go’s “jumping-among-minima

model” [46]). For such multi-modal distributions the

Boltzmann inversion (equation (5)) and harmonic

approximation (equation (6)) break down. Principal

modes derived from different MD time windows are

therefore no longer consistent [47]. Therefore, for the

large systems of interest here, PCA and quasi-harmonic

modes from short MD trajectories are intrinsically

unreliable.

An alternative approach to the (unreliable) sampling of

quasi-harmonic modes from MD can be obtained if one

directly postulates a harmonic approximation of the

potential energy in the vicinity of an equilibrium position

x0. In what has become known as conventional NMA or

elastic network theory, the statistically sampled F is

replaced by a Hessian matrix of second derivatives of a

potential energy model (e.g. the standard MD potential

energy evaluated at x0) [44,48]. This idea is rooted in the

observation that biomolecules often behave more than one

might expect as if the energy surface were harmonic, even

though, as we know, the potential really contains many

local minima and anharmonic contributions. Conventional

NMA, by means of the postulated Hessian, returns 3N 2 6

usable normal modes that describe the internal dynamics

(since rigid-body motions are not removed from the

Hessian, the first six frequencies are zero and the

corresponding rigid-body modes r ¼ 1, . . . , 6 are usually

ignored). This way, animations of large-scale vibrational

modes can be produced (via equation (8)) that often agree

surprisingly well with experimentally observed motions of

biomolecules [49]. Although, conventional NMA is based

on an entirely heuristic elasto-mechanic model, it has

become well established in biophysical simulation and

refinement, mainly due to the ease by which appealing

animations of large-scale motions are generated from

static biomolecular structures. Although both are rooted in

normal mode analysis, in the following “NMA” and

“normal mode” refers to the widely used, strictly harmonic

convention, whereas “PCA” and “principal mode” refers

to the quasi-harmonic analysis based on MD.

2.4 Comparison of collective coordinate methods

Figure 1 provides a comparison of the first principal mode

from an MD simulation of myosin with the first non-trivial

normal mode. The initial structure for all myosin

simulations in this work was taken from the supplemen-

tary structure “motor_domain.pdb” published by Holmes

et al. [50]. NMA was performed with a course-grained

model as described in [30]. MD was performed using the

GROMOS96 [51] simulation package with an united-atom

parameter set 43A1 (Z.Z. and W.W., to be published).

The SPC water model was used to describe the solvent

molecules [52]. The system consists of myosin (1099

residues and 11,216 atoms), 32 Naþ ions, and 57,650

water molecules, leading to a total size of 184,198 atoms.

After energy minimization and 100 ps positional-restraint

equilibration, a 1 ns production simulation was performed.

The three groups (protein, ions and solvent) were coupled

separately to a temperature bath of reference temperature

300 K (relaxation time 0.1 ps) [53].

The normal mode (figure 1(b)) corresponds to the well-

known lever arm motion of the myosin motor protein [54]

and is slowly varying across the molecule, whereas the

principal mode (figure 1(b)) is noisy and less coherent due

to under sampling of the large scale variability of myosin in

the MD trajectory. It is apparent that for a large system of

14 nm size such as myosin S1, a standard nanosecond MD

simulation is not long enough to lead to a convergence of

principal and normal modes, although such a convergence

was proposed in the literature for smaller systems [31].

3. Enhanced sampling by hybrid strategies

A modeler who wishes to employ collective coordinate

methods usually faces a tradeoff: If simulations of

structural rearrangements are desired that involve the

forming and breaking of contacts between secondary

structure elements or domains, one is limited to MD

techniques with their known under sampling of large

conformational changes. If on the other hand the

simulation of large scale motion is desired, one may

wish to employ NMA, but the elastic model used in NMA

dues not provide for local relaxation of the stereochem-

istry, or for forming or breaking of contacts in the

structure. These limitations have prompted Zhang et al. to

develop a hybrid method, termed ACM that combines the

advantages of both NMA and MD while eliminating some

of their limitations.

In [30] the authors used the normal modes obtained with

a coarse-grained elastic network model to guide the

atomic-level MD simulations. Based on NMA, collective

modes can be calculated according to the current snapshot

X in the conformational space of the protein. The authors

then project the velocities of all atoms in the system on a

subspace of n p 3N normal modes. In the MD simulation

protocol, the velocities along the slowest few modes are

coupled to a higher temperature by means of Berendsen’s

weak coupling method [53] to amplify the collective

motions. Velocities orthogonal to this subspace are

coupled to standard room temperature. This selective

coupling to two different temperatures has the advantage

that only a very small number of the degrees of freedom

are experiencing the elevated temperature that would

normally denature a protein, whereas the large remainder

of orthogonal degrees of freedom dissipates the thermal

energy efficiently, leading to a stable dynamics that
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is guided towards the low-frequency modes of interest.

In [30] this low-boost sampling technique was applied to

two test systems. One was a 15 amino acid S-peptide

analog, where it was possible to perform reversible

folding. MD simulations typically denature biomolecules

irreversibly, but ACM was sufficiently powerful to refold

the denatured peptides back into their native structure. The

other system was bacteriophage T4 lysozyme. Much more

extensive domain motions between the N-terminal and C-

terminal domain of T4 lysozyme were observed in the

ACM simulation compared to a conventional simulation.

The only disadvantage of ACM is the non-equilibrium

character of the dynamics due to the energy flow from

slow to fast modes. This makes it difficult to estimate a

Boltzmann distribution and potential of mean force as is

needed for free energy calculations. However, for

conformational sampling it appears the technique appears

to be quite powerful.

In this work we have modified the GROMOS96 package

[51] to implement ACM as described. The ACM

simulation protocol of myosin was identical to that of

the standard simulation described above, except for

temperature coupling. The first three collective modes

were coupled to a higher temperature 800 K with a

relaxation time of 0.006 ps, and the other degrees of

freedom were coupled to the room temperature 300 K

(relaxation time 0.1 ps). The collective modes were

updated every 250 time steps according to the changing

configuration of myosin.

Figure (2) provides a comparison of the conformational

sampling achieved with standard MD and ACM. It is well

known that the lever arm of myosin is flexible during

Figure 1. Comparison of PCA and NMA of the S1 motor domain of myosin II. (a) The first (r ¼ 1) principal mode (see text) extracted from the MD
simulation. (b) The first non-trivial (r ¼ 7) normal mode. All figures in this paper are available in colour online and all were created with the visualization
program VMD [65].
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muscle contraction and coupled mechanically to the

distant active site. However, in standard MD the large

system remains close to its initial configuration. The lever

arm rotates only by about 68, which corresponds to a

maximum shift of 1 nm (figure 2(a)). However, in the

ACM simulation, the lever rotates about 318 relative to the

head, which leads to an overall displacement of 5 nm. This

variability is in excellent agreement with experimental

results. Electron microscopy has shown a 328 rotation

[55], whereas a nanomanipulation of single myosin heads

attached to actin filaments showed a displacement of

5.3 nm per power stroke [56]. Although one would not

necessarily expect ACM snapshots of a chemically

inactive myosin to resemble the chemically active

motor, it is clear from figure 2 that ACM is able to

overcome the sampling problem of MD for large systems

while providing for a relaxation of tertiary structure that

can be interpreted in terms of an allosteric mechanism.

4. Limitations of orthogonal basis functions

Collective coordinates methods of Section 2 either

estimate (in case of SVD or NMA) or postulate (in case

Figure 2. Effect of ACM on myosin dynamics. (a) Standard MD. Blue: the initial structure, and red: the snapshot t ¼ 992 ps that exhibits the largest rms
deviation from the initial structure among all trajectory frames. (b) ACM simulation. Blue: the initial structure, and red: the snapshot t ¼ 651 ps that
exhibits the largest rms deviation. The structures in (a) and (b) were least-squares fitted by the Ca atoms of res. 1–607 (2MYS [66] numbering).
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of NMA) a coherence of motion across large distances in

biomolecules. Since the sampling of such inter-domain

coherence is out of reach for short MD simulations

(figure 1), PCA and SVD risk to overestimate such a

coherence in an under sampling situation. Also, normal

modes may suffer from inaccuracies since they are based

on a heuristic elastic model that is not rooted in first

principles of biomolecular interactions. The major

advantage of collective coordinate methods is their

suitability for dimensionality reduction through truncation

of a series expansion (cf. equation (4)). However, the

inaccuracies in the modes (due to under sampling or

empirical modeling) may conspire to obscure the

relevance of individual modes, such that it is not clear a

priori which modes or which linear combination of modes

(in a given low-dimensional subspace) are functionally

relevant [57].

The global extent of individual collective modes is

problematic not only because of the limited reliability of

individual modes, but also because of their forced

orthogonalization. Since the r th mode is always forced

to be orthogonal to the first r-1 modes, complex causal

dependencies arise such that a particular mode r is actually

dependent on modes of a lower index. In the case of PCA

it was shown that even fast (r q 1) modes, whose

relaxation time is well within the MD sampling window,

cannot be recovered by PCA due to their dependence

on the slower, under sampled modes [47]. The same causal

dependencies due to orthogonality can also be expected

for NMA, since any noise in the assignment of low-

frequency modes will cascade throughout the entire

orthogonal system of basis functions.

The forced orthogonalization of modes also has the

undesirable effect of breaking the symmetry of large-scale

macromolecular assemblies. For example, a three-fold

symmetric system such as tricorn protease [58] should

exhibit a symmetry related representation (for each 1208

rotation). Instead an orthogonal transform fixes by

numeric chance one of the three possible solutions and

forces all subsequent modes to be orthogonal, thereby

breaking the symmetry.

Due to the apparent limitations of orthogonal

collective coordinates we were seeking alternative

statistical theories that do not suffer from the

orthogonalization problem while obeying the symmetry

of a given system. In the following two section we

provide an abridged overview of two such theories that

have been introduced very recently [59,60]. The first

strategy based on SVD still uses global basis functions

but provides approximate modes of motion that best

describe the symmetric movements of the protein. The

second approach is more radical, instead of global

orthogonal modes new local basis functions are

constructed. These local feature representations are still

low-dimensional and provide a reduced basis set for

collective motions, but they are sparsely distributed and

spatially localized. The theory is augmented by new

application results on the myosin motor.

5. SVD approximation with symmetry constraints

In the following we concentrate on detecting and

enforcing two types of symmetry within the SVD

formalism: rotational and reflective. The computational

schemes for calculating the best symmetric approximation

of a given trajectory in R3N space involves two stages for

each case. For reflective symmetry, the first stage is to

obtain the normal w to an approximate plane of reflective

symmetry, where the normal is defined to be the unit

vector perpendicular to a hyperplane H for which the

given set of trajectory frames S can be split into two mirror

sets. For rotational symmetry, we first determine an

approximate axis of rotational symmetry q about which

the given set can be rotated in steps of 2p/k. In the second

stage, we find the best approximation to the given

trajectory that has the appropriate symmetries enforced.

Since simulation trajectories are noisy and do not strictly

obey the expected symmetry, we need to construct a

normal vector or axis of rotation that diminishes the

effects of outliers. This is accomplished by an iterative

re-weighting scheme that minimizes deviation from

symmetry in a weighted norm. We also provide a means

to compute just the dominant portion (leading n terms) of

the SVD that is well suited to large scale computation.

This computation only requires matrix–vector products

involving the trajectory frame set represented as a matrix.

The ARPACK software [61] can be used in this large-scale

case. As demonstrated on a model system, the

computation is no more expensive than constructing the

leading terms of the SVD of the full set of points without

the symmetry constraint. Complete details concerning this

methodology and its implementation may be found in a

technical report [59].

5.1 Stage 1: reflective symmetry case

Recall that a hyperplane H is specified by a constant g and

a vector w via H :¼ {x : gþ wTx ¼ 0}. The vector w is

called the normal to the plane. The symmetry relation is

described by the orthogonal transformation I3 2 2wwT

which is known as an elementary reflector, where I3 is the

3 £ 3 identity matrix. A set of points P [ R3 is

reflectively symmetric with respect to a hyperplane H
with unit normal w if and only if

P ¼ ðI3 2 2wwTÞP:

If our trajectory S is reflectively symmetric about H, we

can arrange the points of S into two sets represented as

matrices X0 and X1 such that

X0 ¼ WX1;

where W is an order 3(N/2) block diagonal orthogonal

matrix with the 3 £ 3 orthogonal matrix Ŵ ¼ I3 2 2wwT

in each diagonal block.

In general the given set of trajectory frames S is not

exactly symmetric with respect to any particular plane due
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to noise. However, we may think of calculating a normal w

that does the best possible job of specifying a plane that

separates S into two sets X0 and X1, that are “nearly”

symmetric with respect to the plane. We assume that a

partitioning of S into X0 and X1, is given such that the

columns of the two matrices are correctly paired.

To find the normal w to the plane of symmetry, we

rearrange the data into two related matrices X0 and X1

with

X j ¼ Xjð1 : 3; 1 : mÞ;Xjð4 : 7; 1 : mÞ; . . .;Xj

�
3N

2
2 2 :

3N

2
; 1 : m

� �
�:

Here, each Xj(i:i þ 2, 1:m) is a 3 £ m matrix consisting

of the displacement coordinates of a particular atom

throughout the trajectory. The specification of w may be

expressed as an optimization problem

min
kwk¼1

kðX0 2 ŴX1ÞDkF : Ŵ ¼ I3 2 2wwT
� �

; ð9Þ

where D is a diagonal weighting matrix and k.kF denotes

the Frobenius norm [59].

The weighting D is introduced to provide a means to de-

emphasize anomalies and outliers in the supposed

symmetry relation. If D is given, then the minimization

can be solved. It turns out that the solution w to the

minimization problem (equation (9)) is the unit eigen-

vector corresponding to the smallest eigenvalue of the

symmetric indefinite matrix

M ¼ X 0D
2XT

1 þ X 1D
2XT

0 :

We have devised in [59] an iterative re-weighting

scheme that constructs an optimal weighting D and hence

specifies the plane that best describes the symmetry

condition.

5.2 Stage 1: rotational symmetry case

A set of points P [ R3 > q’ is said to be k-fold

rotationally symmetric about an axis q [ R3 if there exist

an orthogonal transformation R̂ðqÞ such that for every

point p [ P, there exists k 2 1 distinct points p1, p2, . . . ,

pk21 [ P, such that R̂ðqÞlp ¼ pl for l ¼ 1, 2, . . . , k 2 1.

We call q the rotational axis of symmetry and R̂ðqÞ the

rotation matrix. It can be shown that a set S is k-fold

rotationally symmetric with respect to a rotational axis q if

and only if for l ¼ 1, 2, . . ., k 2 1

P ¼ R̂ðqÞlP ¼ ðI3 2QGkQ
TÞlP:

where [q, Q] [ R3£ 3 is an orthogonal matrix, and

I2 2 Gk [ R2£ 2 rotates any point p [ R3 by an angle

u ¼ 2p/k about the origin.

In the presence of noise we need to calculate a rotational

axis q that best fits the data. When there is k-fold rotational

symmetry present in the trajectory S, we may assume a

partitioning of S into X0, X1, . . . , Xk21 such that the

columns of the matrices are correctly paired with respect

to rotation.

To express the optimality condition that will specify q,

it is again convenient to reorganize the data into matrices

X0, X1, . . . , Xk21 as was done in the reflective case. The

optimization problem

min
kqk¼1

����qT ðk2 1ÞX 0 2
Xk21

l¼1

X l

" #����
F

( )
ð10Þ

will correctly identify the rotational axis of symmetry q in

the case of exact symmetry and will determine an optimal

approximation in the presence of noise.

The solution q to the minimization problem (equation

(10)) is the unit eigenvector corresponding to the smallest

eigenvalue of MMT, where

M ¼ ðk2 1ÞX 0 2
Xk21

l¼1

X 1: ð11Þ

Like in the case of reflective symmetry, we can

introduce into the optimization a weighting scheme that

minimizes the influence of outliers in the supposed

rotational symmetry relation:

min
kqk¼1

����qT ðk2 1ÞX0 2
Xk21

l¼1

X l

" #
D

����F

( )
ð12Þ

where D is a diagonal weighting matrix. The solution to

equation (12) is the unit eigenvector q corresponding to

the smallest eigenvalue of MD2MT, where M is defined as

in equation (11). Again, there is an iterative re-weighting

scheme to determine the optimal value of q (see [59] for

details). With exact symmetry, the trajectory S should

satisfy

Xjþ1 ¼ RXj; for j ¼ 0; 1; . . .; k2 1;

where R is an order 3(N/k) block diagonal orthogonal

matrix with diagonal blocks consisting of the 3 by 3 matrix

R̂ ¼ I3 2QGkQ
T.

5.3 Stage 2: symmetric approximation of the trajectory

To find the best reflective or rotational symmetric

approximation to a set of trajectory frames, we can take

advantage of the following result [59]. For reflective

symmetry R ¼W and W2 ¼ I, and in the case of

rotational symmetry R ¼ R(q) and R(q)k ¼ I.

If

Rk2lXl ¼ X0 þ El;
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    strictly only for  
m = −2 or n = 3N,  
in other cases the  

summation on the  
right is truncated  

at n (see [60]). 

where E represents the deviation from ideal symmetry and

R k ¼ I, then

min
X̂hþ1¼RX̂h

����
X0

..

.

Xk21

0
BBB@

1
CCCA2

X̂0

..

.

X̂k21

0
BBB@

1
CCCA
����2

¼
1

k

Xk21

l¼0

Xk21

h¼lþ1

kEh 2 Rh2lElk
2

F;

and the SVD of this optimal solution (denoted by ˆ)

X̂0

..

.

X̂k21

0
BBB@

1
CCCA ¼ USVT;

satisfies

U ¼
1ffiffiffi
k

p

U0

..

.

Uk21

0
BBB@

1
CCCA; S ¼

ffiffiffi
k

p
S0; V ¼ V0;

where

Ul ¼ RlU0; l ¼ 0; 1; 2; . . .; k2 1;

and

U0S0V
T
0 ¼

1

k
ðX0 þ Rk21X1 þ Rk22X2 þ · · · þ RXk21Þ:

5.4 SVD approximation results

The algorithmic structure for both the reflective and

rotational SVD approximation is the same. To summarize,

it consists of the two stages

1. Determine the normal w or the axis q for reflective or

rotational symmetry, respectively.

2. Compute the standard SVD

U0S0V
T
0 ¼

1

k
ðX0 þ Rk21X1 þ Rk22X2 þ · · · þ RXk21Þ

where R is a reflector determined by w or a rotation about

the axis determined by q.

We seek the dominant (largest) singular values. This

can be done in a straightforward manner using the

ARPACK software on a serial computer or P_ARPACK on

a parallel system. Only the leading n terms (singular

values) are required. One may either specify n or utilize a

restarting scheme to adjust n until sn $ tol*s1 . snþ1.

The important computational point is that only matrix–

vector products of the form

u ¼
1

k
ðX0 þ Rk21X1 þ Rk22X2 þ · · · þ RXk21Þv

need to be computed. This is essentially the same work

one would require to compute the corresponding standard

SVD of X without the symmetry constraint.

This analysis was carried out using P_ARPACK on a

Linux cluster with six dual-processor nodes consisting of

1600 MHz AMD Athlon processors with 1 GB RAM per

node and a 1 GB/s Ethernet connection. The method was

applied to compute the leading modes for HIV-1 protease

[62]. The system consists of 3120 atoms and hence there are

9360 degrees of freedom in the full-atom representation.

The MD trajectory consisted of 10,000 time steps [59].

These computations were done for both reflective and

rotational symmetry with essentially the same compu-

tational time needed as in the standard SVD case. For

n ¼ 50 singular values, the symmetry enforced SVD took

312 s, while the regular SVD took 390 s. The use of

P_ARPACK to compute just the dominant n terms was

essential for the high efficiency when dealing with the

large structure.

Figure 3 shows a snapshot of HIV-1 protease comparing

the SVD outputs from the first 10 rotationally symmetric

modes (blue) with a standard SVD outputs using the first

10 regular modes of motion (red). HIV-1 protease has a

two-fold rotational symmetry and this aspect is preserved

in the symmetrized SVD while providing a good

approximations to the standard trajectory.

6. Local feature analysis

The PCA and SVD representations above offer a reduced

dimensionality, however, they are non-local. By this we

mean that the kernel functions Kr(i) (equation (3)) extend

over the entire range of i (the 3N degrees of freedom of the

biomolecule), but nearby values in the r index have no

relationship among each other. In the following we recast

the expansion into a new representation that obeys

locality, i.e. the kernel functions are not labeled by the

principal mode index r, but by the index of the degrees of

freedom, i.

6.1 Abridged LFA theory

In [60] we derived the theory of local feature analysis

(LFA) for biomolecular dynamics that can be formulated

in a compact form as follows. If we define a family of

matrices

KðmÞ ¼ US2mUT;

the cases m ¼ 1, 0, 21, 22 are of specific importance in

LFA:

. K (1) is the LFA kernel which satisfies locality: Similar

to the PCA outputs Ar in equation (3), we can define

local outputs O(i)
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OðiÞ ;
X3N
j¼1

Kð1Þði; jÞxj;

but here, using the local kernel,O depends on i and not on r.

. K (0) is the residual output correlation. Since the 3N

outputs O(i) are derived from only n p 3N linearly

independent principal modes, the LFA outputs are not

fully decorrelated, instead one can show that

kOðiÞOðjÞl ¼ Kð0Þði; jÞ:

The LFA outputs become completely decorrelated

(K (0)(i, j) ! d(i, j)) only in the limit n ! 3N.

. K (21) is the reconstructor (inverse LFA kernel):

xrec
i ;

X3N
j¼1

Kð21Þði; jÞOðjÞ:

. K (22) ; C is the covariance matrix (equation (1)),

which follows trivially from equation (2).

The matrices K (1) and K (0) are central to LFA. K (1) is

by definition the projection operator onto a local feature.

The resulting projections (or outputs) O(i) are dimension-

less and in the limit n ! 3N become orthogonal, as well as

normalized to unity, as square-integrable functions over

the time domain. Also, it is straightforward to show that

X3N
j¼1

Kð0Þði; jÞxj ¼ xrec
i : ð13Þ

This means that K (0) serves a dual role both as the

correlation of the LFA outputs (see above) and as the

projection operator onto the low-frequency subspace

spanned by n principal modes.

6.2 LFA sparsification

LFA theory replaces the n global principal modes with a

much larger number 3N of local LFA output functions

O(i). Although locality was achieved, it came at a price of

expanding again to the full number of degrees of freedom,

3N. Therefore, an additional dimensionality reduction step

is required in the LFA output space.

The sparsification takes advantage of the fact that

neighboring outputs are highly correlated. We approxi-

mate the entire 3N outputs O(i) with only a small subset of

outputs that correspond to the strongest local features. The

other O(i) can then be reasonably well predicted via the

correlations K (0).

We begin with an empty set M of outputs. At each step,

out of the N available atoms we add a seed atom, whose x,

y, or z coordinate has the maximum reconstruction mean-

square error, as the next member of M, under the

condition that the seed atom and its nearest neighbors are

distinct from previously found atoms. This assures that the

corresponding atom is decorrelated via K (0) from the

atoms corresponding to already chosen indices. We keep

Figure 3. Comparison of standard SVD (red transparent ribbon) and symmetry enforced SVD (blue solid ribbon in online version) applied to a trajectory
of HIV-1 protease. Shown is the projection of one trajectory frame on the subspace of the first 10 principal modes returned by either method (see text).
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adding seed atoms to M until n atoms are chosen

(the entire set of O(i) is reconstructed without error at this

time). Complete algorithmic details of the sparsification

are given elsewhere [60].

6.3 LFA results

We have applied LFA to an n ¼ 12 dimensional subspace

extracted with PCA from the simulation trajectories of

myosin. Our goal was to construct a topographic

representation of functional dynamics in terms of local

features. The results are shown in figure 4. The location of

the selected seed atoms at the protein surface indicate that

they are allocated predominantly at the most flexible

regions (figure 4(a)). The atoms are also located near

functionally well know parts of the molecule. For example,

Asn 410 is located in an actin binding loop, the so-called

“cardiomyopathy loop”, whose disruption by missense

mutations is implicated in the familial hypertrophic

cardiomyopathy [63]. Lys 130 is the entryway for the

active site where ATP is hydrolyzed and chemical energy

freed is turned into mechanical motion. Four seeds atoms

(861, 935, 1008, 1160) correspond to the light chains that

stabilize myosin’s lever arm.

LFA represents a local feature by one seed atom and its

neighboring correlated region (dynamic domain). Defin-

ing a dynamic domain as the contiguous atoms that have

positive correlations with a seed atom, we have identified

the prominent local features associated with the seed

atoms in figure 4(b). A detailed biological interpretation of

these functional “machine parts” of myosin will be given

elsewhere. Suffice it to note that the mobile regions are

evenly distributed across the molecule.

Figure 4. Application of LFA to the myosin motor domain. (a) Twelve seed atoms from the standard MD simulation labeled by residue number (table
1). The color coding indicates the order of selection in the LFA sparsification (see text). The colors vary from red to blue in an increasing order of
selection. (b) The 12 corresponding local dynamic domains (random color assignment). The domains are defined as the localized, contiguous regions of
positive correlation (K (0) . 0) with the corresponding seed atom.
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Table 1 lists the seed atoms obtained by LFA of both

MD and ACM trajectories. Five of the 12 seed atoms from

both cases are at most one residue apart. It is remarkable

that a significant number of features are conserved, even

though the MD simulation was performed at thermal

equilibrium whereas in the ACM case the conformational

sampling was enhanced by selective heating of the low-

frequency normal modes. Despite the overall dissipation

of thermal energy from the slow to the fast modes, and the

much larger conformational variability of the ACM

simulation, a significant number of local features are

robust enough to withstand drastic changes in the

thermodynamics and conformation of the molecule.

7. Conclusions

Collective coordinate methods continue to play an

important role in the dynamical analyses of nanoscale

functional motion of biomolecules by providing an

important dimensionality reduction. Although it is clear

that individual principal or normal modes may over-

estimate the coherence of long-distance motions due to

limited sampling or due to the required approximations of

the physics, it is possible to reduce the artifacts from

orthogonalization by enforcing the symmetry of a

biomolecule in the analysis. The dimensionality reduction

also enables a subsequent local representation of the

dynamics, which provides for a significant improvement

in the reproducibility and convergence of the statistical

sampling and a more reliable assignment of local modes

across different MD time windows [64]. In this filtering

role of collective coordinates, it is not necessary to know a

priori which particular principal or normal modes (or

which linear combination of modes) are functionally

relevant. The minimal assumption is that only the

combined subspace is relevant, as suggested by the

findings of Amadei et al. [33] and by a recent survey of

NMA, where observed conformational changes are most

often contained within the subspace of the first 12 low-

frequency modes [57]. Extensions of collective coordinate

methods to hybrid enhanced sampling techniques such as

ACM provide interesting insights into protein folding and

biomolecular dynamics on the nanometer scale, and

suggests new approaches to the refinement and interpre-

tation of experimental results in structural biology.
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