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Abstract

Topology-representing networks (TRNs) generate reduced models of biomolecules and thereby
facilitate the 5tting of molecular fragments into large macromolecular complexes. The com-
ponents of such complexes undergo a wide range of motions, and shapes observed at low
resolution often deviate from the known atomic structures. What is required for the modeling of
such motions is a combination of global shape constraints based on the low-resolution data with
a local modeling of atomic interactions. We present a novel Motion Capture Network that freezes
inessential degrees of freedom to maintain the stereochemistry of an atomic model. TRN-based
deformable models retain much of the mechanical properties of biological macromolecules. The
elastic models yield a decomposition of the predicted motion into vibrational normal modes and
are amenable to interactive manipulation with haptic rendering software.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Scienti5c computing had a profound in<uence on the historic success of structural bi-
ology. More than 23,000 biomolecular structures are known today at atomic resolution

∗ Corresponding author. Current address: School of Health Information Sciences, University of Texas -
Houston, 7000 Fannin, Houston, TX 77030, USA. Tel.: +1(713)500-3961; fax: +1(713)500-3907.

E-mail address: wriggers@biomachina.org (W. Wriggers).

0925-2312/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2003.09.007

mailto:wriggers@biomachina.org


366 W. Wriggers et al. / Neurocomputing 56 (2004) 365–379

owing to the advancement of numerical algorithms and computational speed that facil-
itated the data processing of NMR and X-ray crystallographic data. Likewise, electron
microscopy (EM) bene5ted tremendously from image processing methods that were
developed in the engineering sciences since the 1950s. The underlying physical con-
cepts of concurrent structural biology software, diGraction theory and spectroscopy, are
well understood and the corresponding algorithmic developments in structural biology
have by now reached a high level of maturity. The availability of databases and vast
amounts of structure information recently have prompted new trends in structure-based
computing that are more concerned with the mining, as opposed to creating, of the
biophysical data.
Structural bioinformatics involves the statistical analysis and architecture of biomolec-

ular structures at multiple levels of resolution, from the atomic scale to low-resolution
EM image reconstructions. Modern information processing techniques, such as ar-
ti5cial neural networks, in concert with physics-based classical simulation methods,
combine structural data from a variety of biophysical sources: X-ray crystallography,
EM, small-angle X-ray scattering, <uorescence spectroscopy, and biochemical labeling
and footprinting. In this paper, we describe the use of topology-representing networks
(TRNs) for combining structural data from a variety of biophysical origins.
Current advances in biology and medicine depend on an understanding of funda-

mental cellular processes, most of which involve the actions and interactions of large
biomolecular assemblies of mega-Dalton molecular weight. Three-dimensional (3D)
structures and image reconstructions of assemblies, involving hundreds of thousands to
millions of atoms, are now routinely determined by X-ray crystallography and cryo-EM
[14,36]. Nearly every major process in a cell is carried out by assemblies of 10 or more
biomolecules [2]. Cytoskeletal 5laments such as actin, symmetric assemblies such as
chaperonins and viruses, as well as the ribosome, spliceosome, and RNA polymerase
complexes, are highly evolved macromolecular assemblies comprised of many protein
and nucleic acid subunits.
Medium resolution modeling constitutes a promising path to the simulation of large

biomolecular assemblies. In the past 3 years we have developed a novel technology that
enables a tessellation of both atomic resolution structures and low-resolution data from
EM. In Section 2, we review the TRN algorithm as it is applied to multi-resolution
biophysical data. Our unsupervised learning approach diGers from the work of other
authors in the bioinformatics 5eld who have used supervised techniques for the char-
acterization of biological data with arti5cial neural networks [39,33].
In Section 3, we use TRNs for the rigid-body 5tting with a force-feedback device

and derive the equations for accurate force and torque calculations that assist an expert
user in the model building in a virtual reality environment. The developed algorithms
are utilized in molecular visualization routines. This eGort will permit scientists to build
models interactively within a single computational environment.
In Section 4, we describe for the 5rst time the algorithmic details of a novel <exible

5tting algorithm, the Motion Capture Network (MCN). The term “Motion Capture”
suggests an analogy to the technology of the same name in the entertainment indus-
try and in biomechanics, where human-like motion is captured and digitized by 5t-
ting trussed networks (skeletons) to the positions of human extremities recorded from
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visually tracked actors. In biomolecular applications the skeleton-based 5tting approach
provides robustness against the eGects of noise and experimental uncertainty that would
otherwise lead to signi5cant local distortions in the <exed protein models.
Normal mode analysis [9,10] (NMA) involves the decomposition of the <exing mo-

tion into vibrational modes based on an elastic model. In Section 5, we will parametrize
our TRN-based deformable models such that the NMA-derived motions optimally
approximate the motions of atomic structures. The goal is to maintain continuity of
elastic models at all resolution scales.

2. TRNs capture 3D structures at a reduced level of detail

The algorithms described in this section allow one to discretize both high- and
low-resolution biological data by a small number of neural pointers (also known in
the literature as =ducials, codebook vectors, feature points, or landmarks) that char-
acterize the shape and density distribution of the occupied volume. A large variety
of clustering techniques exist that represent data at reduced spatial resolution. Vector
quantization [16], in particular, has been developed since the 1950s as a tool for speech
and image compression. One of the requirements for our work in 3D registration is the
statistical reproducibility of the found neural pointers, which limits the number of suit-
able methods. We currently favor TRNs due to their desirable convergence properties
[28,46], as described in the following.
Let us assume a set of neurons with weights wi (i=1; : : : ; K). Furthermore, we assume

that each neuron receives the same external input signals v∈M ⊂ RD. The signals
v will be randomly selected on the manifold M according to a probability density
function P(v) (e.g. corresponding to the atomic masses or low-resolution density). The
adaptation of the wi to the input signals is aGected by the topological arrangement of
the Voronoi cells Vi, de5ned by

Vi = {u∈RD | ‖u − wi‖6 ‖u − wj‖; j = 1; : : : ; K}; i = 1; : : : ; K: (1)

Fig. 1a shows Voronoi cells in R2 corresponding to 18 neurons in input space. In R3,
the cell boundaries are subsets of the bisecting planes between each pair of neurons
adjacent in input space.
Information about the arrangement of the Voronoi cells is given by the closeness

rank 
i of each neural pointer depending on v, i.e. the number of neurons wj with
‖v−wj‖¡ ‖v−wi‖. The adaptation of the wi at a given time step t, t=1; : : : ; tmax, is
given by

wi(t + 1) = wi(t) + 
 · e−
i=�(v − wi(t)); (2)

where the neuron plasticity 
 and the proximity width � are monotonically decreasing
with compute time according to � = �i(�f=�i)t=tmax , and 
= 
i(
f=
i)t=tmax .

One can show [24,16] that the limiting case (� → 0) corresponds to stochas-
tic gradient descent minimization of the encoding distortion error that measures the
mean-square deviation of the data from the neural pointers:

E =
∫

‖v − wi(v)‖2P(v) dv; (3)
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Fig. 1. Functionality of Voronoi tessellation, TRN, and competitive Hebb rule. (a) Tessellation of 2D space
into 18 Voronoi cells. (b) The swollen form of cowpea chlorotic mottle virus at 23 PA resolution [35]. (c)
Tessellation of the density with the TRN method (Eq. (2)) using 1380 neural pointers (shown as beads).
The lateral connections were constructed using the competitive Hebb rule (see text). The following empirical
parameters (Eq. (2)) were determined empirically: 
i=0:1; 
f=0:001; �i=276; �f=0:02, tmax =1; 000; 000.
The 3D scenes in all 5gures were rendered with Situs [42] and the molecular graphics program VMD [23].

where 
i(v)(v) = 0. By means of the closeness ranking in Eq. (2) (i.e., �¿ 0), TRN
eludes the local minima of E during early training [28]. Ultimately, though, the anneal-
ing parameter � vanishes (i.e., e−
i=� → �0; 
i), and only the “winning” neural pointer
(
i = 0) is updated at each step, which promotes that TRN ultimately settles at (or
near) the global minimum of E. Fig. 1b and c presents a TRN tessellation of the 3D
density of a virus capsid.
The main advantage of a TRN relative to the more widely known Kohonen [24]

self-organizing map (SOM) is that the 5nal distribution of the pointers is independent
of a priori lateral neural connectivities. Rather, proximity relationships can be learnt
from the distribution of neural pointers. The competitive Hebb rule [29] constructs
connections between adjacent neurons, if the connection is, at least partially, covered
by the density distribution P(v). The algorithm is based on the mathematical theory of
Delaunay triangulation [13]. At a given time step t, connections are formed between the
two neural pointers closest to v. The resulting connectivity structure de5nes a discrete
topology- and path-preserving representation of M , even in cases where M has an
intricate topology [28]. The competitive Hebb rule also de5nes “adjacency” between
neural pointers in a mathematically consistent way. More theoretical details are given
in Refs. [29,28]. An example of the application of this rule to 3D biophysical data is
shown in Fig. 1c.
By repeating the TRN optimization (Eq. (2)) a number of times with statistically

independent start positions that are randomly distributed according to P(v) on the
manifold M , one can estimate the convergence properties of the algorithm based on
the resulting statistical variability of the neuron positions. Our studies revealed that
the positions achieved with gradient descent (� → 0) were too unreliable to serve
as markers for the docking of structures. In contrast, the TRN algorithm with the
empirical parameters given in the caption of Fig. 1 is capable of very low variabilities
on the order of an Angstrom, which is suQciently precise for biomolecular docking.
Furthermore, owing to its nature to describe the convergence towards a global optimum,
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the averaged variability was useful for the estimation of the optimum complexity K of
the network that results in the lowest spread in neural positions [42].
Reduced TRN-based models were 5rst used in structural bioinformatics for rigid-body

docking of atomic structures to low-resolution data, where an alignment of the data sets
is achieved by identifying pairs of corresponding neurons from distance or connectivity
matrices [44–46,15]. In the following, we describe a novel matching strategy based on
TRNs and correlation functions that are suitable for interactive 5tting.

3. Rigid-body docking and force-feedback

The quality of the match between a probe density �probe(r) and a target density
�target(r) can be described by a correlation function:

C(R;T) =
∫
�probe(r;R;T)�target(r) dr; (4)

where R denotes the three rotational, and T the three translational degrees of freedom,
respectively. In rigid-body 5tting one would seek to maximize C, ideally by performing
a full exploration of the 6D search space (Fig. 2a).
In addition to automated rigid-body 5tting, microscopists have a need to evaluate

and to manipulate docking models interactively “by eye”. One of the challenges in

Fig. 2. Overview of rigid-body docking with TRNs and force-feedback. (a) Schematic diagram depicting
the registration of a probe density �probe(r;R;T), subject to three translational (T) and three rotational (R)
degrees of freedom, to a target density �target(r). The probe density can be approximated by a TRN with
neurons wi(R;T) for force and torque calculations (see text). (b) Visualization of a microtubule surface in
an immersive VR environment using volslice3d [42], an earlier prototype of SenSitus. (c) The PHANTOM
1.5/6DOF force feedback device from SensAble Corp.
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structural bioinformatics is to enable the eQcient use and inter-operation of a diverse set
of techniques to simulate, analyze, model, and visualize the complex architecture and
interactions of macromolecular systems. To meet this challenge we develop a molecular
graphics package termed “SenSitus” that is capable of supporting virtual reality (VR)
devices such as stereo glasses, 3D trackers, and force-feedback (haptic) devices (Figs.
2b and c). Three-dimensional capabilities and the “physics of touch” oGer tangible
bene5ts for modelers who wish to explore a variety of docking situations in a VR
environment (Fig. 2b). Our software supports this by calculating forces according to
the correlation coeQcient C. The high sampling frequency required for force feedback
(refresh rate ¿ 1 kHz) is achieved by means of the TRN algorithm that reduces the
complexity of the data representation to manageable levels.
In the following we approximate the probe density by a sum of Dirac delta functions

that are localized at the TRN neurons:

�probe(r;R;T) =
K∑
i=1

�(r− wi(R;T)): (5)

The correlation function C is thereby reduced to a sum over the target density evaluated
at the neuron positions:

C(R;T) =
K∑
i=1

�target(wi(R;T)): (6)

Next, we de5ne a potential energy U =−�C, where � is a user-de5ned scaling factor.
We seek to minimize U by interacting with the molecular data. The force fi acting
on an individual neuron i is the negative gradient of the potential energy, fi =−∇iU .
Therefore, the total force F acting on the centroid of the probe molecule is given by

F(R;T) =
K∑
i=1

fi = �
K∑
i=1

∇�target(wi(R;T)): (7)

Likewise, one can compute the total torque Q acting on the molecule. Shifting the
origin of the neuron coordinate system to the centroid, we obtain

Q(R;T) =
K∑
i=1

wi × fi = �
K∑
i=1

wi ×∇�target(wi(R;T)): (8)

The gradient 5eld ∇�target can be precomputed and is eQciently evaluated in real
compute time by tri-linear interpolation.
The haptic device (Fig. 2c) measures a user’s hand position and by means of Eqs.

(7) and (8) exerts a precisely controlled force and torque on the hand. Therefore, the
device not only enables the user to position and orient the probe structure relative to
the target, but also directs the 5tting to the next suitable location. This technique is
very useful, as it facilitates the detection of possible 5tting locations and simpli5es the
5ne positioning of the structure.
One of the goals of our software development eGorts is to allow researchers to build

models, perform docking of atomic and volumetric data, visualize results from tem-
plate convolution, and perform morphing and warping (<exible docking) interactively
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within a single computational environment. Therefore, we need to devise a TRN that
is designed for capturing conformations also in <exing situations where the probe and
target molecule deviate from one another.

4. Motion capture networks: methodology and application to actin 'exing

Rigid-body docking with TRNs, as implemented in our Situs docking package
[45,42], laid the groundwork for the development of a <exible docking technique that
brings deviating features of multi-resolution structures into register [41–43,12] if the
atomic structure in one conformation is known. In such situations, the deviating atomic
structure is moved towards the EM density by forcing the centroids of the Voronoi
cells (Fig. 1a) of the atomic structure to coincide with the neural pointers of the
EM density. This is done in a molecular dynamics re5nement of the atomic structure
where harmonic constraints between the Voronoi cell centroids and neural pointers form
a global penalty that is imposed while preserving the moved structure at the local
level [41]. The 5tting accuracy that can be achieved in such <exible docking ex-
periments is one order of magnitude above the nominal resolution of the EM map,
or better [42].
One of the open questions in <exible docking, however, is how to maintain the stere-

ochemical quality of a 5tted structure, since any over-5tting to noisy experimental EM
data would compromise the quality of the atomic model. Here, we describe for the 5rst
time the details of a signi5cant improvement to our TRN-based <exible 5tting algo-
rithm, the Motion Capture Network (MCN). The basic idea is that lateral connections
are formed between neurons that re<ect the connectivity of the biological polypeptide
chain. The resulting skeletons (distance-constrained lateral connections) eliminate the
longitudinal degrees of freedom that are deemed inessential for the <exible docking,
while permitting lateral <exibility. This approximation of the biomolecular motion can
be justi5ed by the statistics of biomolecular domain motions documented in the Protein
Data Bank [1]. A signi5cant majority (70%) of such observed motions can be classi5ed
either as hinge-bending or shearing motions. In both of these classes of motions, the
longitudinal contributions to the conformational change (i.e. stretching or compression)
are negligible compared to the lateral motions [18,17]. Only 7% of observed domain
motions involve a partial refolding on the local level that would be diQcult to predict
by our reduced 5tting to low-resolution data.
In the following we assume that we have tabulated a number of distance constraints,

and the nth constraint between neurons i(n) and j(n) is given by

w2
ij − d2ij = 0; (9)

where wij=wi−wj, and dij is the desired spatial separation. These distance constraints
are satis5ed by adding displacements �wi(t + 1) to the neurons wi(t + 1) that resulted
from an unconstrained TRN updating step (Eq. (2)). Formally, this problem is amenable
to the Lagrangian formalism for holonomic constraints [20]. However, we consider here
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a signi5cantly simpler and more eQcient approach for solving this problem iteratively:

�nwi(t + 1) = gijwij(t);

�nwj(t + 1) =−gijwij(t);
(10)

where �nwi describes the action of the nth constraint and all constraints are satis5ed
in succession. This general ansatz, which can be motivated by the theory of numerical
integration [34], treats each coeQcient gij = gji as an unknown that can be calculated.
Consequently the unconstrained positions wi(t + 1) are corrected with

∑
n �

nwi(t + 1).
We de5ne the partially corrected diGerence vector

w′
ij(t + 1) = wi(t + 1) +

∑
m¡n

�mwi(t + 1)− wj(t + 1)−
∑
m¡n

�mwj(t + 1); (11)

the corresponding updating step

�wij(t + 1) = �nwi(t + 1)− �nwj(t + 1)
(10)
= 2gijwij(t) (12)

and reformulate the constraints equation

(w′
ij(t + 1) + �wij(t + 1))2 − d2ij = 0; (13)

which yields the quadratic equation for the unknown gij

4gij(wij(t) · w′
ij(t + 1)) + 4g2ijw

2
ij(t) = d

2
ij − w′

ij
2(t + 1): (14)

This equation can be solved most eQciently to 5rst order, i.e. the term in g2ij may
be neglected [31]. The enforcement of the nth constraint destroys to some degree all
previous constraints m¡n. Therefore, the algorithm is iterated in cyclic succession
until the relative distortion (w2

ij − d2ij)=d
2
ij drops below a certain tolerance. For the

MCN, we determined that a relative tolerance of 10−3 was suQciently accurate and
yielded a convergence within only 10–50 cycles through the constraints table. The
iterative scheme should be initialized by setting wi(1) = wi(0) (i = 1; : : : ; K) before
proceeding with the 5rst TRN update (Eq. (2)).
The MCN was already tested in the <exing of RNA polymerase [43,12]. In particular,

the formation of connectivities between neurons were depicted in Fig. 2 in [43]. The
5tting accuracy that can be achieved with MCN is about one order of magnitude above
the nominal resolution of the low-resolution density [42].
Fig. 3 shows an application of the MCN to the <exing of actin from a folded to

the presumed unfolded (open) state of the protein. It had been shown biochemically
[27] that actin’s structural subdomains 3 and 4 (Fig. 3a) remain intact during the
binding to the CCT chaperonin and the associated unfolding. We have thus chosen
a level of detail (K = 8) in our reduced representation that would fully constrain
subdomains 3 and 4 while aGording some relative <exibility to subdomains 1 and 2.
After assigning distance constraints among adjacent neurons that follow the polypeptide
chain connectivity, the MCN was 5tted to the open structure (Fig. 3b). Subsequently,
the closed structure of actin was moved towards the open EM density by forcing the
Voronoi cell centroids to coincide with the MCN neurons (Fig. 3c). This was done in a
molecular dynamics re5nement of the atomic structure with the Situs docking package



W. Wriggers et al. / Neurocomputing 56 (2004) 365–379 373

Fig. 3. Use of a MCN for the <exible docking of actin. (a) The atomic structure of actin’s four subdomains
in the closed conformation [47] is shown as a gray backbone trace. Eight neural pointers (shown as spheres)
represent the actin structure. The distance-constrained connectivities are shown as black rods. (b) The density
of open actin (shown as a wire mesh isocontour), extracted from the complex with CCT chaperonin [27].
The MCN of (a) was 5tted to the density (see text). (c) The structure of actin after <exing based on
the MCN displacements. (d) Comparison between <exed structure and density in the open form. (e) The
densities [27] of the chaperonin CCT (gray solid isocontour) and of CCT-bound actin (black wire mesh
isocontour) are shown with the <exibly 5tted structure of actin (gray backbone trace).

[42] and X-PLOR [8]. The resulting model (Figs. 3d and e) provides a plausible
hypothesis for the conformational change that can be tested experimentally. Due to the
use of the reduced representation the structure does not appear over5tted even though
all atomic degrees of freedom were considered in the <exing.

5. TRN-based deformable models

It is possible to obtain useful information on the dynamics, long-range coupling,
and elastic properties of polynucleotides without requiring atomic resolution [48,40,7].
These studies suggest the importance of developing reduced structural models (Fig. 1)
for large biomolecular assemblies to go beyond the size that can be handled at atomic
detail. Normal mode analysis [9,10] (NMA), i.e. the decomposition of the motion into
vibrational modes based on an elastic model of the biopolymer, is a frequently used
technique to study the motion of large assemblies. Atomic motions corresponding to
low-frequency normal modes are not localized [26]. Calculating the directional correla-
tion functions, it was shown that NMA motions are highly correlated for atoms whose
inter-atomic distances are within 5–10 PA [26]. Hence, it seems reasonable to expect
that a sparse estimation of the displacement 5eld using a TRN with a spatial resolu-
tion of 5–10 PA will reproduce the displacements well. After generating such a sparse
estimation, displacements can be extended to the full space by interpolation. Moreover,
a reduced description of the dynamics can be applied to both atomic structures and
3D image reconstructions from cryo-EM, as it is independent of the resolution of the
underlying data.
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The basic assumption (and limitation) of NMA is that the potential energy of the
system varies quadratically about a given minimum energy conformation. This idea
is rooted in the observation that biomolecules behave, more than expected, as if the
energy surface were harmonic, even though the potential contains many local minima
[22]. The methodology of NMA has already been discussed in many excellent textbooks
and reviews [9,10,32], and we focus here on recent eGorts to extend the method to the
large systems of interest.
A 5rst step in the reduction of the computational cost of NMA is the replacement of

the atomic force 5eld by a more simpli5ed harmonic interaction potential of neighboring
atoms. This approach, pioneered by Tirion [38], showed that low-frequency modes
depend more on the global character of the deformations than on the precise form
of the interaction potential. Still, at atomic resolution the standard Cartesian method
involves a diagonalization of a 3N ×3N matrix, where N is the number of atoms. The
memory requirements are prohibitive for large proteins or assemblies with more than
500 residues. It is possible to reduce the degrees of freedom under consideration to the
bond torsions [6,25] or by use of a Fourier basis [21]. However, for large assemblies
it is more reasonable to reduce the amount of spatial detail in the model [11] while
using the simpli5ed harmonic interaction force 5eld developed by Tirion:
We use the neural pointers that can be computed with the TRN algorithm (Fig. 1)

for a reduced (K�N ) representation of atomic structures or low-resolution data from
cryo-EM. The pairwise Hookean potential between adjacent neural pointers is

Uij =
c
2
(‖wij‖ − ‖w0

ij‖)2 =
c
2

(
w0
ij ·Twij
‖w0

ij‖

)2
+ O((w0

ij)
2); (15)

where Twij ≡ wij − w0
ij, and the zero superscript indicates the initial con5guration.

The strength of the potential c is an empirical constant for the system that can be
adjusted such that the normal mode amplitudes match those from atomic detail NMA
or to ensure consistency with experimentally observed properties.
The potential energy within the system is then given by

U =
∑
i¡j

UijCij; (16)

where the connections Cij are assigned within a certain distance cutoG [38,3] or learned
with the competitive Hebb rule. It is straightforward to compute the 3K × 3K Hessian
matrix of second derivatives by expanding the Uij to second order about w0

ij (Eq. (15)).
Since each neuron is assumed to have unit mass, the normal modes are the eigenvectors
of the Hessian [10].
In [37] we have shown how NMA on a system of neural pointers connected with

Hookean springs (Eq. (15)) can reproduce the experimentally observed atomic-
resolution opening of the cleft in adenylate kinase in the reduced model at various
levels of detail. Here, we demonstrate how essential motions can be extracted simi-
larly from low-resolution cryo-EM maps. Fig. 4 compares the lowest-frequency mode
from NMA with the motions from the <exible 5tting of T. aquaticus RNA polymerase
(RNAP) to a low-resolution map of E. coli RNAP [12]. The diGerences between the
crystal and the cryo-EM isoforms (Fig. 4b) can be attributed to crystal packing eGects
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Fig. 4. Comparison of functionally relevant motions of RNA polymerase (RNAP) with TRN-based NMA.
(a) Low-resolution cryo-EM map of E. coli RNAP as described [12]. (b) Displacements from <exible 5tting
of the T. aquaticus crystal structure to the cryo-EM density [12]. The arrows point from the <exibly 5tted
structure (backbone trace) to the original crystal conformation (not shown). (c) NMA (lowest-frequency
mode) of the cryo-EM map using a TRN with K = 1500 neural pointers.

and reveal a closing of the RNAP jaws relative to the cryo-EM data. Interestingly,
the lowest-frequency mode shows a very similar closing and opening motion of the
jaws (Fig. 4c). The 5gure exempli5es how one could use NMA to predict functionally
relevant motions from a single low-resolution structure.

6. Conclusions

In this paper, we have described a number of innovative neural network designs
that facilitate the modeling and 5tting of multi-resolution biophysical data in structural
bioinformatics.
The TRN-based deformable models can be parametrized such that the NMA-derived

motions optimally approximate the motions of small atomic structures sampled from
molecular dynamics trajectories. The motions and conformational variability of atomic
structures are suQciently sampled by molecular dynamics simulations [31] provided
that the systems are small. Quasi-harmonic analysis [4] is a statistical method related
to NMA that determines the slow collective motions from a single simulation trajec-
tory. However, for very large systems it is not possible to extract suQcient statistical
information from molecular dynamics trajectories due to undersampling of large-scale
displacements that would, e.g. lead to a severe overestimation of the stiGness of hinges
between large domains. To this end we plan to model the elasticity of 5laments,
cross-bridges and coiled-coils with a vibrational analysis of TRNs. The goal of this
work is to empirically 5t the parameters in our models to reproduce experimentally
measured mechanical properties such as <exural and torsional rigidity [5], stiGness [30]
and the persistence length [19,5] of large protein assemblies.
The novel MCN implementation is available as part of our “classic” Situs distribution

at http://situs.biomachina.org. At present the network complexity K and the distance
constraints dij are user-de5ned parameters. It is desirable to automate the estimation

http://situs.biomachina.org
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of these parameters for non-expert users of our software in the biological sciences. For
example, the number K of neurons can be estimated by the number of independent
pieces of information contained in a low-resolution EM reconstruction. This number
can be obtained by dividing the total volume of the molecule by the volume of a
single resolution element (i.e. a cube with a width corresponding to the nominal spa-
tial resolution of the data). Also, one could automatically map the connectivity of the
polypetide chain onto the reduced neuron representation by 5tting a 1D Kohonen SOM
[24], which represents the biomolecular backbone, to the TRN neurons that are inter-
preted as input space for the SOM. The implementation of such automated procedures
are straightforward and subject of future revisions of our software.
SenSitus and the interactive force feedback 5tting are already fully functional as a

docking tool. The visualization program for various UNIX and PC architectures can be
downloaded at http://sensitus.biomachina.org. Ultimately, we will integrate all of our
advanced <exing functionality and the eQcient simulation of multi-resolution data by
normal modes analysis. The interactive <exing technology is currently in its infancy
but it will undoubtedly gain in importance and popularity in the near future when more
structures become available that require an induced 5t of their components.
In summary, the new methods are adequate for the study of deformations and of dy-

namical properties of low-resolution biomolecular structures, or of very large structures,
in which case simulations at the atomic level become prohibitively expensive.
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