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A theory of elastic normal modes is described for the exploration of global
distortions of biological structures and their assemblies based upon low-
resolution image data. Structural information at low resolution, e.g. from
density maps measured by cryogenic electron microscopy (cryo-EM), is
used to construct discrete multi-resolution models for the electron density
using the techniques of vector quantization. The elastic normal modes
computed based on these discretized low-resolution models are found to
compare well with the normal modes obtained at atomic resolution.
The quality of the normal modes describing global displacements of the
molecular system is found to depend on the resolution of the synthetic
EM data and the extent of reductionism in the discretized representation.
However, models that reproduce the functional rearrangements of our
test set of molecules are achieved for realistic values of experimental reso-
lution. Thus large conformational changes as occur during the functioning
of biological macromolecules and assemblies can be elucidated directly
from low-resolution structural data through the application of elastic nor-
mal mode theory and vector quantization.
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Introduction

In many biological systems, large conformational
transitions often involve the relative movement of
semi-rigid structural elements. Such motions are
important for a variety of protein functions includ-
ing catalysis and the regulation of activity, as for
example in citrate synthase where a hinge motion
has been observed upon the binding of coenzyme
A.1,2 These movements are fundamental in the
biological function of large and flexible macro-
molecular complexes, such as motor proteins,3

chaperonins,4,5 and the ribosome.6,7 Thus, the
description, prediction and exploration of large-
scale conformational distortions of such systems
are key in understanding the mechanics of their
functioning.

Medium to low-resolution structural information
for large macromolecular complexes emerges from
a variety of biophysical experiments including

X-ray crystallography, electron microscopy and
small angle X-ray scattering (SAXS). Large confor-
mational changes in macromolecular complexes
are commonly characterized by low-resolution
structural methods, in particular by three-dimen-
sional cryogenic electron microscopy (3D cryo-
EM).8 The resolution of 3D cryo-EM reconstruction
has been constantly improved over the years: the
increasing power of instruments and advanced
image processing algorithms now allow one to
study very large systems such as viruses at resol-
utions rivaling X-ray crystallography.9 Cryo-EM
reconstruction is emerging as a primary tool for
the structural elucidation of large macromolecular
assemblies that are difficult to study by X-ray crys-
tallography and NMR. These techniques are also
proving to be powerful in examining the structure
and dynamics of macromolecular complexes and
their interactions with ligands. One exemplary
case comes from the machinery of protein syn-
thesis, where large conformational changes have
been observed in the ribosome during the binding
of tRNA and protein factors.10

Theoretical methods based on atomic or near-
atomic theories can be useful in studying these
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systems and their associated conformational
changes. However, conventional molecular
dynamics (MD) approaches are presently too costly
to be effective for the study of large conformational
changes because only a limited range of confor-
mational space can be explored on the timescale
of nanoseconds typical for MD studies. An alterna-
tive to the direct numerical solution of Newton’s
equations is the use of normal mode analysis
(NMA). This technique has been shown to be very
useful in the study of protein motions.11 – 13 Even
though the harmonic approximation limits the
accurate description of energetic landscapes for
large conformational displacements, NMA pro-
vides information on the preferential direction of
collective movements that occur during such dis-
placements. In particular, it has been demonstrated
that large conformational changes of proteins
observed upon ligand binding,14– 21 and large-scale
rearrangements in virus particles22 can be well
represented by the lowest frequency normal
modes.

Recent developments in elastic normal mode
theory allow calculations on reduced represen-
tations of proteins, which include only one point
mass per residue,23 Ca-only representations,24,25 or
more coarse-grained particle-based models.26 In
this approach, a simplified potential is used to
represent the protein as a set of particles, that
describes the mass distribution of the macro-
molecule, coupled via harmonic springs through
an elastic “net”.27 One advantage of this model
over atomic force field-based normal mode
approaches is that it requires no preliminary
energy minimization because the “force field” is
constructed from the reference configuration and
hence is already in its relaxed conformation. More-
over, since the limiting step in NMA is the numeric
diagonalization of a 3N-dimensional matrix, where
3N is the number of degrees of freedom, the use of
a reduced representation allows one to decrease
this complexity. Numerous studies have demon-
strated that the motional properties of proteins are
reproduced with remarkable fidelity using this
simple potential when compared with atomic
force field-based models.23,27 This fact suggests
that the essential property one needs to capture in
describing global displacements of a protein is the
mass distribution of the molecular structure.24 The
extension of such an approach to models of lower
resolution may therefore be anticipated to follow
from an effective discrete representation of the
particle mass distribution.

Many approaches to provide the partitioning of
a continuous representation of atomic mass are
possible. However, a clustering technique called
vector quantization has recently been demon-
strated to provide a robust means to develop a dis-
crete reduced representation of continuous 3D
data.28,29 In this approach, the shape of the bio-
logical object (molecule, molecular assembly,
cellular substructure) is encoded by so-called code-
book vectors that identify structural features. As

noted above, this description should be sufficient
to represent the global distortions of a biological
system, since the key information used for reduced
representation normal mode calculations in the
elastic models is the shape/mass distribution.

Here we describe the development of a frame-
work that combines vector quantization, to yield a
discrete reduced description of a continuous
shape/mass distribution, with a reduced elasto-
mechanical model for a protein or molecular
assembly from which elastic normal modes are
calculated to explore the global distortions. We
suggest that the synthesis of these two ideas will
allow one to predict, explore and rationalize the
global distortions and motions of biological struc-
tures independent of the resolution of the under-
lying data set. Low-resolution biophysical data
yield valuable information about the architecture
of large bio-molecular assemblies, but the motions
of such systems have eluded modelers in the
absence of a fully atomic detail. We demonstrate
for the first time that global distortions of large
protein molecules based on calculations utilizing
continuous low-resolution data (simulated EM
maps) can be captured with high fidelity when
compared to motions obtained from more conven-
tional atom-based NMA.

Results

To explore and validate the approach outlined
above, proteins that are known to undergo large
conformational changes were examined. For these
systems, elastic modes were computed for low-
resolution data constructed to represent exper-
imental EM density maps and the predicted
motions from these representations were compared
with those from detailed atomic models of the
proteins. These proteins are adenalyte kinase
(4ake—214 residues),30 the maltodextrin binding
protein (1omp—370 residues)31 and citrate
synthase (5csc—858 residues).32

Normal mode analysis based on atomic-level
X-ray structures

NMA was performed on the “open” form of the
proteins based on their known X-ray structures.
The atom-based normal modes were used as a
reference to examine the quality of the global dis-
tortions obtained from our discretized elastic
model arising from a continuous synthetic low-
resolution EM map.

Large conformational changes occur upon ligand
binding in each system. The overlap between the
vector describing the conformational change, con-
structed from the difference between the super-
imposed experimentally determined structures
representing the endpoint functional states, and
each of the normal modes of the protein was
computed. This overlap is a measure of the simi-
larity between the conformational change and the
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structural displacement represented by each of the
normal modes. In Table 1, the overlap for the five
lowest frequency normal modes is given for each
of the proteins. As has been observed,19,24,33 the
overlap between the conformational changes corre-
lates well with one of the low frequency normal
modes. These overlaps serve as references for com-
parison with overlap values obtained from the
elastic normal modes based on synthetic EM
densities.

Elastic normal modes based on low-resolution
structural data

In Figure 1 the synthetic EM map of citrate
synthase represented at 15 Å resolution is shown
together with two discrete representations of this
system, based on the codebook vectors arising
from vector quantization of this continuous EM
density (see Methods). The elastic models used for
the NMA were constructed based on these discrete
representations. The overall distribution of the syn-
thetic EM density map is well described by the
codebook vectors, even when only 50 vectors are
considered (Figure 1(c)).34

Since the largest conformational changes are
known to be associated with the lowest frequency
normal modes, a comparison between the first 20
normal modes obtained from the atomic structure
of the protein and for the reduced codebook vector
models was made. To examine the agreement
between two sets of normal modes, the projection
of normal mode i, from the discretized low-
resolution representation, onto normal mode j,
from the X-ray structure of the protein, is com-
puted, Pj(i ). Furthermore, since the modes in one
representation may be ordered slightly differently
from those in the other, we sum this projection
over 2n þ 1 modes (j 2 n # i # j þ n; n ¼ 1 or 2)
from the discretized normal mode calculations sur-
rounding mode number j from the atomic rep-
resentation, i.e. Pj ¼

Pjþn
j2n PjðiÞ: This projection

provides information about how well the normal
modes from one representation are expressed in
the normal mode basis of the other. It is expected
that even if a one-to-one mapping is not observed,
the lowest modes from one representation will be
well represented by a small number of low modes
from the other. The projection over three (n ¼ 1)
and five (n ¼ 2) modes versus the resolution and

Table 1. Overlap between the functional conformational changes in 4ake, 1omp, 5csc and each of their lowest-
frequency normal modes computed at atomic resolution

Mode Adenylate kinase Maltodextrin binding protein Citrate synthase

1 0.79 0.82 0.01
2 0.32 0.42 0.07
3 0.13 0.05 0.84
4 0.13 0.06 0.01
5 0.30 0.07 0.05

The conformation for adenylate kinase is 1ake, 1anf is for the maltodextrin binding protein and 6csc is for citrate synthase.

Figure 1. (a) Citrate synthase and its synthetic 3D
density at 15 Å resolution. Representative discretized
models with (b) 800 codebook vectors and (c) 50 code-
book vectors as used for normal mode analysis. The
program suite Situs28 was used for the quantization of
volumetric data and the graphics were produced using
VMD.37
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discritization level of the reduced model is shown
for citrate synthase in Figure 2. At 15 Å and 20 Å
resolution, for systems with 800 or 600 codebook
vectors, the projection is almost one for each of
the first ten modes. This indicates that the three
(or five) modes around mode j in the discretized
low-resolution representation provide an excellent
description of normal mode i in the atomic
representation.

Another means of illustrating the fidelity of the
modes versus the resolution and complexity of the
discretized representation is to display the matrix
of overlaps between the modes. In Figure 3(a) the
overlap matrices between normal modes from the
X-ray structure of the protein and the normal
modes obtained from the elastic theory with 800
and 50 codebook vectors at varying resolution are
shown. For the model constructed using the high-
est resolution synthetic EM map, 15 Å, and with
the greatest number of codebook vectors (800), the
matrix is almost diagonal for the first several
modes. In particular, the first six modes from the
elastic model have an overlap greater than 0.9
(white squares) with one of the first six low-
frequency modes of the atomic structure. This indi-
cates that there is a direct correspondence between
the normal modes based on the atomic structure
and those obtained from the EM density.

At lower resolution, 20 Å, the quality of agree-
ment for the 800 codebook-vector representation,
as measured by a one-to-one mapping, diminishes.
This is evident in Figure 3(b) by an increase of the
off-diagonal regions of the overlap matrix for the
higher modes. However, the first six modes are

still in good agreement. At 30 Å resolution, the
one-to-one correspondence does not exist and
exchange between modes is prevalent. Consistent
with the results displayed in Figure 2, the overall
description of the normal modes is less precise
than at higher resolution.

Describing the system with 300 codebook vectors
also gives a good description of the low frequency
normal modes (1–10) as seen by a high value Pj

(Figure 2). However, the description of higher
modes is less precise, and mixing among the
modes is more significant, as illustrated by the
increase of the value of the projection when
considering three overlapping modes versus five.

When the representation of the 3D data is
reduced to 50 codebook vectors for 15 Å and 20 Å
resolution, the elastic model for the normal modes
is clearly less precise than with a more complex
representation. The off-diagonal parts of the over-
lap matrix for the first modes increases and the
one-to-one correspondence that was observed for
800 codebook vectors all but disappears (Figure 3).
At this level of discretization, information on the
nature of the global distortions of the biological

Figure 3. The overlap matrix (Pj(i ), see equation (4))
between the first 20 normal modes based on the atomic
structure and those from the synthetic low-resolution
data of the citrate synthase at 15, 20 and 30 Å resolution
for systems with 800 and 50 codebook vectors. White
squares correspond to high overlap values (greater than
0.9) and black squares correspond to a low value of the
overlap. The grey-scale moves from white to black in
ten increments. Optimal agreement between the two
sets of modes is observed when the highest overlap is
located along the diagonal.

Figure 2. Projection of normal modes from the dis-
cretized codebook-vector representation onto normal
modes from the atomic model of citrate synthase. The
projection for (a) n ¼ 1 (see equation (4)) and (b) n ¼ 2
at 15 Å resolution (red line), 20 Å resolution (blue line)
and 30 Å resolution (black line) using 800 (W), 600 (A),
300 (D) and 50 (·) codebook vectors.
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system is lost, as indicated by the lower value of
the projection in Figure 2. However, at the lowest
resolution (30 Å) for a reduced representation at
50 codebook vectors, the agreement is similar to
that obtained with representations at 800, 600 or
300 codebook vectors. We observe the same
tendency in the cases of the maltodextrin binding
protein and adenylate kinase (results not shown).

Describing global conformational distortions
with elastic normal modes

Since the prediction and characterization of func-
tionally relevant conformational changes is the
main objective of using NMA here, we examine
whether the motions suggested from our discrete
elastic normal mode description of the EM density
agree with the experimentally characterized con-
formational changes. In Table 2 we show the two
modes possessing the largest overlap with the
observed conformational change direction as a
function of the inherent resolution of the synthetic
EM density and the number of codebook vectors
utilized in the discretization of this density. Com-
parison can be made with the overlaps obtained
for the normal modes calculated for the X-ray
structures of the proteins (Table 1). In each case, a
good description of the conformational change is
obtained. A high value of overlap is observed for

one of the first few lowest normal modes. Even at
low resolution or for a small number of codebook
vectors, the description of the conformational
change is at nearly the same level as that observed
from atomic resolution normal modes. We note
that the ability of the low resolution model to
reproduce the relevant motions described in the
atomic structure depends on whether the open or
“closed” conformation is used as the basis for com-
puting the modes, but the qualitative agreement
between modes from either is reasonable, and the
quantitative agreement with modes from an equiv-
alent atomic structure is as noted above (data not
shown). Clearly this behavior would deteriorate if
the closed conformation possessed a significantly
different shape than the open conformation. In
Figure 4 we illustrate graphically the normal
mode that, at atomic resolution, provides the best
representation of the conformational change direc-
tion for adenylate kinase. In the same Figure,
deformations from the elastic normal mode with
the highest overlap (from Table 2) are also shown
for systems with 214 and 50 codebook vectors at
15 Å resolution. The global distortions using the
elastic theory obtained from the reduced represen-
tations of the simulated EM maps reproduce well
the functionally relevant motions for this system.

Discussion

The quality of the agreement between the elastic
modes as a function of the underlying resolution
of the EM density and the number of codebook
vectors is clearly illustrated in Figure 2. For maps
at resolutions of 15 Å and 20 Å, remarkably good
agreement can be achieved with representations
using 800 and 600 codebook vectors. In particular,
the first ten lowest modes obtained from the elastic
network NMA are highly overlapping with those
obtained from the high-resolution structure. For
each of the three proteins studied here, significant
fidelity in the description of the functionally
relevant conformational changes was also found
for these models. This agreement is sufficient to
suggest a high level of confidence in using such
approaches to explore functional motions from
structural models lacking atomic detail such as
derived from EM. Moreover, we anticipate, based
on studies of highly symmetric virus particles
using similar methods with atomic models, that
good correspondence with global distortions of
the system will be attainable for such systems as
well.22 However more severe discretizations, such
as the 50-codebook-vector representation for both
15 Å and 20 Å resolution synthetic EM maps,
inhibit the reproduction of global distortions of
the biological object.

As the resolution of the EM maps is lowered to
30 Å, the one-to-one correspondence between
modes from the discretized model and the atomic
model disappears and significant mixing among
the modes is seen. As indicated in Figure 2, the

Table 2. Overlap between the functional conformational
changes of each protein and the two normal modes
from the discrete low-resolution model most involved

Resolution 15 Å 20 Å 30 Å

Citrate synthase
800 (12 Å) 0.82 (3) 0.79 (3) 0.73 (3)

0.12 (2) 0.11 (5) 0.17 (4)
600 (12 Å) 0.82 (3) 0.80 (3) 0.72 (3)

0.09 (2) 0.12 (1) 0.21 (4)
300 (15 Å) 0.80 (3) 0.79 (3) 0.72 (3)

0.16 (1) 0.15 (5) 0.20 (4)
50 (25 Å) 0.75 (3) 0.69 (3) 0.70 (3)

0.29 (1) 0.20 (5) 0.22 (2)

Maltodextrin binding protein
370 (12 Å) 0.88 (1) 0.82 (1) 0.77 (1)

0.20 (3) 0.27 (2) 0.31 (2)
200 (12 Å) 0.86 (1) 0.89 (1) 0.78 (2)

0.26 (3) 0.13 (3) 0.31 (3)
100 (18 Å) 0.81 (1) 0.69 (2) 0.82 (1)

0.31 (2) 0.51 (1) 0.23 (3)
50 (18 Å) 0.81 (2) 0.77 (1) 0.73 (1)

0.24 (3) 0.21 (2) 0.37 (2)

Adenylate kinase
214 (12 Å) 0.78 (1) 0.72 (1) 0.58 (1)

0.36 (2) 0.42 (2) 0.47 (2)
100 (15 Å) 0.76 (1) 0.70 (1) 0.66 (2)

0.38 (2) 0.42 (2) 0.36 (1)
50 (18 Å) 0.75 (1) 0.69 (2) 0.57 (1)

0.40 (2) 0.46 (1) 0.42 (2)

Overlap is shown as a function of the representation and the
resolution. The cut-off and mode number are indicated in
parentheses.
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overall description of the global distortion of the
system is less precise than at higher resolution.

Naturally, high-resolution EM maps are necess-
ary to obtain precise information on functionally
relevant conformational changes. They provide
more complete descriptions of the overall electron
distribution of the system. However, experimental
difficulties often inhibit the establishment of high-
resolution data. Thus, exploration of medium-
resolution data requires more careful consideration
of the underlying parameters of the theory.

The choice of the number of codebook vectors
will depend on the resolution, shape and size of
the molecule or assembly. In the case of citrate
synthase, 800 or 600 codebook vectors at 15 Å or
20 Å resolution guarantees a good description of
the lowest vibrational modes (up to ten). This pro-
tein comprises 858 residues, so 70% of the total
number of residues is sufficient to yield significant
results. A good description for fewer elastic
modes is still observed for 300 codebook vectors,
which corresponds to 35% of the total number of
residues. In the case of maltodextrin binding
protein (results not shown), at 15 Å and 20 Å
resolution we observed that the best description
occurred when 370 codebook vectors were
employed: however, good agreement was still
obtained for 200 codebook vectors, which corre-
sponds to 55% of the total number of residues. For
adenylate kinase, a 100 codebook-vector represen-
tation gave normal modes in quite good agreement
with those based on the atomic structure. This
corresponds to a reduction by 50%. At lower
resolution, 30 Å, the number of codebook vectors
does not affect the result, as previously observed
for citrate synthase.

The results clearly indicate that models with 50
or fewer codebook vectors are not sufficient for
EM maps at moderate resolutions of 15–20 Å. At
this resolution, a more detailed description of the
density distribution of the biological object is
present. Thus, more features in the data can be
identified and the number of codebook vectors
needed to adequately describe these data is larger.
Thus, at higher resolutions the most appropriate
choice for the number of codebook vectors, which
guarantees good fidelity in the normal modes,
corresponds roughly to one point per residue. At
lower resolution, the number of features present
in the EM maps is smaller and fewer codebook
vectors are necessary for an adequate represen-
tation of the discretized density.

Within the context of the elastic network
model, the number of cluster points (codebook

Figure 4. Amplitude and direction of motion for the
normal mode that best overlaps with the conformational
change observed experimentally for the adenylate kinase
from calculations based on (a) the X-ray structure, (b) a
214 codebook-vector representation, and (c) a 50 code-
book-vector representation.
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vectors) is linked to an appropriate choice of a cut-
off for inter-cluster connections, and hence the con-
nectedness of the elastic net representation. As
described in Methods, the choice of an optimal
cut-off in establishing this connectedness is related
to the distribution of codebook-vector separations.
Quite generally, choosing a value for the cut-off
that is after the second peak in this distribution
will provide a reasonable model. However, for
extreme discritizations (less than 50 codebook
vectors) artifacts can arise because of the incom-
pleteness of the discrete representation. Thus,
even if the number of codebook vectors required
to represent the electron density for data at 30 Å
resolution is less than the number of residues of
the system, it may be wisest to use one point per
residue. With one point per residue (or basic unit
of mass, e.g. amino acid, nucleic acid base, etc.), a
cut-off of 12 Å is sufficient to yield quite reasonable
elastic normal mode models. For very large assem-
blies, this prescription may lead to an inhibitive
numerical diagonalization. In such cases, a
reduction of the discretized system by up to 50%
will still yield a robust description of the global
distortions of the biological object while permitting
a cut-off in the range of 12–15 Å to be employed.
Ideally, one would like to determine the connec-
tivity of adjacent codebook vectors automatically
based on geometric considerations,34 but this for-
mulation would depart from the Tirion model
employed here and is left as the subject of future
research.

Conclusions

NMA on low-resolution structural data to
explore the global, and functionally relevant, dis-
tortions of large biological molecules and assem-
blies can be successfully performed in the absence
of detailed atomic models by combining the
methods of discretized representations provided
by vector quantization28 with elastic network
theories.27 The present study provides the first
demonstration of this. Studies of conformational
changes in biological systems using normal mode
theory need no longer be limited by the absence of
high-resolution X-ray crystallographic structures.
The approach we describe here opens the door to
further studies aimed at understanding the mech-
anisms of action in large assemblies such as the
ribosome, for which experimental data from cryo-
EM is available for different functional (and con-
formational) states.

Methods

Elastic network normal mode analysis

NMA is a common tool to study protein dynamics and
more particularly large conformational changes.24

Recently, a simplified representation of the potential
energy has been used in normal mode calculations on

biological molecules at atomic resolution.27 In this
representation the protein is described as a three-
dimensional elastic network based on the equilibrium
distribution of atoms.

In the elastic network model, amino acids may be rep-
resented in full atomic detail or reduced to a single
coordinate (one point mass per residue or the Ca atom
positions).23 – 25 The positions of these sites identify the
junctions within the network. Coarser grained models,
i.e. where between N/2 and N/40 atoms are used to
identify the junctions of the network, have also been
considered.26 These junctions are representative of the
mass distribution of the system and are linked together
by harmonic springs using a Hookean pairwise potential:

Uðra; rbÞ ¼
C

2
ðlra;bl2 lr0

a;blÞ
2 ð1Þ

where ra;b ¼ ra 2 rb denotes the vector connecting two
junctions, a and b, and the zero superscript indicates the
given initial configuration. The strength of the potential,
C, is a phenomenological constant assumed to be the
same for all interacting junctions, and is set to 1 in the
current calculations. Within this description, the total
potential energy of the system is given by:

Utotal ¼
1

2

X
a;b

Uðra; rbÞuðRcut-off 2 lr0
a;blÞ ð2Þ

The sum is restricted to pairs separated by less than Rcut-

off, which is a parameter describing the effective inter-
action length-scale, by the step function u(x ) The step-
function adopts a value of one when its argument is
greater than zero and is zero everywhere else.

Vector quantization

The potential energy function for an atomically rep-
resented mass distribution introduced above can be
transformed to one capable of representing a low-
resolution continuous distribution of density. To do this
one can work either in a continuum representation, or
transform the continuum representation into a discrete
one. We pursue the latter idea and associate the junctions
(mass points) of the network with the codebook vectors
obtained from vector quantization.28 Vector quantization
applied to 3D data, such as the continuous density
representing molecular structures from the experimental
technique of cryo-EM, provides a discrete reduced
representation that is suitable for the development of
low-resolution models.

Normal mode analysis: X-ray structure

NMA was performed using a combination of the
elastic network model, where each junction is identified
with a heavy atom of the protein, and the rotation–trans-
lation block (RTB) method, using one block per
residue.33,35 A cut-off, Rcut-off, of 8 Å was used in the calcu-
lations on atomically detailed models.

Elastic network theory: low-resolution data

For each protein, low-pass filtered synthetic electron
density maps at 15 Å, 20 Å and 30 Å resolution were
created with the pdblur utility implemented in the Situs
package.28,29 The voxel spacing for the maps was set to
2 Å. The atomic structure was convolved with a
Gaussian kernel of variable width. The density cut-off
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of the synthetic maps was chosen in a way that each
system exhibited a resolution-independent volume. To
obtain a reduced representation of an electron density
map, a vector quantization was performed with the
qvol utility implemented in the Situs package. Different
numbers of codebook vectors were placed at the features
of a given 3D density distribution (vector quantization).28

The codebook vectors form a set of control points or
landmarks that provide information about the shape
and the density distribution of a biological object. For
each synthetic map, data sets were generated with vary-
ing numbers of codebook vectors utilizing the open
forms of each protein: for adenylate kinase, three data
sets were generated with 214, 100 and 50 codebook vec-
tors; for the maltodextrin binding protein 370, 200, 100
and 50 codebook vectors were used; discretized models
with 800, 600, 300 and 50 codebook vectors were gener-
ated for citrate synthase.

For each representation, different values of the dis-
tance cut-off, Rcut-off, were used to determine when pairs
of codebook vectors are supposed to be linked together
by a harmonic spring. Rcut-off is an important parameter
in the elastic NMA, since it determines the number of
interactions (or links) between each codebook vector.
Generally, its value should be chosen to be after the
second peak in the distribution of codebook-vector cen-
ter–codebook-vector center separations for the model
(or atom–atom separations in atomic models). It has
been shown that when only Ca atoms are used, the best
results are obtained with a cut-off of 12–13 Å, which cor-
responds to the point in the Ca–Ca distribution of separ-
ations just noted. In our calculations using simulated EM
densities, some models had sparsely distributed code-
book vectors and the distance between each point in
these models was significantly larger than the mean
Ca–Ca distance in proteins. For models with few code-
book vectors, a 12–13 Å cut-off is not appropriate and
can give rise to artifacts. Thus different cut-off values
ranging from 12 Å to 30 Å were used depending on the
number of codebook vectors and corresponding code-
book-vector separation distribution in the system. When
the number of codebook vectors is similar to the number
of residues in the protein, we observed almost no differ-
ence in the normal modes using a cut-off of 12 Å, 15 Å,
or 18 Å. Decreasing the number of codebook vectors to
300, required a minimum cut-off of 15 Å to avoid arti-
facts arising from too sparse a connectivity. Similar
agreement was obtained with a cut-off of 18 Å. For sys-
tems with only 50 codebook vectors, we observed for all
resolutions (15 Å, 20 Å and 30 Å) that a cut-off value of
22 Å was insufficient to yield a good description of nor-
mal modes. For example, in the case of the citrate
synthase at 30 Å resolution, the maximum projection
(Pj) obtained with the 22 Å cut-off was 0.45. The best
agreement occurred when the cut-off was increased to
25 Å. For cut-off values significantly greater than 25 Å,
poorer quality agreement was observed because the
longer cut-off lead to too great a connectivity in the elas-
tic network. For these extreme discritizations of the low-
resolution EM maps, even though we found a significant
variation in the quantitative behavior of the normal
modes, the qualitative character of the displacements
were not nearly as sensitive to the particular value
chosen for the cut-off.

Normal modes obtained from the low-resolution rep-
resentation yield a displacement vector for each of the
codebook vectors in the system. In order to compare
these elastic distortions with normal modes obtained
directly from the atomic structure, an interpolation of

the motion of the codebook vectors to the motion of the
atoms is needed. An interpolation based on 3D thin
plate splines36 was used to extend the sparsely sampled
displacement vector fields to the atoms of the proteins
(Chacon & Wriggers, unpublished results). The displace-
ments thus generated from the interpolation method are
compared with the displacements observed from NMA
for the X-ray structure.

Analysis

To quantify how a given normal mode, aj; compares
with an experimentally known conformational change
between an open and closed conformation, Dr ¼ ro 2 rc;
the overlap between the two corresponding vectors can
be calculated as:

Ij ¼ laj·Drl ¼

P
ai

j·ðr
o
i 2 rc

i Þ

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

X
i

ai
j·ðr

o
i 2 rc

i Þ

��� ���2
s ð3Þ

where ro
i and rc

i are, respectively, the coordinates of pro-
tein atom i in conformations o and c, after superposition,
and ai

j is the coefficient of the jth normal mode along the
ith atomic direction. An overlap of one would indicate
that a given mode perfectly captures the collective
atomic displacements.

The normal mode vector from the atomic represen-
tation, aj; can be expressed as a linear combination of
2n þ 1 normal modes bi obtained from the low-resol-
ution discretized representation of the protein. If the dis-
placements represented in each of the different normal
mode models are similar, the sum of this “projection” of
one space onto the other will approach a value that is
close to one. We define Pj as a measure of this overlap by:

Pj ¼
Xjþn

i¼j2n

PjðiÞ ¼
Xjþn

i¼j2n

ðaj·biÞ
2 ð4Þ

It is Pj that is plotted in Figure 2 versus mode number j
and for n ¼ 1; 2: Pj(i ) is represented by a given matrix
element plotted in Figure 3.
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Biochemistry, 30, 6031–6036.

33. Tama, F., Gadea, F. X., Marques, O. & Sanejouand,
Y. H. (2000). Building-block approach for determin-
ing low-frequency normal modes of macromolecules.
Proteins: Struct. Funct. Genet. 41, 1–7.

34. Wriggers, W., Milligan, R. A., Schulten, K. &
McCammon, J. A. (1998). Self-organizing neural net-
works bridge the biomolecular resolution gap. J. Mol.
Biol. 284, 1247–1254.

35. Durand, P., Trinquier, G. & Sanejouand, Y. H. (1994).
New approach for determining low-frequency normal-
modes in macromolecules. Biopolymers, 34, 759–771.

36. Bookstein, F. L. (1989). Principal warps: thin-plate
splines and the decompsosition of deformations.
IEEE Trans. Patt. Anal. Mach. Intell. 11, 567–586.

37. Humphrey, W., Dalke, A. & Schulten, K. (1996). VMD:
visual molecular dynamics. J. Mol. Graph. 14, 33–38.

Edited by W. Baumeister

(Received 23 April 2002; received in revised form 14 June 2002; accepted 17 June 2002)

Normal Modes from EM Density 305


	Exploring Global Distortions of Biological Macromolecules and Assemblies from Low-resolution Structural Information and Elastic
	Introduction
	Results
	Normal mode analysis based on atomic-level X-ray structures
	Elastic normal modes based on low-resolution structural data
	Describing global conformational distortions with elastic normal modes

	Discussion
	Conclusions
	Methods
	Elastic network normal mode analysis
	Vector quantization
	Normal mode analysis: X-ray structure
	Elastic network theory: low-resolution data
	Analysis

	Acknowledgments
	References


