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The empirical harmonic potential function of elastic network models �ENMs� is augmented by
three- and four-body interactions as well as by a parameter-free connection rule. In the new
bend-twist-stretch �BTS� model the complexity of the parametrization is shifted from the spatial
level of detail to the potential function, enabling an arbitrary coarse graining of the network.
Compared to distance cutoff-based Hookean springs, the approach yields a more stable
parametrization of coarse-grained ENMs for biomolecular dynamics. Traditional ENMs give rise to
unbounded zero-frequency vibrations when �pseudo�atoms are connected to fewer than three
neighbors. A large cutoff is therefore chosen in an ENM �about twice the average nearest-neighbor
distance�, resulting in many false-positive connections that reduce the spatial detail that can be
resolved. More importantly, the required three-neighbor connectedness also limits the coarse
graining, i.e., the network must be dense, even in the case of low-resolution structures that exhibit
few spatial features. The new BTS model achieves such coarse graining by extending the ENM
potential to include three-and four-atom interactions �bending and twisting, respectively� in addition
to the traditional two-atom stretching. Thus, the BTS model enables reliable modeling of any
three-dimensional graph irrespective of the atom connectedness. The additional potential terms were
parametrized using continuum elastic theory of elastic rods, and the distance cutoff was replaced by
a competitive Hebb connection rule, setting all free parameters in the model. We validate the
approach on a carbon-alpha representation of adenylate kinase and illustrate its use with electron
microscopy maps of E. coli RNA polymerase, E. coli ribosome, and eukaryotic chaperonin
containing T-complex polypeptide 1, which were difficult to model with traditional ENMs. For
adenylate kinase, we find excellent reproduction ��90% overlap� of the ENM modes and B factors
when BTS is applied to the carbon-alpha representation as well as to coarser descriptions. For the
volumetric maps, coarse BTS yields similar motions �70%–90% overlap� to those obtained from
significantly denser representations with ENM. Our Python-based algorithms of ENM and BTS
implementations are freely available. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3167410�

I. INTRODUCTION

In recent years elastic network models �ENMs� have
been widely needed for mechanistic predictions of large-
scale biomolecular motions.1 Rooted in the observation that
many biomolecules behave, more than expected, as if the
energy surface were parabolic, the basic assumption �and
limitation� of the vibrational analysis afforded by ENMs is
that the potential energy of the system varies quadratically
about a single minimum energy conformation. Although first
principles of physics and chemistry dictate that such energy
landscapes contain many local minima,2 the harmonic ap-
proximation of biomolecular motion seems to be in excellent
agreement with many observations of structural polymor-
phism, where domains “move in relation to one another with
only small expenditures of energy.”3

The representation of this type of motion by vibrational
analysis from diagonalization of a Hessian matrix can be

traced back more than a hundred years to the harmonic
analysis popular in Europe of the 19th and 20th centuries.4

Vibrational modes of chemical molecules became a focus in
the 1950s with the advent of spectroscopy5 and have been
established in computational biology in the early 1980s
�Refs. 6–8� under the term “normal mode analysis” �NMA�.
This methodology of NMA has been discussed in many ex-
cellent textbooks and reviews9,10 and has spurred on the
more recent efforts to extend the method to large biomolecu-
lar structures by coarse graining. A first step in the simplifi-
cation of NMA is the replacement of the chemical details of
the physics-based atomic force field by a simplified Hookean
spring potential between neighboring atoms. This approach,
pioneered by Tirion,11 showed that low-frequency modes de-
pend more on the global character of the deformations than
on the precise form of the potential. This realization opened
the door to entirely empirical models that reduce the amount
of spatial detail by using the simplified harmonic interaction
force field developed by Tirion. Excellent agreement with
experimental temperature factors obtained with a harmonic
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model including only the C� positions12,13 or with even
sparser models14,15 suggests that it is the global shape and
not the resolution or local detail of the force field that gov-
erns the low-frequency modes observed with NMA.16,17

As illustrated by the accompanying ENM software, basic
solvers for coarse models at C� level of detail or below can
be implemented using the Tirion potential with only about a
hundred lines of code. The simple implementation lends it-
self well to integration within a web interface and several
popular servers are available.18,19 It is therefore not surpris-
ing that the accessibility of the approach fueled a significant
rise in applications in recent years.1 Known domain move-
ments of large biomolecular machines such as the ribosome,
chaperonin CCT �chaperonin containing T-complex polypep-
tide 1 �TCP1��, and RNA polymerase have been found to be
well reproduced in the lowest-frequency normal modes.20

Although ENMs have been very successful, the quality
of their modes and the predictive power are sometimes lim-
ited. Some general limitations of harmonic analysis such as
arbitrary amplitudes of the predicted directional motions or
the uncertain significance of the mode order have been dis-
cussed elsewhere.20 In the following we address two particu-
lar limitations of the functional form of the potential that
limit the practical capacity of ENMs for very coarse models
of large biomolecular assemblies: �1� the dense oversampling
required to capture modes reliably and �2� the distance-
dependent step function for assigning the connectedness of
“pseudoatoms.” Our model enables the simulation of “mo-
lecular stick figures” and in fact of any connected three-
dimensional �3D� graph by shifting complexity from the spa-
tial resolution of the coarse graining to that of the potential
function. We also eliminate the arbitrary distance cutoff of
the Tirion potential by automatically assigning the connect-
edness of nearest neighbor pseudoatoms using computational
geometry considerations. The coarse graining of ENMs was
introduced before,14,15,20,21 but to our knowledge this paper is
the first that modifies the Tirion functional form based on
concepts from continuum elastic theory and neurocomputing.

Our work is motivated by the fact that many systems of
biological interest are not amenable to crystallization and are
too large for solution state nuclear magnetic resonance analy-
sis. This leaves a vast array of biological systems that escape
any kind of mechanistic elucidation. Lower resolution struc-
tures, however, are often obtainable for such systems with a
variety of biophysical techniques. Cryogenic electron mi-
croscopy �cryo-EM� and small angle scattering are two
prominent low resolution methods.22,23 They are complemen-
tary in that the former is appropriate for large ��1 /3 mega-
Dalton� biomolecular systems while the latter is limited to
smaller systems that can be suspended in solution without
aggregation. Coarse-grained NMA can partially bridge the
gap from missing experimental structures to functional inter-
pretation in that it provides a lowest level approximation for
biomolecular motion. However, ENMs are unforgiving in the
presence of false negatives in the connectivity, giving rise to
unbounded zero-frequency vibrations when �pseudo�atoms
are connected to fewer than three neighbors. In practical ap-
plications a long cutoff distance and a dense sampling must
be chosen, leading to models comprised of hundreds or thou-

sands of atoms and whose spatial density is one to two orders
of magnitude above the nominal resolution of the data �see,
for example, Fig. 1a in Ref. 20�. To ameliorate such limita-
tions to the desired coarse graining and to eliminate the
three-neighbor connectedness requirement, we propose be-
low the novel bend-twist-stretch �BTS� model. After intro-
ducing the functional form of the BTS model, we describe its
parametrization as well as its validation runs on C� and
lower level of detail representations of adenylate kinase
�ADK�. We then test and optimize our continuum mechanics
model empirically and demonstrate the method’s descriptive
aptitude by applying it to three cryo-EM structures that had
previously been studied with the classic ENM approach. We
conclude with a discussion of usability and limitations.

II. METHODS

A. Functional form of the BTS potential

We consider an undirected graph of N connected nodes.
Each node corresponds to a �pseudo�atom in the coarse rep-
resentation and is connected to at least one other node. We
do not impose any other restrictions on the connectedness
pattern. The graph yields Nr bonds, N� angles, and N� dihe-
drals, which are extracted from all connected pairs, triplets,
and quadruplets of nodes as follows. The lists of unique
bonds, angles, and dihedrals are straightforward to generate
for a particular pattern, except care must be taken to avoid
mirror duplications and cyclic subgraphs. We also count di-
hedrals only once per central atom pair. Triplets such as ABC
and CBA or quadruplets such as ACDE, BCDE, EDCB, and
EDCA are thus counted only as one angle or one dihedral,
respectively. Also, cyclic patterns such as ABA and ABCA
are excluded. This definition is motivated by the mechanistic
role of each unique two-, three-, and four-atom interactions
in the following Hookean parameterization.

Our proposed BTS potential takes the form

V = �
i=1

Nr 1

2
ks�ri − ri,eq�2 + �

j=1

N� 1

2
kb�� j − � j,eq�2

+ �
k=1

N� 1

2
kt��k − �k,eq�2, �1�

where ri is the length of bond i, � j is the magnitude of angle
j, �k is the magnitude of dihedral k, and ri,eq, � j,eq, and �k,eq

are the corresponding equilibrium values. ks, kb, and kt are
the force constants for bond stretching, angle bending, and
dihedral twisting, respectively. These force constants will be
defined in Sec. II B.

Having a potential function in hand, the next step is
calculate the Hessian matrix, whose ijth element is given by

Hij =
�2V�qeq�
�qi � qj

=
�2V�qeq�
�qj � qi

, �2�

where qeq= �q1,eq ,q2,eq , . . . ,q3N,eq� is the equilibrium configu-
ration. In our current implementation of the algorithm we
compute second derivatives numerically according to the
central difference approximation
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�2V�qeq�
�qi � qj

�
1

�2�q2�
�V�qeq + ei�q + e j�q�

− V�qeq + ei�q� − V�qeq + e j�q�

+ V�qeq − ei�q − e j�q� − V�qeq − ei�q�

− V�qeq − e j�q�� . �3�

Here �q�1 Å is a small displacement and ek is the kth
direction unit vector. We note that the usual 2V�qeq� term,
being identically zero, has vanished.

Solving for the eigensystem of H, the eigenvectors rep-
resent normal mode directions, and the 3N eigenvalues are
the normal mode frequencies squared.24 When ordered by
ascending frequency/eigenvalues, the first six modes are the
zero frequency center of mass translations and rotations. Of
the 3N−6 nontrivial modes, the initial lowest-frequency
modes represent the dominant motion of functional
significance.

All calculations are implemented in PYTHON 2.5 with
NUMPY version 1.0.4. Due to our finite-difference approach
the vast majority of BTS computing time is devoted to cal-
culating Hessian elements. To improve speed, we employ a
hash table that assigns to each degree of freedom i only those
two-, three-, and four-body interactions that are affected by i.
We denote the sets of indices of the bonds, angles, and dihe-
drals that include i by hri, h�i, and h�i, respectively. One
may then compute the terms in Eq. �1� as sums over only the
interactions that are altered when degrees of freedom i, j, or
both shift in value, since all other contributions to the poten-
tial are zero. For instance, the term V�qeq+ei�q� is computed
as

V�qeq + ei�q� = �
l�hri

1

2
ks�rl − rl,eq�2

+ �
m�h�i

1

2
kb��m − �m,eq�2

+ �
n�h�i

1

2
kt��n − �n,eq�2. �4�

B. Determination of force constant ratios

To determine suitable ratios of the force constants ks, kb,
and kt, we turn to the theory of continuum mechanics.25,26 An
important consideration is the choice of mechanistic model
for a graph. Since we wish to keep our method generally
applicable to any arbitrary graph we cannot make assump-
tions about the underlying biological structure. Instead we
choose to model each of the graph edges as an elastic rod.
Elastic rods provide straightforward physical interpretations
for stretching and torsional twist, and angle changes can be
modeled efficiently in the form of rod bending. In the fol-
lowing we assume an elastic circular rod �cylinder� consist-
ing of a homogeneous isotropic material.

For a radius r and length L, the energy of stretching the
rod along its length26 is given by

Es = 	Y�r2

2

	 1

L

��L�2, �5�

where Y is the Young modulus of the material. Equation �5�
implies that we may extract the effective stretching force
constant as ks=Y�r2 /L.

The energy required to bend the rod to a radius of cur-
vature R �Ref. 25� is given by

Eb = 	B

2

L	 1

R2
 , �6�

where B=Y��r4 /4� is the bending stiffness.25 We note that
the angle subtended by the bent rod is related to the radius of
curvature by �=S /R, where S is the arclength of the portion
of a circle of radius R that corresponds to the bent rod. We
can see that S=L, so that

Eb = 	B

2

	 1

L

�2. �7�

Hence, we can extract the bending force constant as
kb=B /L.

Finally we turn to the torsional motion. Assuming that
the volume stays constant, the torsional energy is given by

Et = 	C

2

	 1

L

�2, �8�

where C=Y��r4 /6� is the torsional stiffness.25,27 We extract
kt=C /L.

We take the twist to bend ratio to cancel the undeter-
mined modulus Y and the rod radius r,

kt

kb
=

C

B
=

1

6
Y�r4

1

4
Y�r4

=
2

3
. �9�

We note that for realistic biological “materials” this es-
timate of the twist to bend ratio is only approximate to the
order of magnitude. For example, some experimental mea-
surements of actin filament rigidity yield B�C, while others
have given B�C with all the measured values of B and C on
the same order of magnitude.27 We thus use kt /kb=1 for our
initial calculations and validate/optimize this ratio further by
comparisons with ENM results.

Taking the bend to stretch ratio we have

kb

ks
=

B

L

Y�r2

L

=
B

Y�r2 =

Y
�r4

4

Y�r2 =
r2

4
. �10�

Again, the undetermined modulus Y cancels as before, but
the ratio kb /ks still depends on the radius of the elastic rod.
As above we consider this estimate to be approximate to the
order of magnitude, so for our initial calculations we make
the ad hoc assertion that rods do not overlap, i.e., r= 1

2 �d�,
where �d� is the average bond distance in the graph. With
this assumption we are able to tailor kb /ks to a particular
graph through

074112-3 Coarse elastic network simulation J. Chem. Phys. 131, 074112 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



kb

ks
=

1

16
�d�2. �11�

As before, we will validate/optimize this initial estimate fur-
ther by comparisons with ENM results. One benefit of the
refinement against ENM will be that we can determine the
effective radius of our rod model. For the model to make
physical sense the spacing �d� of the graph should form an
upper bound for the rod diameter.

Finally, we arbitrarily set ks equal to one, hence, deter-
mining kb and kt from the ratios. As in ENMs, we are not
concerned about the overall global normalization of the
spring constants since it does not affect the eigenvectors. A
scaling of the solutions can be performed �after the analysis�
by fitting of the crystallographic temperature factors �see
below�.

C. Coarse graining and connectedness

The coarse graining of biomolecular structures can be
accomplished with vector quantization implemented in the
program package SITUS.28,29 Among other utilities, SITUS pro-
vides tools for generating coarse representations given an
input structure, whether volumetric or atomic. The vector
quantization approach30,31 uses a so-called “neural gas” net-
work to represent a structure by a set of N pseudoatoms.
Recently, this coarse-graining approach was also imple-
mented in the “cgtools” plugin of the popular VMD

program.32 The SITUS implementation currently differs from
the VMD approach by providing an additional clustering of
multiple statistically independent neural gas runs, yielding a
statistically reproducible assignment of pseudoatoms. More
importantly, the neural gas approach in SITUS is also able to
establish the connectedness of adjacent pseudoatoms by em-
ploying the so-called “competitive Hebb” rule.33 This idea
derived from computational geometry is closely related to
the well known Delaunay tessellation.34 If necessary, a den-
sity mask is first created from an atomic structure using the
SITUS “pdb2vol” utility. Then the density mask �or alterna-
tively, volumetric data from low-resolution structures� is pro-
cessed with the SITUS “qvol” tool to generate the coarse
model and the connectedness in the form of PDB �Protein
Data Bank� and PSF �Protein Structure File, a chemical file
format containing bond information� files, respectively. The
competitive Hebb rule yields a Delaunay tessellation that is
masked by the input density33 with the number N of
pseudoatoms as sole input parameter. We describe in Sec. III
how this number was determined for each test system.

Although the tessellation typically produces a connect-
edness with three neighbors for each node, the number of
neighbors is not guaranteed due to the masking. Especially
for very sparse models the representation becomes skeleton-
like and resembles a “molecular ball-and-stick figure.”30 This
�desired� strong coarse graining rules out ENM for solving
the normal modes, but the above BTS approach is perfectly
capable of handling any type of graph. Compared to ENMs,
much sparser representations, both in terms of connectedness
and in terms of atom density, can be solved by BTS.

III. RESULTS

To validate BTS we have determined the mode overlap
with ENM for several test systems. We chose ADK at vari-
ous levels of course graining as well as cryo-EM reconstruc-
tions of RNA polymerase, ribosome, and chaperonin CCT
because these systems had been studied well in earlier ENM
analysis work15,20 and thus provide a good standard for
comparison.

The validation required in some cases that a coarse BTS
model be brought to the level of detail of the ENM. If nec-
essary, the BTS infinitesimal displacements were extended to
the ENM node positions by interpolation with the 3D kernel
of the thin-plate spline method.35 If we represent the ith
ENM normal mode by a 3N-vector 	ENM

�i� and the jth �pos-
sibly interpolated� BTS mode by the 3N-vector 	BTS

�j� , then
the squared inner product

Oij = 	 	ENM
�i� · 	BTS

�j�


	ENM
�i� 
 
	BTS

�j� 


2

, �12�

0
Oij 
1 provides a measure of mode similarity. Typically,
overlap values above 0.5 are considered good and above 0.7
are considered excellent.15

An alternative method for comparison is the crystallo-
graphic temperature or B-factor. The B-factor Bi of a specific
atom i is a measure of conformational variability. Assuming
that this variability originates from the internal motions, Bi

can be shown to be proportional to the root mean square
displacement of atom i over the modes.36,37 Consistent with
the first 14 dominant modes in our overlap matrices we set

Bi = C�
n=7

20
	in

2

�n
, �13�

where 	in is the 3D displacement for atom i and mode n, �n

is the eigenvalue of mode n, and C is a scaling factor. All
B-factor profiles in the following are normalized to have
equivalent areas with an �arbitrary� maximum value of 100.

A. Adenylate kinase at variable level of detail

ADK is a phosphotransferase that helps to maintain cel-
lular energy homeostasis. ADK from PDB entry 4AKE �Ref.
38� consists of 214 amino acids and has been shown via
ENM and crystallographic studies to exhibit a cleft-closure
motion.15 This open-close motion is also prominently fea-
tured at the C� level in BTS mode 7 depicted in Fig. 1�a�. To
perform a more systematic test of our BTS approach, we
computed the overlap matrix between ENM and BTS �Eq.
�12�� at comparable level of detail using the C� atoms �ENM
distance cutoff: 12 Å�. For the BTS parametrization we used
the initial, continuum mechanics derived approximations of
the force constants as described in Sec. II. The diagonal
structure of the overlap in Fig. 1�b� demonstrates that the
first six nontrivial modes are identical between BTS and
ENM, and the higher modes are generally overlapping only
within a very small subspace spanned by neighboring modes.
Also, the B-factors shown in Fig. 1�c� are very similar �Pear-
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son correlation coefficient: 0.98�. Hence, for practical appli-
cations at the C� level, our results suggest that BTS and
ENM can be used interchangeably.

To test the robustness of BTS at a low level of detail we
coarse grained the ADK system, reducing the number of

pseudoatoms roughly by an order of magnitude. When com-
pressing a structure drastically, we found a certain variability
in the agreement in overlap and B-factor upon small changes
in the number N. Figures 2 and 3 show two examples:
N=30 which gives an excellent agreement of modes and

(b)

50 100 150 200

20

40

60

80

100

(c)

(a)

FIG. 1. ADK, N=214 �C� model�. �a� BTS mode 7 �golden arrows� and
corresponding graph edges �blue rods�. All molecular graphic figures in this
paper were created with the visualization program VMD �Ref. 50�. �b� Over-
lap matrix of the first 14 nontrivial normal modes for ENM and BTS. �c�
B-factor as a function of C� index �amino acid sequence� for ENM �blue�
and BTS �red�.

(b)

50 100 150 200

20

40

60

80

100

(c)

(a)

FIG. 2. ADK, N=30. �a� BTS mode 7 �golden arrows� and corresponding
graph edges �blue rods�. �b� Overlap matrix of the first 14 nontrivial normal
modes for ENM and BTS. �c� B-factor as a function of C� index �amino acid
sequence� for ENM �blue� and BTS �red�.
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N=20 which provides a worst-case scenario within the range
20
N
30. As can be seen in panels �a� the reduced struc-
tures still provide an excellent reproduction of mode 7, even
in the worst case N=20. Panels �b� show that the case N
=30 faithfully reproduces the first five nontrivial modes from

ENM, whereas N=20 only reproduces the first two. Never-
theless, the structure of the overlap matrix is near diagonal
even in the worst-case scenario, demonstrating that modes
tend to mix only with their immediate neighbors. The
B-factors in panels �c� show that the mobile regions are cor-
rectly identified, but the patterns exhibit a degradation con-
sistent with the results of the overlap analysis with Pearson
correlation coefficients relative to ENM of 0.92 and 0.71 for
N=30 and N=20, respectively.

B. Empirical validation of force constants

As we have seen, the overlap matrices in panels �b� of
Figs. 1–3 provide a way to estimate the quality of a particu-
lar BTS model. In the present work we consider the well
established C� ENM as a gold standard for comparison. We
can test and optimize our BTS parametrization by maximiz-
ing the overlap between both models. To explore the robust-
ness of the BTS parametrization, we varied the force con-
stant ratios derived in Sec. II by several orders of magnitude
and measured the effect of the parameter change on the trace
of the overlap matrix with the C� ENM �distance cutoff:
12 Å�.

Figure 4 shows the trace as a function of the normalized
�Eq. �11�� bend to stretch ratio 16

�d�2 � kb

ks
� �a value of one corre-

sponds to the initial approximation from continuum mechan-
ics�. Our initial estimate of the ratio gives near-maximal
overlaps. For small, submaximal ratios in Fig. 4 the angle
term in our potential essentially vanishes, reducing the simi-
larity between BTS and ENM. The maximum at 16

�d�2 � kb

ks
�

�0.1 allows one to compute the effective diameter 2r of the
optimal elastic rod model using Eq. �10�: 2r��0.1�d�
�0.32�d�. This result makes perfect physical sense: the vir-
tual rods in our optimal model exhibit a thickness of order
�d� but they are thin enough to avoid occupying the same
space. For larger ratios in Fig. 4 the similarity between BTS
and ENM is decaying once the virtual rod thickness grows
beyond the available space.

Figure 5 shows the trace of the overlap as a function of
the twist to bend ratio kt /kb �a value of one again corre-
sponds to the initial approximation from continuum mechan-
ics�, for the optimal bend to stretch ratio 16

�d�2 � kb

ks
�=0.1, and for

(b)

50 100 150 200

20

40

60

80

100

(c)

(a)

FIG. 3. ADK, N=20. �a� BTS mode 7 �golden arrows� and corresponding
graph edges �blue rods�. �b� Overlap matrix of the first 14 nontrivial normal
modes for ENM and BTS. �c� B-factor as a function of C� index �amino acid
sequence� for ENM �blue� and BTS �red�.

0.01 0.1 1 10 100 1000

16

���
2

kb

ks

1

2

3
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6
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FIG. 4. ADK, trace of the overlap matrix from the first 14 nontrivial modes

as a function of 16

�d�2
� kb

ks
� for

kt

kb
=1.
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the earlier 16
�d�2 � kb

ks
�=1. The figure shows that the initial esti-

mate kt /kb=1 forms an upper bound of possible values,
whereas stronger torsion contributions kt /kb�1 reduce the
agreement with ENM. On the other hand, smaller ratios
kt /kb�1 are not affecting the high similarity between ENM
and BTS. It is justified, therefore, to keep the maximum vi-
able kt /kb=1 to facilitate the calculation of modes for skel-
etonlike graphs where the torsional term is important to
avoid nontrivial zero frequency modes.

In the following �and in our disseminated program� we
use the empirically validated ratios 16

�d�2 � kb

ks
�=0.1 and kt /kb

=1. We also repeated the calculations of the modes in Figs.
1–3 with the new 16

�d�2 � kb

ks
�=0.1 ratio, but the observed

changes were insignificant �data not shown�.

C. Application to three low-resolution
cryo-EM structures

One of the benefits and intended uses of BTS is its abil-
ity to characterize low-resolution biophysical data. The in-
trinsic flexibility of three quintessential macromolecular as-
semblies was investigated in Ref. 20 with dense �high N�
ENMs based on relatively low-resolution �15–27 Å�
cryo-EM resolution data. Although much higher resolution
cryo-EM maps of these and similar systems are available,39 it
is still typical for most cryo-EM studies to bootstrap the
reconstruction and analysis from such low-resolution models
as more images are collected. Also, it makes sense for this
proof of concept paper to focus on systems that were already
well characterized by ENM. In addition to the ENM study,20

the opening and closing motion of the E. coli RNA poly-
merase �Fig. 6� and the ratcheting motion of the ribosome
�Fig. 7� were observed experimentally at atomic and inter-
mediate resolution,40–43 and the functional mechanisms of
these molecular machines continue to be of significant inter-
est. Likewise, the interaction of the eukaryotic chaperonin
CCT �Fig. 8� with partially folded substrates is believed to
involve significant flexibility.44

In Ref. 20 the significant conformational change corre-
sponded to a single, low-frequency mode of its open form,45

namely, mode 7. Therefore, we focus in the following on the

lowest-frequency mode 7 only. The ENM study20 also found
a significant mismatch of resolution between the cryo-EM
data and that of the dense representation required to capture
the functional motion by mode 7. One can count the maxi-
mum number of independent pieces of information in a
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FIG. 5. ADK, trace of the overlap matrix from the first 14 nontrivial modes
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FIG. 6. E. coli RNA polymerase, electron microscopy map �transparent
isocontour surface�, represented by N=61 pseudoatoms connected by bonds
�blue rods�. BTS mode 7 is shown by golden arrows.

FIG. 7. E. coli ribosome, electron microscopy map �transparent isocontour
surface�, represented by N=98 pseudoatoms connected by bonds �blue
rods�. BTS mode 7 is shown by golden arrows.
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cryo-EM map by dividing the volume of the structure by the
volume of a resolution element, i.e., a cube whose length
corresponds to the spatial resolution. For low-resolution
��10–30 Å� cryo-EM maps this maximum “number of re-
solved features” is surprisingly small, on the order of a few
dozen.46 In contrast, the number N of pseudoatoms in the
ENM is on the order of 1000 �Ref. 20� due to the required
oversampling of density and connectedness. Here, we chose
for the BTS a much smaller number N, namely, half of the
maximum number of resolved features in the cryo-EM map,
to ensure that we are not oversampling the data.

For RNA polymerase �15 Å resolution� the ENM �dis-
tance cutoff: 14 Å� required originally N=993
pseudoatoms20 to describe the open-close motion of the
structure �Fig. 6�. By applying BTS with half-maximum
number of features N=61 we obtain an overlap of 0.92 of
mode 7 with the dense ENM. This high overlap remains
robust for a range of numbers of pseudoatoms, only for very
small numbers N�15 does the overlap fall below a value
of 0.5.

For the ribosome �25 Å resolution� the ENM �distance
cutoff: 18 Å� required originally N=1481 pseudoatoms20 to
describe the ratcheting motion of the two ribosomal subunits
about their mutually adjoining stalk �Fig. 7�. Applying BTS
with a half-max feature number of N=98 we obtain an over-
lap of 0.82 for ENM mode 7. Overlap values remain above
0.5 down to N=20.

Chaperonin CCT �27 Å resolution� forms a hollow cyl-
inder with eightfold symmetry for which the ENM �distance
cutoff: 14 Å� originally required N=1992 pseudoatoms.20

The motion of mode 7 consists of alternating elliptical defor-
mations of the apical domains in the opposing cylinder walls
�Fig. 8�. Applying BTS with a half-max feature number of
N=32 we obtain an overlap of 0.75 for the symmetry-related
mode 7 in the ENM. Overlap values remain above 0.5 down
to N=9.

IV. DISCUSSION AND CONCLUSIONS

We introduced a novel BTS functional form for coarse
elastic network simulation and demonstrated its application
to atomic and volumetric data at various level of detail. The
sole input parameters are the graph nodes �pseudoatoms� and
their connectedness which can be defined by the user or com-
puted with existing tools. We optimized two parameters in
our model based on continuum elastics and empirical valida-
tions such that they can remain hidden in future practical
applications. All steps in Sec. II are automated including the
calculations of the list of bonds, angles, dihedrals, numerical
calculation and diagonalization of the Hessian matrix, inter-
polation, and data file output. The tools described in this
article will be documented and freely distributed as part of
the Python-based “MODEHUNTER” package at URL http://
modehunter.biomachina.org.

BTS affords a compression in the spatial level of detail
by one to two orders of magnitude compared to ENM with
little loss in accuracy. With regard to low-resolution struc-
tures, we are able to recreate biomolecular motion with
coarser delineations whose level of detail reflects the experi-
mental resolution. As a beneficial side effect, the coarse
graining reduces dramatically the computational complexity
for solving the eigensystem of the Hessian. The remaining
bottleneck in our scheme is due to the numerical computa-
tion of the Hessian �cf. Eq. �4��. Although we have not ex-
plored this further in the present work, we expect that the
construction of the Hessian could be sped up by using ana-
lytic expressions of the second derivatives.

Our empirical validations showed that the additional
angle term of the BTS potential compensates for the loss of
long-range contacts in our network. In ENMs the cutoff is
typically twice the nearest-neighbor distance,47 resulting in a
large number of redundant connections �another pitfall of
long-range ENM connections is that these may traverse re-
gions of negligible molecular density so as to constrain cer-
tain molecular motions artificially�. When we replace the
ENM connections with the sparser and shorter connections
afforded by the competitive Hebb rule �a masked version of
Delaunay tessellation, see Sec. II�, the angle term maintains
the similarity of the resulting BTS modes with those ex-
pected from an ENM �Fig. 4�. Although the additional tor-
sion term of the BTS potential was not needed for the well-
connected C� model we investigated �Fig. 1�, our tests at the
C� level show that the torsion term is safe to use up to the
continuum mechanics limit �Fig. 5�.

Recently, two related modifications of the Tirion poten-
tial have been proposed: Lu et al.48 performed NMA in an
internal coordinate framework to alleviate an observed ENM
problem termed the “tip effect.” This effect, sometimes ob-
served at protruding loops, is due to unrestricted motions
caused by poor connectivity of the ENM. Their solution is
closely related to the angle term used in our parametrization,
but it required a chain connectivity and is thus limited to
proteins at the C� level. Separately, Jeong et al.47 proposed
an interesting connection rule to eliminate the ENM distance
cutoff. Their rule used chemical bonding information �both
covalent and weak interactions� and was also limited to

FIG. 8. Eukaryotic chaperonin CCT, electron microscopy map �transparent
isocontour surface�, represented by N=32 pseudoatoms connected by bonds
�blue rods�. BTS mode 7 is shown by golden arrows.
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atomic detail protein structures. This stands in contrast to the
competitive Hebb connectivity rule in BTS that relies on
computational geometry alone. Our BTS model builds upon
the benefits of both improvements,47,48 but it is generally
applicable to any graph or network whose edges can be
physically modeled as elastic rods.

The novel torsional term in BTS is critical for BTS to
model a graph irrespective of its degree distribution. The
degree of a graph node is the number of edges connected to
that node. In a coarse biomolecular model, for example, the
degree would be the number of bonds projecting from each
pseudoatom. This number is at least one, and indeed many
nodes in realistic networks have a low degree, i.e., just one
or two connections.49 In contrast to the BTS model, ENMs
require a degree of at least three to avoid nontrivial zero-
frequency modes. In other words, the ENM must be a super-
graph of a so-called three-nearest-neighbor graph. This en-
tails both a high density of linking partners and requires the
mentioned long-range cutoff that in turn leads to many re-
dundant connections. BTS does not suffer from the three-
degree constraint and can be made arbitrarily sparse. At a
high spatial compression,30 BTS thus provides the biomo-
lecular analog to “stick figure” animation.

ACKNOWLEDGMENTS

We thank Harel Weinstein for mentorship and support
and Rhys Adams and Sebastian Stolzenberg for discussions.
This work was supported in part by NIH �Grant Nos.
R01GM62968, DA012923 and DA012408�.

1 Q. Cui and I. Bahar, Normal Mode Analysis �Chapman and Hall/CRC,
London/Boca Raton, 2006�.

2 T. Horiuchi and N. Go, Proteins: Struct., Funct., Genet. 10, 106 �1991�.
3 M. Gerstein, A. M. Lesk, and C. Chothia, Biochemistry 33, 6739 �1994�.
4 J. S. Byrnes, Twentieth Century Harmonic Analysis - A Celebration �Klu-
wer, Dordrecht, 2001�.

5 E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations
�McGraw-Hill, New York, 1955�.

6 M. Tasumi, H. Takeuchi, S. Ataka, A. M. Dwivedi, and S. Krimm,
Biopolymers 21, 711 �1982�.

7 T. Noguti and N. Go, Nature �London� 296, 776 �1982�.
8 M. Levitt, C. Sander, and P. S. Stern, J. Mol. Biol. 181, 423 �1985�.
9 D. A. Case, in Computer Simulation of Biomolecular Systems, edited by
W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson �Kluwer, Dor-
drecht, 1997�, Vol. 3, pp. 284–301.

10 D. A. McQuarrie, Statistical Mechanics �Harper, New York, 1976�.
11 M. M. Tirion, Phys. Rev. Lett. 77, 1905 �1996�.
12 I. Bahar, A. R. Atilgan, and B. Erman, Folding Des. 2, 173 �1997�.
13 K. Hinsen, Proteins: Struct., Funct., Bioinf. 33, 417 �1998�.
14 P. Doruker, R. L. Jernigan, and I. Bahar, J. Comput. Chem. 23, 119

�2002�.
15 F. Tama, W. Wriggers, and C. L. Brooks, J. Mol. Biol. 321, 297 �2002�.
16 F. Tama and C. L. Brooks, Annu. Rev. Biophys. Biomol. Struct. 35, 115

�2006�.

17 M. Lu and J. Ma, Biophys. J. 89, 2395 �2005�.
18 http://igs-server.cnrs-mrs.fr/elnemo. A server for creating and solving

elastic network models.
19 http://enm.lobos.nih.gov. A server for creating and solving elastic net-

work models
20 P. Chacón, F. Tama, and W. Wriggers, J. Mol. Biol. 326, 485 �2003�.
21 D. Ming, Y. Kong, M. A. Lambert, Z. Huang, and J. Ma, Proc. Natl.

Acad. Sci. U.S.A. 99, 8620 �2002�.
22 J. Frank, Annu. Rev. Biophys. Biomol. Struct. 31, 303 �2002�.
23 H. H. Niemann, M. V. Petoukhov, M. Härtlein, M. Moulin, E. Gherardi,

P. Timmins, D. W. Heinz, and D. I. Svergun, J. Mol. Biol. 377, 489
�2008�.

24 W. Wriggers, Z. Zhang, M. Shah, and D. C. Sorensen, Mol. Simul. 32,
803 �2006�.

25 L. D. Landau and E. M. Lifshitz, Mechanics - Course of Theoretical
Physics, 3rd ed. �Butterworth, Washington, DC, 1982�, Vol. 1.

26 B. Lautrup, Physics of Continuous Matter �Institute of Physics, Univer-
sity of Reading, Berkshire, 2005�.

27 P. A. Janmey, J. X. Tang, and C. F. Schmidt, Biophysics Textbook Online
�BTOL�, 1999, http://www.biophysics.org/education/topics.htm.

28 W. Wriggers, R. A. Milligan, and J. A. McCammon, J. Struct. Biol. 125,
185 �1999�.

29 http://situs.biomachina.org. Situs: A package for the modeling of atomic
resolution structures into low-resolution density maps.

30 W. Wriggers, R. A. Milligan, K. Schulten, and J. A. McCammon, J. Mol.
Biol. 284, 1247 �1998�.

31 W. Wriggers, P. Chacón, J. Kovacs, F. Tama, and S. Birmanns, Neuro-
computing 56, 365 �2004�.

32 http://www.ks.uiuc.edu/Research/vmd/plugins/cgtools. Coarse grained
modeling plugin for the molecular graphics program VMD.

33 T. M. Martinetz, S. G. Berkovich, and K. Schulten, IEEE Trans. Neural
Netw. 4, 558 �1993�.

34 M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Com-
putational Geometry: Algorithms and Applications, 2nd ed. �Springer-
Verlag, Berlin, 2000�.

35 F. L. Bookstein, Morphometric Tools for Landmark Data �Cambridge
University Press, Cambridge, 1991�.

36 W. C. Lu, C. Z. Wang, E. W. Yu, and K. M. Ho, Proteins: Struct., Funct.,
Bioinf. 62, 152 �2006�.

37 S. E. Dobbins, V. I. Lesk, and M. J. E. Sternberg, Proc. Natl. Acad. Sci.
U.S.A. 105, 10390 �2008�.

38 C. W. Müller, G. J. Schlauderer, J. Reinstein, and G. E. Schulz, Structure
�London� 4, 147 �1996�.

39 X. Yu, L. Jin, and Z. H. Zhou, Nature �London� 453, 415 �2008�.
40 S. A. Darst, N. Opalka, P. Chacón, A. Polyakov, C. Richter, G. Zhang,

and W. Wriggers, Proc. Natl. Acad. Sci. U.S.A. 99, 4296 �2002�.
41 G. Zhang, E. A. Campbell, L. Minakhin, C. Richter, K. Severinov, and S.

A. Darst, Cell 98, 811 �1999�.
42 J. Frank and R. K. Agrawal, Nature �London� 406, 318 �2000�.
43 F. Tama, M. Valle, J. Frank, and C. L. Brooks, Proc. Natl. Acad. Sci.

U.S.A. 100, 9319 �2003�.
44 X. Zhang, F. Beuron, and P. S. Freemont, Curr. Opin. Struct. Biol. 12,

231 �2002�.
45 F. Tama and Y.-H. Sanejouand, Protein Eng. 14, 1 �2001�.
46 W. Wriggers and P. Chacón, Structure �London� 9, 779 �2001�.
47 J. I. Jeong, Y. Jang, and M. K. Kim, J. Mol. Graphics Modell. 24, 296

�2006�.
48 M. Lu, B. Poon, and J. Ma, J. Chem. Theory Comput. 2, 464 �2006�.
49 M. Newman, Phys. Today 61, 33 �2008�.
50 W. F. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33

�1996�.

074112-9 Coarse elastic network simulation J. Chem. Phys. 131, 074112 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1002/prot.340100204
http://dx.doi.org/10.1021/bi00188a001
http://dx.doi.org/10.1002/bip.360210318
http://dx.doi.org/10.1038/296776a0
http://dx.doi.org/10.1016/0022-2836(85)90230-X
http://dx.doi.org/10.1103/PhysRevLett.77.1905
http://dx.doi.org/10.1016/S1359-0278(97)00024-2
http://dx.doi.org/10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8
http://dx.doi.org/10.1002/jcc.1160
http://dx.doi.org/10.1016/S0022-2836(02)00627-7
http://dx.doi.org/10.1146/annurev.biophys.35.040405.102010
http://dx.doi.org/10.1529/biophysj.105.065904
http://igs-server.cnrs-mrs.fr/elnemo
http://enm.lobos.nih.gov
http://dx.doi.org/10.1016/S0022-2836(02)01426-2
http://dx.doi.org/10.1073/pnas.082148899
http://dx.doi.org/10.1073/pnas.082148899
http://dx.doi.org/10.1146/annurev.biophys.31.082901.134202
http://dx.doi.org/10.1016/j.jmb.2008.01.027
http://dx.doi.org/10.1080/08927020600771415
http://www.biophysics.org/education/topics.htm
http://dx.doi.org/10.1006/jsbi.1998.4080
http://situs.biomachina.org
http://dx.doi.org/10.1006/jmbi.1998.2232
http://dx.doi.org/10.1006/jmbi.1998.2232
http://dx.doi.org/10.1016/j.neucom.2003.09.007
http://dx.doi.org/10.1016/j.neucom.2003.09.007
http://www.ks.uiuc.edu/Research/vmd/plugins/cgtools
http://dx.doi.org/10.1109/72.238311
http://dx.doi.org/10.1109/72.238311
http://dx.doi.org/10.1002/prot.20743
http://dx.doi.org/10.1002/prot.20743
http://dx.doi.org/10.1073/pnas.0802496105
http://dx.doi.org/10.1073/pnas.0802496105
http://dx.doi.org/10.1016/S0969-2126(96)00018-4
http://dx.doi.org/10.1016/S0969-2126(96)00018-4
http://dx.doi.org/10.1038/nature06893
http://dx.doi.org/10.1073/pnas.052054099
http://dx.doi.org/10.1016/S0092-8674(00)81515-9
http://dx.doi.org/10.1038/35018597
http://dx.doi.org/10.1073/pnas.1632476100
http://dx.doi.org/10.1073/pnas.1632476100
http://dx.doi.org/10.1016/S0959-440X(02)00315-9
http://dx.doi.org/10.1093/protein/14.1.1
http://dx.doi.org/10.1016/S0969-2126(01)00648-7
http://dx.doi.org/10.1016/j.jmgm.2005.09.006
http://dx.doi.org/10.1021/ct050307u
http://dx.doi.org/10.1063/1.3027989
http://dx.doi.org/10.1016/0263-7855(96)00018-5

