
Supplementary Material for�Developing a Denoising Filter for Ele
tron Mi
ros
opy andTomography Data in the Cloud� byZbigniew Starosolski, Marek Sz
zepanski, Manuel Wahle,Mirabela Rusu, and Willy Wriggers1. On the Treatment of Noise in Ele
tron Mi
ros
opy and TomographyAs des
ribed in Se
tion 1 of the main text, re
orded 
ryo-EM and tomographyimages show a very low SNR due to the low radiation dose that is ne
essary toprote
t the biologi
al spe
imen.In the past few de
ades, the in�uen
e of environmental fa
tors has been
arefully studied, and a 
onsensus has emerged that spe
imens at lowertemperature are more robust to high-energy ele
trons in terms of spe
imendegradation (Wright et al., 2006). However, high-energy ele
trons also 
ause
hanges in i
e density and indu
e displa
ements of the spe
imen. Re
ent studieshave shown that for high resolution (4-10Å) 
ryo-EM re
onstru
tions, there is littlebene�t of a temperature below liquid nitrogen (Bammes et al., 2010), and only thelower resolution (20-60Å) maps tend to bene�t from a lower temperature.Therefore, noisy mi
rographs will remain an important problem in the foreseeablefuture.Single-parti
le and tomographi
 re
onstru
tion over
ome these limitations bypro
essing vast numbers of individual parti
le proje
tions. The parti
les areidenti�ed on 2D mi
rographs, 
lassi�ed or aligned a

ording to their rotation, andaveraged before (
ryo-EM) or after 3D re
onstru
tion (tomography) to redu
e noiseand strengthen the true signal. Diverse pro
essing te
hniques for digitization,parti
le pi
king, and 
lassi�
ation are well established Frank (2006a,b).The limitations of 3D data mentioned above pose a formidable 
hallenge todenoising methods. Unfortunately, linear �ltering methods su
h as Gaussianaverages are not able to e�e
tively redu
e the ex
essive amount of noise whilepreserving the detail of edges (Gonzales and Woods, 2002). One solution developedby us and many others (see below) is to allow for non-linearities in the �ltering.We a
knowledge that 
ryo-EM and tomography data are often 
olle
ted andpro
essed in a way that preserves linearity. Ideally, one wishes for 3D maps to beinterpretable in terms of ma
romole
ular mass density. The introdu
tion ofnon-linearities distorts this relation and, therefore, must be applied with 
aution.The main text shows that non-linear �lters 
an be advantageous, but we believethat they should be limited to 
ases where linear �lters are 
learly insu�
ient.1



Non-linear methods also require a tradeo� between noise redu
tion andpre
ision based on empiri
al 
riteria that are unrelated to the �rst prin
iples ofimage formation or 3D re
onstru
tion. In fa
t, the most useful denoising methodsare those that adaptively 
hange their performan
e based on the lo
al 
onditions ofthe spe
i�
 data and use intri
ate noise models (Baxter et al., 2009). For example,the widely used bilateral �ltering method employs two 
ompeting low-pass �ltersworking together (Jiang et al., 2003). One low-pass �lter is applied to intensitieswhile the other is applied to distan
es. The �lter parameters are set for all theinput data, 
ausing a loss of robustness to di�erent noise values. An extension ofthis method is a dis
riminative bilateral �lter in whi
h an additional photometri
dis
riminant fun
tion is embedded (Panteli
 et al., 2006). The additionaldis
riminant distinguishes between edges and impulse noise. With properly 
hosenparameters, high frequen
y noise pixels are smoothed while the obje
t edge detail ispreserved.An alternative approa
h builds on anisotropi
 nonlinear di�usion(Fernandez and Li, 2003) by adapting the parameters of a Gaussian-based �lter tolo
al features. These lo
al features are determined by eigenanalysis of the averagesof the image tensors.More re
ently, Wei and Yin (2010) introdu
ed a lo
ally optimized adaptivenon-lo
al means method, whi
h improves the approa
h originally developedby Buades et al. (2005). This method uses a lo
al and global standard deviation ofthe image data and a parameter-sensitive de
ision rule. The adjustment of theseparameters is a 
hallenging task that requires knowledge and experien
e to a
hievethe desired e�e
t. The DPSV �lter developed by us and des
ribed in the followingse
tion is an alternative to these lo
al varian
e- (or variability-) based �lters.2. The DPSV Filter Algorithm as Applied to Cryo-EM and TomographyDataA s
hemati
 overview of the algorithm is presented in Fig. 1 of the main text. Toassist users, we will provide here, for the �rst time, a 
omplete review of the DPSVtheory as applied to 
ryo-EM and tomography maps.2.1. Lo
al Sear
h Strategy and the Digital Path Approa
hThis se
tion des
ribes a lo
al sear
h strategy based on digital paths generatedby a self-avoiding walk (Havlin and Ben-Avraham, 1982). Two neighborhood models
an be de�ned in 2D data: a 4-neighborhood and a 8-neighborhood. In the 
ase of3D data, a 6-neighborhood and a 26-neighborhood 
an be de�ned (see Sz
zepanski,2



P\M 3 5 7 9 3 5 7 9
2D 4-neighborhoods 8-neighborhoods1 4 4 4 4 8 8 8 82 8 12 12 12 24 56 56 563 8 32 36 36 56 264 368 3684 64 96 96 1056 2016 23365 240 280 9888 136086 718 73632
3D 6-neighborhoods 26-neighborhoods1 6 6 6 6 26 26 26 262 24 30 30 30 650 650 6503 144 150 150 11928 15986 159864 720 726 350592 3889945 3528 9051144Supplementary Table 1: Cardinality of a set of paths for a 2D and 3D �ltering s
heme as a fun
tionof the mask size M and path length P2008). The 
hosen model of the neighborhood a�e
ts the 
ardinality of the pathset (see Suppl. Table 1), the 
omputation time, and the quality of the results. Themethod is based on a lo
al �ltering approa
h where the lo
al (2D or 3D) spa
eis limited by the dimension, M , of a (square or 
ubi
) mask, and the rea
h and
urvature of the digital walk within the mask is set by its length, P . An in
reasein these parameters typi
ally results in a more pre
ise exploration of lo
al spa
e.Small mask sizes and a long paths (P > (M − 1)/2) 
ause paths to fold inside themask, whi
h allows them to sample 
urved or bent features. Short walk lengths

P ≤ (M − 1)/2 are unrestri
ted by the mask and are better suited for straight edgesin the data. The mask size and path length should be adjusted to the stru
turefound in the data upon examination.Fig. 1b in the main text shows a 2D example of a digital walk through one offour nearest neighbors. The virtual parti
le (bla
k 
ir
le) is initially at position pi,then takes a step through the �rst neighbor pi(1),∗,1 (gray 
ir
le), and then 
ontinuesthrough its se
ond neighbor from the set: N3 =
{

pi(1),1,2, pi(1),2,2, pi(1),3,2

} (white
ir
les). This walk will produ
e three di�erent digital paths of length P = 2: pi →
pi(1),l,1 → pi(1),l,2 where l = 1 . . . 3 for the nearest neighbor pi(1),∗,1. For all fourneighbors, there will be a total of 12 paths. During ea
h step along the path, thevirtual parti
le is de�ned by its spatial position and the value of the intensity I(pi),whi
h is the intensity of a pixel normalized a
ross the image.3



2.2. Spatial Intensity of Digital PathsThe spatial intensity of a path is de�ned as a 
onne
tion 
ost. This is themaximum 
ost observed among pixels that are linked by one path. The individual
onne
tion 
ost is de�ned as the absolute di�eren
e of (normalized) intensitiesbetween the 
enter pixel pi and a linked pixel pi(n),l,k, divided by their Eu
lideandistan
e. The 
onne
tion 
ost of the l-th path passing through the n-th 
losestneighbor is thus de�ned as
ΛP

n,l

{

pi, pi(n),l,1, pi(n),l,2, . . . , pi(n),l,P

}

= max
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omputed among k = 1, . . . , P pixels along the l-th path,
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∣ is an absolute di�eren
e of intensities between linked pixels pi and
pi(n),l,k along the path, and dist(.) denotes the Eu
lidean distan
e.2.3. Supervised Classi�
ationIdeally, we wish to distinguish between paths that in
lude noise and ones that donot, and then to re
over pixel values using only the paths that in
lude the true signal.Here, we assume that the digital paths that explore a smooth intensity lands
ape
orrespond to a noise-free neighborhood. Paths with a relatively large 
onne
tion
ost are assumed to hold high-frequen
y noise or 
ross the edge of an obje
t. Wenote that any obje
t edge detail is preserved by those paths that follow the edge,thus preventing a softening of edges.At this point, we require a 
lassi�
ation pro
edure to group the paths into two
lasses, whi
h should be robust under di�erent ba
kground levels and should preservethe paths with a relatively low 
onne
tion 
ost. Following Smolka (2008), we adaptFisher's dis
riminant analysis (FDA) using a maximized Fisher fun
tional in Eqn. 2below, whi
h separates the set of paths into two 
lasses that (ideally) 
orrespond tosignal and noise. The paths are �rst sorted in des
ending order based on the valueof rk = ΛP

n,l {.}. The Fisher dis
riminant (Smolka, 2008) is then de�ned as
F (k) =

[m1(k) − m2(k)]2

v1(k) + v2(k)
, k = 1, . . . , u − 1 , (2)where m1,m2 and v1,v2 are the means and the varian
es, respe
tively, as 
al
ulatedfor two 
lasses:

m1(k) =
1

k

k
∑

i=1

ri , m2(k) =
1

u − k

u
∑

i=k+1

ri , (3)4



v1(k) =
k

∑

i=1

(ri − m1)
2 , v2(k) =

u
∑

i=k+1

(ri − m2)
2, k = 1, . . . , u − 1 . (4)Here, u is the 
ardinality of the set of paths. The 
ardinality depends on masksize M , path length P , and the neighborhood model as listed in Suppl. Table 1.The dis
riminant analysis su

eeds if one 
an �nd a k∗ that ful�lls

k∗ = arg maxF (k) . (5)If FDA 
annot divide the set of paths into two sets, the �rst r1 = min (rk) , k =
1, . . . , u− 1 will be 
hosen for further pro
essing (see Eqn. 6 below), i.e. neighboringpixels will always 
ontribute to the �lter response.Fig. 1
 in the main text provides an illustrative example of FDA for a set offour paths. The input set of the four paths labeled 1, 2, 3, and 4 is sorted withrespe
t to the 
onne
tion 
ost. After applying FDA, the labeled paths (3, 2, 4)remain for further analysis. For a more detailed des
ription of FDA see Smolka(2008) and Kenney et al. (2001).2.4. Similarity Fun
tionThe output intensity of the 
entral pixel is 
al
ulated as the 
ost-weighted meanof the surviving paths through the neighborhood (similarity fun
tion):

I(pi) =
N

∑

n=1

I(pi(n),∗,1)Ξ(pi(n))
∑N

n=1 Ξ(pi(n))
, (6)where I(pi(n),∗,1) is the (normalized) intensity asso
iated with the 
losest neighborfrom the fo
al pixel pi and size N is the number of neighbors in the neighborhoodmodel. The 
umulative 
ost is de�ned as

Ξ(pi(n)) =
v

∑

l=1

[

K
(

β, ΛP
n,l

{

pi, pi(n),l,1, pi(n),l,2, . . . , pi(1),l,P

})]

, (7)where the kernel fun
tion K(β, Λ) has to ful�ll the imposed 
onditions: smooth,
onvex, and de
reasing fun
tion on R+. After empiri
ally exploring a number ofpossible fun
tions (data not shown) we 
hose the exponential fun
tion K(β, Λ) =
e−βΛ as a kernel. Se
tion 4 explores the sharpness parameter, β.As the mask (see diagram in Fig. 1a in the main text) is moved along pixels, i, theweighting pro
ess depends on the shared relations between the intensity asso
iated5



with the 
losest neighbor pi(n),∗,1 and the 
umulative 
ost 
al
ulated in the maskdes
ribed by Ξ(pi(n)).2.5. Usage and 3D Appli
ationsIn S
ulptor version 2.1 (http://s
ulptor.bioma
hina.org), the DPSV �lter
an be applied to a map via the menus �Volume� → �DPSV Filter� (enteringparameters M , P , and β in the pop-up dialog box). In Situs version 2.7(http://situs.bioma
hina.org), a separate 
ommand-line utility vol�tr wasimplemented for DPSV (see online user guide).The appli
ations in the main text were sele
ted as qualitative examples of theuse of DPSV for 3D �ltering. To gain a quantitative understanding of the �lterperforman
e in future work, one 
ould 
ompare raw and �ltered versions of noisy 
ryo-EM maps with known atomi
 resolution stru
tures. There are several known 
ryo-EMstru
tures that were also solved by X-ray 
rystallography and would lend themselvesas test 
andidates for a quantitative (real-spa
e or Fourier spa
e) validation of �lterrobustness.3. Denoising Experimental 2D Mi
rographsIn addition to the 3D appli
ations in the main text, we investigated here the e�e
tof �ltration on experimental 2D mi
rographs. In the �rst 2D test (Suppl. Fig. 1), weexamined the di�eren
e images of data before and after �ltration (Russ, 2002). Ifthere are any shadows resembling the original shapes in the di�eren
e images, thenit is an indi
ation that the �lter greatly in�uen
es the stru
ture hidden under noise.On the other hand, if the di�eren
e image shows only random and uniform noise,then the result indi
ates that the �ltration preserves the features.For this test, we 
hose a representative proje
tion of the Keyhole LimpetHemo
yanin (KHL) protein (pixel size 2.22Å at the spe
imen s
ale), see Zhu et al.(2003). Suppl. Fig. 1A and D present sele
ted mi
rographs of the side and topview. Suppl. Fig. 1B and E show the results after �ltering (with mask size M = 7,path length P = 3, 8-neighborhood model, and �lter parameter β = 0.0005. TheFDA redu
ed the number of paths entering Eqn. 6 by an average of 12% (Suppl.Fig. 1B) or 28% (Suppl. Fig. 1E). As 
an be seen in the di�eren
es between imagesSuppl. Fig. 1C and F, there are no noti
eable shapes or stru
tures in the noise.This result suggests that DPSV behaves properly for these 
onditions.4. Denoising Simulated 2D Image Sta
ks and Setting βThis se
tion demonstrates the e�e
t of DPSV on 
lass averages derived from thesimulated proje
tion of image sta
ks. The results are dependent on the noise level6
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Supplementary Figure 1: Filtering results of representative proje
tions of the Keyhole LimpetHemo
yanin protein obtained by 
ryo-EM (pixel size 2.22Å; top row = side view; bottom row =top view): (A) Original data; (B) data after �ltering; (C) di�eren
e between (A) and (B); (D)original data; (E) data after �ltering; (F) di�eren
e between (D) and (E).and the resolution of the simulated proje
tion. As shown in Suppl. Fig. 2, we 
reatedthree data sets derived from a single mole
ule using di�erent resolutions and pixelsizes. To fa
ilitate the 
al
ulation of 
lass averages, we 
olle
ted data from separatesta
ks of images. Ea
h sta
k 
ontained proje
tions taken from the same angle subje
tto di�erent realizations of simulated noise.For the validation (Suppl. Fig. 2), we 
hose the ribosomal subunit of Haloar
ulamarismortui solved by Klein et al. (2001) (PDB ID 1jj2). We simulated a densitymap from atomi
 
oordinates with di�erent resolutions 6Å, 10Å, 15Å and voxelspa
ings 1Å, 2Å, 3Å, respe
tively.To simulate noise in the sta
ks of images (Suppl. Fig. 2), we did not simplyapply plain Gaussian white noise or impulse noise. Su
h simple noise models areeasy to eliminate due to the la
k of spatial 
orrelation. In mi
rographs obtainedexperimentally from 
ryo-EM, the noise is intri
ate (Baxter et al., 2009) and does7
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Supplementary Figure 2: (A) Atomi
 stru
ture of ribosomal unit (PDB ID 1jj2). (B-D) Simulateddensity maps with resolution 6Å, 10Å, 15Å at voxel spa
ings 1Å, 2Å, 3Å respe
tively. (E-G)Sta
ks of simulated 2D proje
tions.not follow a simple model. Therefore, we mimi
ked this 
omplexity using a pro
edurethat generates sta
ks of 2D images that are subje
t to Gaussian white noise withdi�erent distribution parameters for ea
h sta
k. Next, we applied a Gaussian low-pass �lter to ea
h 2D image, whi
h 
aused the spatial dependen
e of noise (i.e.,8



Supplementary Figure 3: Example of one realization of 
olored noise: (A) Pixel size 1Å; (B)proje
tion to 2Å pixel size; (C) proje
tion to 3Å pixel size. The length of the displayed bar is 30Å,i.e. 30 pixels for 1Å, 15 pixels for 2Å and 10 pixels for 3Å pixel size.
olor noise) as is typi
al in experimental 
ryo-EM data that is �ltered to a spe
i�
resolution. To show that the behavior of the �lter depends not only on the noiselevel but also on the pixel size, we proje
ted the noise onto a larger 2Å and 3Å pixelspa
ing by lo
al averaging of 2 × 2 and 3 × 3 pixels, respe
tively. Then, we addedit to the sta
k of 2D parti
le proje
tions of the 
orresponding pixel spa
ing with aproper SNR ratio in the range of 0.5 to 0.03.Suppl. Fig. 3 provides an example of digitized noise with di�erent pixel spa
ing.The des
ribed pro
edure yields three sta
ks of 2D images with di�erent pixel spa
ings1Å, 2Å, 3Å, and at di�erent noise levels. Ea
h sta
k of images presents the sameproje
tion but with di�erent realizations of noise (128 realizations in total). Toshow how the algorithm in�uen
es the SNR for the 
lass averages, we 
al
ulatedthe averages of images from the (sub-) sets of {1, 2, 4, 8, 16, 32, 64, 128} images. Asimulated noise-free proje
tion and a series of proje
tions 
orrupted by simulatednoise are shown for ea
h of the three 
ases in Suppl. Fig. 4. The results show that alarger pixel size leads to an in
rease in observed SNR values.

9



Supplementary Figure 4: Example of noise-free proje
tions and di�erent noise levels. The �rst
olumn shows simulated proje
tions, and the following 
olumns show proje
tions 
orrupted withsimulated noise at in
reasing SNR values in white.

Supplementary Figure 5: The in�uen
e of parameter, β, on �lter performan
e as judged by SNRvalues after �ltering. (A) Density map with resolution 6Å and voxel size 1Å; (B) density map withresolution 10Å and voxel size 2Å; (C) density map with resolution 15Å and voxel size 3Å. Unitsfor axis β represent the exponent i in the form: β = 0.5(i). Values of βmax indi
ate the value of the�lter parameter that maximizes �lter gain for ea
h resolution.10



We have optimized the �lter parameters based on the size of the parti
le and pixelsize. Lo
al parameters su
h as mask size M and path length P are intuitive, but thesele
tion of the �ltering kernel parameter β requires more experien
e. To investigatethe in�uen
e of β on values of SNR after �ltering, we 
hose β ∈ {0.5i, i = 1, . . . 12}for all three data sets. Suppl. Fig. 5 presents the results. It is 
lear that the optimalvalue of parameter β depends on the pixel spa
ings 1Å, 2Å, and 3Å: The SNR ismaximized for βmax(1Å)= 0.57, βmax(2Å)= 0.510, and βmax(3Å)= 0.511, respe
tively.Next, we investigated the performan
e of the DPSV �lter under the realisti

ondition of averaging the subsets of the image sta
k. We also 
ompared the e�e
t of�ltration on the averaging pro
ess to the e�e
t of a standard Gaussian �lter using asigma (standard deviation of the 1D Gaussian envelope) of two pixels. Suppl. Fig. 6

Supplementary Figure 6: Des
riptive statisti
s of �lter performan
e for ea
h of the investigatedimage sta
ks. The box plots show the distribution parameters of DPSV and Gaussian �lter gain (logof di�eren
e between averages of image sta
k subsets {1, 2, 4, 8, 16, 32, 64, 128} after �ltration andthe averages of subsets before �ltration), 
al
ulated as a fun
tion of the SNR values of individualimages in the sta
k. Ea
h box shows the mean, maximum, minimum, lower quartile, and upperquartile. Optimum Gaussian parameters were sele
ted for the Gaussian 
ontrol 
al
ulations.11



presents the results. Ea
h box plot in Suppl. Fig. 6 shows the statisti
al distributionof gain values observed in the averaged subsets (from {1, 2, 4, 8, 16, 32, 64, 128} sta
kimages) for a given sta
k image SNR level. The des
riptive statisti
s show that the�ltering te
hnique is stable in the tested SNR range of 0.03 to 0.5. We also notethat the DPSV �lter does not behave linearly (the results depend on supervised
lassi�
ation), as was observed in the Gaussian 
ontrol 
al
ulations. However, theobtained results vary within reasonable limits. In all of the tested 
ases, the �ltergain is at least 3 dB higher 
ompared to the Gaussian �lter.Suppl. Fig. 7 provides a 
omparison of 
lass averages of �ltered and un�lteredimages (with mask size M = 7, path length P = 3, 8-neighborhood, and β =
βmax(1Å)). As 
an be 
learly seen, beginning from a sta
k of 32 images, �ltering andaveraging both greatly improve the image details and resulting SNR. The gain of
∼9 dB a
hieved by �ltering is largely independent of the sta
k size (
.f. Suppl. Fig. 6upper left).

Supplementary Figure 7: Example of images before (top) and after (bottom) �ltering, simulatedfor 6Å resolution, 1Å pixel spa
ing, averages from (sub-) sets {1, 2, 4, 8, 16, 32, 64, 128}, �lteredwith mask size M = 7, path length P = 3, and βmax(1Å)= 0.57.We re
ognize that any �lter with low-pass properties will improve the overall SNRof the image, simply by virtue of its ability to up-weight the 
ontribution of the highSNR information at a low frequen
y. Therefore, more extreme low-pass �ltrationwill improve SNR, but the loss of details make the results unattra
tive. We haveo�ered a simple test of the preservation of high resolution features in Se
tion 3. Wehave also explored the trade-o� between low-pass �ltration and feature preservationin Supplementary Data 1 of (Rusu and Wriggers, 2012) for DPSV and the Gaussian�lter: The results demonstrate better feature preservation properties in DPSV at a
omparable level of low-pass �ltration. 12
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