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1. On the Treatment of Noise in Electron Microscopy and Tomography

As described in Section 1 of the main text, recorded cryo-EM and tomography
images show a very low SNR due to the low radiation dose that is necessary to
protect the biological specimen.

In the past few decades, the influence of environmental factors has been
carefully studied, and a consensus has emerged that specimens at lower
temperature are more robust to high-energy electrons in terms of specimen
degradation (ISMr_i.gh.Le.La.]J, |20_0_d) However, high-energy electrons also cause
changes in ice density and induce displacements of the specimen. Recent studies
have shown that for high resolution (4-10 A) cryo-EM reconstructions, there is little
benefit of a temperature below liquid nitrogen (IB_a.mm.e.s_&La.lJ, |2.0.l.d), and only the
lower resolution (20-60A) maps tend to benefit from a lower temperature.
Therefore, noisy micrographs will remain an important problem in the foreseeable
future.

Single-particle and tomographic reconstruction overcome these limitations by
processing vast numbers of individual particle projections. The particles are
identified on 2D micrographs, classified or aligned according to their rotation, and
averaged before (cryo-EM) or after 3D reconstruction (tomography) to reduce noise
and strengthen the true signal. Diverse processing techniques for digitization,
particle picking, and classification are well established (Em,ﬂ)

The limitations of 3D data mentioned above pose a formidable challenge to
denoising methods.  Unfortunately, linear filtering methods such as Gaussian
averages are not able to effectively reduce the excessive amount of noise while
preserving the detail of edges (IG.onzales_andJMmd.s], |20_0.ﬂ) One solution developed
by us and many others (see below) is to allow for non-linearities in the filtering.

We acknowledge that cryo-EM and tomography data are often collected and
processed in a way that preserves linearity. Ideally, one wishes for 3D maps to be
interpretable in terms of macromolecular mass density. The introduction of
non-linearities distorts this relation and, therefore, must be applied with caution.
The main text shows that non-linear filters can be advantageous, but we believe
that they should be limited to cases where linear filters are clearly insufficient.




Non-linear methods also require a tradeoff between noise reduction and
precision based on empirical criteria that are unrelated to the first principles of
image formation or 3D reconstruction. In fact, the most useful denoising methods
are those that adaptively change their performance based on the local conditions of
the specific data and use intricate noise models (IB.a.x.t.&r_e.La.Ll, |20_0_d) For example,
the widely used bilateral filtering method employs two competing low-pass filters
working together (L]_i.a.ng_et_a.].], |21)_03) One low-pass filter is applied to intensities
while the other is applied to distances. The filter parameters are set for all the
input data, causing a loss of robustness to different noise values. An extension of
this method is a discriminative bilateral filter in which an additional photometric
discriminant function is embedded (Pantelic et all, 2006).  The additional
discriminant distinguishes between edges and impulse noise. With properly chosen
parameters, high frequency noise pixels are smoothed while the object edge detail is
preserved.

An alternative approach builds on anisotropic nonlinear diffusion
(IEe.Lnaﬂd.ez_aﬂd_[J, ) by adapting the parameters of a Gaussian-based filter to
local features. These local features are determined by eigenanalysis of the averages
of the image tensors.

More recently, [Wei and Yin (IZOJ_d) introduced a locally optimized adaptive
non-local means method, which improves the approach originally developed
by Buades ef. all (2003). This method uses a local and global standard deviation of
the image data and a parameter-sensitive decision rule. The adjustment of these
parameters is a challenging task that requires knowledge and experience to achieve
the desired effect. The DPSV filter developed by us and described in the following
section is an alternative to these local variance- (or variability-) based filters.

2. The DPSV Filter Algorithm as Applied to Cryo-EM and Tomography
Data

A schematic overview of the algorithm is presented in Fig. 1 of the main text. To
assist users, we will provide here, for the first time, a complete review of the DPSV
theory as applied to cryo-EM and tomography maps.

2.1. Local Search Strategy and the Digital Path Approach

This section describes a local search strategy based on digital paths generated

by a self-avoiding walk (Havlin and Ben-Avraham, 1989). Two neighborhood models

can be defined in 2D data: a 4-neighborhood and a 8-neighborhood. In the case of
3D data, a 6-neighborhood and a 26-neighborhood can be defined (see W,
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2D 4-neighborhoods 8-neighborhoods

1 4 | 4 4 4 8 8 8 8

2 8 | 12 | 12 12 24| 56 56 56

3 8 132 | 36 | 36 |56| 264 368 368

4 64 | 96 | 96 1056 | 2016 2336
5 240 | 280 9888 13608
6 718 73632
3D 6-neighborhoods 26-neighborhoods

1 6| 6 6 6 |26 26 26 26

2 241 30 | 30 | 30 650 650 650

3 144 | 150 | 150 11928 | 15986 15986
4 720 | 726 350592 | 388994
5 3528 9051144

Supplementary Table 1: Cardinality of a set of paths for a 2D and 3D filtering scheme as a function
of the mask size M and path length P

M) The chosen model of the neighborhood affects the cardinality of the path
set (see Suppl. Table 1), the computation time, and the quality of the results. The
method is based on a local filtering approach where the local (2D or 3D) space
is limited by the dimension, M, of a (square or cubic) mask, and the reach and
curvature of the digital walk within the mask is set by its length, P. An increase
in these parameters typically results in a more precise exploration of local space.
Small mask sizes and a long paths (P > (M — 1)/2) cause paths to fold inside the
mask, which allows them to sample curved or bent features. Short walk lengths
P < (M —1)/2 are unrestricted by the mask and are better suited for straight edges
in the data. The mask size and path length should be adjusted to the structure
found in the data upon examination.

Fig. 1b in the main text shows a 2D example of a digital walk through one of
four nearest neighbors. The virtual particle (black circle) is initially at position p;,
then takes a step through the first neighbor p;x) .1 (gray circle), and then continues
through its second neighbor from the set: N3 = {]%(1),1,2,pz(1),2,2,pi(1),3,2} (white
circles). This walk will produce three different digital paths of length P = 2: p; —
Pi(1yy1 — Di(),,2 Where [ = 1...3 for the nearest neighbor p;u). . For all four
neighbors, there will be a total of 12 paths. During each step along the path, the
virtual particle is defined by its spatial position and the value of the intensity I(p;),
which is the intensity of a pixel normalized across the image.



2.2. Spatial Intensity of Digital Paths

The spatial intensity of a path is defined as a connection cost. This is the
maximum cost observed among pixels that are linked by one path. The individual
connection cost is defined as the absolute difference of (normalized) intensities
between the center pixel p; and a linked pixel p;,) %, divided by their Euclidean
distance. The connection cost of the [-th path passing through the n-th closest
neighbor is thus defined as

I(p) — 1 (mn),l,k)\) ’ (1)

Af Pi> Pi(n),1,15 Pi(n),1,25 - - - s Pi(n),l,p [ — MaxX -
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where the maximum is computed among k = 1,..., P pixels along the [-th path,
‘I (pi) — 1 (pz'(n),l,k)‘ is an absolute difference of intensities between linked pixels p; and
Pi(n),,x along the path, and dist(.) denotes the Euclidean distance.

2.8. Supervised Classification

Ideally, we wish to distinguish between paths that include noise and ones that do
not, and then to recover pixel values using only the paths that include the true signal.
Here, we assume that the digital paths that explore a smooth intensity landscape
correspond to a noise-free neighborhood. Paths with a relatively large connection
cost are assumed to hold high-frequency noise or cross the edge of an object. We
note that any object edge detail is preserved by those paths that follow the edge,
thus preventing a softening of edges.

At this point, we require a classification procedure to group the paths into two
classes, which should be robust under different background levels and should preserve
the paths with a relatively low connection cost. Followingm M), we adapt
Fisher’s discriminant analysis (FDA) using a maximized Fisher functional in Eqn.
below, which separates the set of paths into two classes that (ideally) correspond to
signal and noise. The paths are first sorted in descending order based on the value
of r, = AL} {.}. The Fisher discriminant (Smolkd, 200d) is then defined as
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where my,m9 and v1,v5 are the means and the variances, respectively, as calculated
for two classes:

F(k)= Su—1, (2)

k 1
i k =
;:17’ mo (k) —

S, 3)

1=k+1

ma (]{7) =

| =



k u

vi(k) = "(r; —mi)?, vo(k) = > (ri—m2)’ k=1,...,u—1. (4)

i=1 i=k+1

Here, u is the cardinality of the set of paths. The cardinality depends on mask
size M, path length P, and the neighborhood model as listed in Suppl. Table 1.
The discriminant analysis succeeds if one can find a £* that fulfills

k* = argmax F (k) . (5)
If FDA cannot divide the set of paths into two sets, the first 7y = min (1), k =
1,...,u—1 will be chosen for further processing (see Eqn. @ below), i.e. neighboring

pixels will always contribute to the filter response.

Fig. 1c in the main text provides an illustrative example of FDA for a set of
four paths. The input set of the four paths labeled 1, 2, 3, and 4 is sorted with
respect to the connection cost. After applying FDA, the labeled paths (3, 2, 4
remain for further analysis. For a more detailed description of FDA see

(M) and [Kenney et all (2001).

2.4. Similarity Function

The output intensity of the central pixel is calculated as the cost-weighted mean
of the surviving paths through the neighborhood (similarity function):

I(p;) = i ](Pi(n)7*,1)5<pi(n)) (6)

where I(pi(n)1) is the (normalized) intensity associated with the closest neighbor
from the focal pixel p; and size N is the number of neighbors in the neighborhood
model. The cumulative cost is defined as

E(pig)) = lz {K (5,/\5,1 {pi,pi(n)7z71,pi(n),l,2, o 7pi(1),l,P}>} : (7)
=1

where the kernel function K (3, A) has to fulfill the imposed conditions: smooth,
convex, and decreasing function on R,. After empirically exploring a number of
possible functions (data not shown) we chose the exponential function K(3,A) =

e PN as a kernel. Section 4 explores the sharpness parameter, 3.
As the mask (see diagram in Fig. 1la in the main text) is moved along pixels, 7, the
weighting process depends on the shared relations between the intensity associated



with the closest neighbor pj(,) .1 and the cumulative cost calculated in the mask
described by Z(pi(n))-

2.5. Usage and 3D Applications

In Sculptor version 2.1 (http://sculptor.biomachina.org)), the DPSV filter
can be applied to a map via the menus “Volume” — “DPSV Filter” (entering
parameters M, P, and [ in the pop-up dialog box). In Situs version 2.7
(http://situs.biomachina.org), a separate command-line utility wvolfltr was
implemented for DPSV (see online user guide).

The applications in the main text were selected as qualitative examples of the
use of DPSV for 3D filtering. To gain a quantitative understanding of the filter
performance in future work, one could compare raw and filtered versions of noisy cryo-
EM maps with known atomic resolution structures. There are several known cryo-EM
structures that were also solved by X-ray crystallography and would lend themselves
as test candidates for a quantitative (real-space or Fourier space) validation of filter
robustness.

3. Denoising Experimental 2D Micrographs

In addition to the 3D applications in the main text, we investigated here the effect
of filtration on experimental 2D micrographs. In the first 2D test (Suppl. Fig. 1), we
examined the difference images of data before and after filtration (Iﬁ, ). If
there are any shadows resembling the original shapes in the difference images, then
it is an indication that the filter greatly influences the structure hidden under noise.
On the other hand, if the difference image shows only random and uniform noise,
then the result indicates that the filtration preserves the features.

For this test, we chose a representative projection of the Keyhole Limpet
Hemocyanin (KKHL) protein (pixel size 2.22 A at the specimen scale), see m

). Suppl. Fig. 1A and D present selected micrographs of the side and top
view. Suppl. Fig. 1B and E show the results after filtering (with mask size M =7,
path length P = 3, 8-neighborhood model, and filter parameter 5 = 0.0005. The
FDA reduced the number of paths entering Eqn. Bl by an average of 12% (Suppl.
Fig. 1B) or 28 % (Suppl. Fig. 1E). As can be seen in the differences between images
Suppl. Fig. 1C and F, there are no noticeable shapes or structures in the noise.
This result suggests that DPSV behaves properly for these conditions.

4. Denoising Simulated 2D Image Stacks and Setting 3

This section demonstrates the effect of DPSV on class averages derived from the
simulated projection of image stacks. The results are dependent on the noise level


http://sculptor.biomachina.org
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Supplementary Figure 1: Filtering results of representative projections of the Keyhole Limpet
Hemocyanin protein obtained by cryo-EM (pixel size 2.22 A; top row = side view; bottom row =
top view): (A) Original data; (B) data after filtering; (C) difference between (A) and (B); (D)
original data; (E) data after filtering; (F) difference between (D) and (E).

and the resolution of the simulated projection. As shown in Suppl. Fig. 2, we created
three data sets derived from a single molecule using different resolutions and pixel
sizes. 'To facilitate the calculation of class averages, we collected data from separate
stacks of images. Each stack contained projections taken from the same angle subject
to different realizations of simulated noise.

For the validation (Suppl. Fig. 2), we chose the ribosomal subunit of Haloarcula
marismortui solved by Klein et all (2001) (PDB ID 1jj2). We simulated a density
map from atomic coordinates with different resolutions 6 A, 10A, 15A and voxel
spacings 1 A, 24, 34, respectively.

To simulate noise in the stacks of images (Suppl. Fig. 2), we did not simply
apply plain Gaussian white noise or impulse noise. Such simple noise models are
easy to eliminate due to the lack of spatial correlation. In micrographs obtained
experimentally from cryo-EM, the noise is intricate (IB.a.XLQ['_Qt_alJ, IZO_O.Q) and does




Supplementary Figure 2: (A) Atomic structure of ribosomal unit (PDB ID 1jj2). (B-D) Simulated
density maps with resolution 6 A, 10A, 15 A at voxel spacings 1A, 2A, 3 A respectively. (E-G)
Stacks of simulated 2D projections.

not follow a simple model. Therefore, we mimicked this complexity using a procedure
that generates stacks of 2D images that are subject to Gaussian white noise with
different distribution parameters for each stack. Next, we applied a Gaussian low-
pass filter to each 2D image, which caused the spatial dependence of noise (i.e.,



Supplementary Figure 3: Example of one realization of colored noise: (A) Pixel size 1A; (B)
projection to 2 A pixel size; (C) projection to 3 A pixel size. The length of the displayed bar is 30 A,
i.e. 30 pixels for 1A, 15 pixels for 2 A and 10 pixels for 3 A pixel size.

color noise) as is typical in experimental cryo-EM data that is filtered to a specific
resolution. To show that the behavior of the filter depends not only on the noise
level but also on the pixel size, we projected the noise onto a larger 2 A and 3 A pixel
spacing by local averaging of 2 x 2 and 3 x 3 pixels, respectively. Then, we added
it to the stack of 2D particle projections of the corresponding pixel spacing with a
proper SNR ratio in the range of 0.5 to 0.03.

Suppl. Fig. 3 provides an example of digitized noise with different pixel spacing.
The described procedure yields three stacks of 2D images with different pixel spacings
1A, 2A, 3A, and at different noise levels. Each stack of images presents the same
projection but with different realizations of noise (128 realizations in total). To
show how the algorithm influences the SNR for the class averages, we calculated
the averages of images from the (sub-) sets of {1,2,4,8,16,32,64, 128} images. A
simulated noise-free projection and a series of projections corrupted by simulated
noise are shown for each of the three cases in Suppl. Fig. 4. The results show that a
larger pixel size leads to an increase in observed SNR values.



Res. 6A voxel 1A

Res. 10A voxel 2A

Res. 15A voxel 3A

Supplementary Figure 4: Example of noise-free projections and different noise levels. The first
column shows simulated projections, and the following columns show projections corrupted with
simulated noise at increasing SNR values in white.
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Supplementary Figure 5: The influence of parameter, 3, on filter performance as judged by SNR
values after filtering. (A) Density map with resolution 6 A and voxel size 1 A; (B) density map with
resolution 10 A and voxel size 2 A; (C) density map with resolution 15 A and voxel size 3 A. Units
for axis (3 represent the exponent 7 in the form: g = 0.5@ . Values of Bmaz indicate the value of the
filter parameter that maximizes filter gain for each resolution.
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We have optimized the filter parameters based on the size of the particle and pixel
size. Local parameters such as mask size M and path length P are intuitive, but the
selection of the filtering kernel parameter 3 requires more experience. To investigate
the influence of 3 on values of SNR after filtering, we chose 3 € {0.5°,i =1,...12}
for all three data sets. Suppl. Fig. 5 presents the results. It is clear that the optimal
value of parameter § depends on the pixel spacings 1A, 2A, and 3A: The SNR is
maximized for Bnee(1A)= 0.57, Bz (24)= 0.5'°, and Bpae (3A)= 0.5, respectively.

Next, we investigated the performance of the DPSV filter under the realistic
condition of averaging the subsets of the image stack. We also compared the effect of
filtration on the averaging process to the effect of a standard Gaussian filter using a
sigma (standard deviation of the 1D Gaussian envelope) of two pixels. Suppl. Fig. 6
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Supplementary Figure 6: Descriptive statistics of filter performance for each of the investigated
image stacks. The box plots show the distribution parameters of DPSV and Gaussian filter gain (log
of difference between averages of image stack subsets {1,2,4,8,16,32, 64,128} after filtration and
the averages of subsets before filtration), calculated as a function of the SNR, values of individual
images in the stack. Each box shows the mean, maximum, minimum, lower quartile, and upper
quartile. Optimum Gaussian parameters were selected for the Gaussian control calculations.
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presents the results. Each box plot in Suppl. Fig. 6 shows the statistical distribution
of gain values observed in the averaged subsets (from {1,2,4,8, 16,32, 64, 128} stack
images) for a given stack image SNR level. The descriptive statistics show that the
filtering technique is stable in the tested SNR range of 0.03 to 0.5. We also note
that the DPSV filter does not behave linearly (the results depend on supervised
classification), as was observed in the Gaussian control calculations. However, the
obtained results vary within reasonable limits. In all of the tested cases, the filter
gain is at least 3dB higher compared to the Gaussian filter.

Suppl. Fig. 7 provides a comparison of class averages of filtered and unfiltered
images (with mask size M = 7, path length P = 3, 8-neighborhood, and 5 =
Bmaz(1A)). As can be clearly seen, beginning from a stack of 32 images, filtering and
averaging both greatly improve the image details and resulting SNR. The gain of
~9dB achieved by filtering is largely independent of the stack size (c.f. Suppl. Fig. 6
upper left).

original

filtered

Supplementary Figure 7: Example of images before (top) and after (bottom) filtering, simulated
for 6 A resolution, 1A pixel spacing, averages from (sub-) sets {1,2,4,8, 16,32, 64,128}, filtered
with mask size M = 7, path length P = 3, and S,,a.(1A)= 0.57.

We recognize that any filter with low-pass properties will improve the overall SNR
of the image, simply by virtue of its ability to up-weight the contribution of the high
SNR information at a low frequency. Therefore, more extreme low-pass filtration
will improve SNR, but the loss of details make the results unattractive. We have
offered a simple test of the preservation of high resolution features in Section 3. We
have also explored the trade-off between low-pass filtration and feature preservation
in Supplementary Data 1 of (IB.lLsu_a.nd_“Lr_iggﬂEL |20J.j) for DPSV and the Gaussian
filter: The results demonstrate better feature preservation properties in DPSV at a
comparable level of low-pass filtration.
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