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Abstract

An atomic scale interpretation facilitates the assignment of functional properties to 3D reconstructions of macromolecular assemblies
in electron microscopy (EM). Such a high-resolution interpretation is typically achieved by docking the known atomic structures of com-
ponents into the volumetric EM maps. Docking locations are often determined by maximizing the cross-correlation coefficient of the two
objects in a slow, exhaustive search. If time is of essence, such as in related visualization and image processing fields, the matching of data
is accelerated by incorporating feature points that form a compact description of 3D objects. The complexity reduction afforded by the
feature point representation enables a near-instantaneous matching. We show that such reduced matching can also deliver robust and
accurate results in the presence of noise or artifacts. We therefore propose a novel multi-resolution registration technique employing fea-
ture-based shape descriptions of the volumetric and structural data. The pattern-matching algorithm carries out a hierarchical alignment
of the point sets generated by vector quantization. The search-space complexity is reduced by an integrated tree-pruning technique,
which permits the detection of subunits in large macromolecular assemblies in real-time. The efficiency and accuracy of the novel
algorithm are validated on a standard test system of homo-oligomeric assemblies.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

By combining data from multiple biophysical sources at
multiple levels of detail one can take advantage of the com-
plementary strengths of various 3D structure determina-
tion methods in biology. This multi-resolution modeling
approach often yields new insights into the architecture
of biomolecular assemblies. Clearly, the model as a whole
is then greater than the sum of its biophysical parts, in a
spatial sense (considering the buildup of large functional
biological ‘machines’ from their ‘machine parts’), resolu-
tion sense (considering the interpretation of volume data
in terms of atomic structures), and functional sense
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(considering the possible conformational polymorphism
of underlying structures).

Over the last years multi-resolution modeling tools
(Wriggers and Chacón, 2001; Rossmann et al., 2005) have
gained in popularity among structural biologists and a
large number of software packages were developed. For
rigid-body fitting there are two classes of programs, inter-
active tools (Jones et al., 1991; Birmanns and Wriggers,
2003) that assist a manual fit ‘by eye’ of the user, and ‘al-
gorithmic’ tools like Situs (Wriggers et al., 1999; Chacón
and Wriggers, 2002), COAN (Volkmann and Hanein,
1999), DockEM (Roseman, 2000) and EMFit (Rossman,
2000) that use a quantitative scoring function to generate
the results automatically. Many of the routines are able
to obtain a fit even if the structure represents only a subunit
of a larger assembly. At a conceptual level, the available
algorithms typically aim to maximize the cross-correlation
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coefficient C by employing an exhaustive six-dimensional
search. Various definitions of C were suggested (Wriggers
and Chacón, 2001) and in some cases the exhaustive search
can be accelerated by Fourier-space methods.

Our goal is to combine the advantages of both classes of
algorithms. We wish to compute a quantitative measure of
the fit, but in real time such that the scoring function may
be used for interactive exploration of the model. Therefore
we are using here ideas from computer vision, pattern and
speech recognition where unsupervised clustering tech-
niques are often employed to characterize the data in a
compact or compressed state. Such reduced representations
can improve the robustness of manipulation and interpre-
tation methods and simplify data analysis. Clustering tech-
niques such as vector quantization (Gersho and Gray,
1992) (VQ), provide flexible, general purpose tools for the
feature-point determination. In electron microscopy such
reduced models were already successfully applied to rigid-
body docking (Wriggers et al., 1998, 1999), and in the mod-
eling of structural flexibility (Wriggers and Chacón, 2001).
Vector quantization was also utilized in normal mode
analysis of EM data (Tama et al., 2002; Ming et al.,
2002; Chacón et al., 2003) as basis for an elastic network
of mass elements.

A feature-based shape description recasts the multi-reso-
lution fitting problem into a point-cloud matching task. An
exhaustive search as described in Wriggers et al. (1999)
enables a matching of similar shapes for a small number
of feature points. Here we have extended the earlier
approach to cases where a smaller probe structure is to be
matched with a much larger oligomeric assembly. This leads
to a pattern recognition task where one has to find a similar
subset of points in a larger point cloud. The complexity of
such a scenario renders an exhaustive search unfeasible in
practical applications, but a tree-pruning algorithm keeps
the number of plausible combinations of matched points
Fig. 1. Overview over the proposed multi-resolution fitting method. After the at
into the program, the atomic structure is low-pass filtered to the known resolut
point sets for both objects are calculated. In the case of the probe molecule three
map. The match is completed in a next step and the result is refined in an opti
reasonably limited. Our novel anchor-point matching uses
a hierarchical search strategy that exploits the point density
properties of the VQ data sets. The accuracy of the new
algorithm enables the detection of subcomponents in large
assemblies, and its efficiency enables data-mining in collec-
tions of volumetric or atomic structures. Fig. 1 describes
the work flow of the novel docking approach. Fig. 2

In the following three sections we will describe the com-
putation of feature points, the anchor-point fitting (tree
pruning), and the refinement of roughly aligned structures.
Subsequently, we describe the results of our performance
tests and validations as well as implementation details.
2. Feature-based shape description

The registration proposed in this paper does not directly
correlate the probe and target structures, instead it depends
on the comparison of intermediate feature vectors. The
similarity of two sets of points wcalc

i (corresponding to high-
resolution data) and wem

j (corresponding to low-resolution
data) with i 2 {0, . . . ,N} and j 2 {0, . . . ,M} (N 6M) deter-
mines the optimal position and orientation of the probe mol-
ecule within the target map. The similarity of point sets and
its quantification are key challenges in related disciplines like
computer vision or pattern matching (we refer to (Alt and
Guibas, 1996) for a review). In this paper we rely on the
root-mean-square deviation (RMSD) as error metric. The
RMSD is defined as

RMSDðIÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

wcalc
i � wem

IðiÞ

��� ���� �2

vuut ;

where the index map I : i fi j identifies corresponding
feature points in the atomic data and the low-resolution
map. We also implemented an alternative metric, the
omic structure of the probe molecule and the target density map are loaded
ion of the 3D volume (Chacón and Wriggers, 2002). Subsequently, feature-
anchor points are selected and matched with the feature points of the target
onal post-processing step. Finally, the results are presented to the user.
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Hausdorff distance, which measures the deviation of the
worst outlier

hðwcalc;wemÞ ¼ max
i2f0;...;Ng

min
j2f0;...;Mg

wcalc
i � wem

j

��� ���:
The positions of the simulated markers are determined by
vector quantization, a clustering method that encodes com-
plex multi-dimensional data using a discrete set of features,
the so-called codebook. VQ is best known for its use as a
‘lossy’ data compression technique in speech and image
processing. We briefly highlight important features of the
neural gas algorithm, implementation details are given
elsewhere (Wriggers et al., 1998).
2.1. Vector quantization

Starting from a random initial configuration, the points
wcalc

i and wem
j are determined by the neural gas network in

an unsupervised training phase, in which a data point v is
randomly picked according to a probability density
function q(v). For volumetric data, q(v) is the (normalized)
voxel intensity. In case of atomic structures, these are
first low-pass filtered to the same resolution as the 3D
volume, consistent with Fig. 1, i.e. q(v) is proportional the
low-pass-filtered mass density.
Fig. 3. Volumetric map of the RecA hexamer: Cross-section of (a) volumetr

Fig. 2. Feature-based multi-resolution docking: Construction of the RecA he
(a) Monomeric structure with feature points; (b) vector quantized volumetric
The network nodes n are updated according to

Dwn ¼ �ðtÞe�jnðtÞ=kðtÞðv� wnÞ;
where �(t) and k(t) are iteration-dependent training para-
meters and jn(t) describes the closeness rank of node n. In
contrast to �ðtÞ ¼ �0ð�fin=�0Þt=tfin and kðtÞ ¼ k0ðkfin=k0Þt=tfin ,
the neighborhood ranking jn is comparatively expensive
to compute and stands for the number of nodes wk

with iv � wki < iv � wni. The user-defined initial and final
parameters k0 and kfin determine the plasticity of the net-
work, whereas �0 and �fin adjust the level of adaptation dur-
ing each iteration.

The stochastic neural gas algorithm is known to mini-
mize the distortion error (Martinetz et al., 1993), a measure
for the information loss due to the quantization. This guar-
antees that the calculated codebook is the best possible
reduced representation of the original object. Therefore,
the feature points generated by the neural gas algorithm
are stable under changes of resolution and describe the
overall shape and density distribution of the biological
object.

In (Wriggers and Birmanns, 2001) extensive tests on the
statistical stability of the feature points were performed.
Ten different test systems were filtered to various resolu-
tions and were quantized with codebooks of different
ic map and (b) interior voxels of Laplace-filtered map (absolute values).

licase (PDB entry 2REC, simulated volumetric map at 15 Å resolution).
data set; (c) docked substructure; (d) constructed assembly.
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cardinality. It was shown that systems with a low statistical
variability of the feature points typically achieve more
accurate docking results and that the variability increases
with decreasing resolution of the volumetric data. For sim-
ilar shaped target and probe molecules, stable features and
accurate docking results were observed already for small
codebooks of 3 6 N 6 9, demonstrating the promise of
this approach. Historically, docking by feature points of
similar-sized structures was the algorithmic approach
implemented in the early versions of the Situs package
(Wriggers et al., 1999).

Here we have expanded the classic approach to identify
subunits in larger assemblies. The new application area
demands to revisit certain aspects of the feature identifica-
tion process. Initial practical tests have revealed that the
stability of the feature points in the case of a multi-mole-
cule docking scenario is more problematic than in the sin-
gle-molecule docking case. To further stabilize the feature
points we introduce in the following an extended clustering
procedure using a Laplacian filter.

2.2. Laplace quantization

When the resolution of test systems is lowered, the
accuracy of algorithmic docking often breaks down early,
depending on the shape of the matched biomolecular
objects (Wriggers and Chacón, 2001). This is due to the loss
of interior (or secondary structure) information at a resolu-
tion below 10 Å. Among several attempts to push the limits
of automatic docking programs, the application of a Lapla-
cian edge enhancement filter has proven to be very success-
ful (Chacón and Wriggers, 2002). The Laplacian essentially
boosts the contrast of volumetric maps, and thereby
enhances the contour and also the interior detail.

The success of the Laplace-filter for the correlation-based
docking calls for an adaptation to our reduced feature-point
based matching. To conserve the theoretical properties of
the original VQ algorithm described above, we impose the
Laplacian by a preprocessing procedure.

As described in the previous section, our stochastic VQ
approach is trained by randomly selected voxels according
to a probability q(v). Since the Laplace-filtered map fea-
tures positive and negative intensities, the mapping of the
intensities to a positive probability is no longer obvious.

The sign of the intensity values introduces a segmenta-
tion of features, negative values typically correspond to
the ‘‘interior’’ of the density, whereas positive values corre-
spond to the ‘‘contour’’. By separating the interior and the
contour segments, one obtains two maps that can be clus-
tered independently. The result are two sets of points, w

emint
j

and wemcont
j for the target EM map, and two sets w

calcint
i and

wcalccont
i for the probe molecule. A docking based on these

four point sets is challenging and requires the correct
weighting and interpretation of interior and contour
matching. However, practical tests have revealed that the
contour corresponds to a relatively thin shell that renders
an independent clustering irrelevant. We have shown in
(Passon et al., 2005) that the matching accuracy depends
almost exclusively on the interior marker points, because
the position of points in a contour is less robust if the con-
tour becomes buried in the assembly. Therefore, we have
used in this paper only the more robust interior map infor-
mation. In the following Laplace quantization refers to
w

calcint
i and w

emint
j , and we drop the ‘int’ suffix for simplicity.

Fig. 3 shows cross-sections of a volumetric map before
and after Laplacian filtering as defined above, i.e. the right
image shows only ‘interior’ voxels. The rendering high-
lights the effect of the convolution with the Laplacian ker-
nel and the effect of ignoring the contour. One can identify
well-segmented densities that roughly correspond to the
monomers. These segmented features are more suitable
for our pattern recognition approach than the unfiltered
density on the left.

The overall robustness of feature points in the assem-
bly and the effect of the Laplacian filtering are shown in
Fig. 5. The plot shows how feature points drift from
the monomer positions when they become embedded into
an assembly, depending on the resolution of the matching
setup. Both the RMSD and the Hausdorff distance were
computed. The measures increase with lower resolution,
indicating a resolution-dependent drift of the feature
points. However, the Laplace quantization outperforms
the standard VQ significantly. Laplace quantization stabi-
lizes the point RMSD and the deviation of the worst out-
lier at about 20%, and 30% of the nominal resolution,
respectively.

3. Anchor-point fitting

By quantizing both data sets—the probe molecule and
the volume from electron microscopy—one obtains two
codebooks, wcalc

i and wem
j with i 2 {0, . . . ,N} and j 2

{0, . . . ,M}. Performing a multi-resolution docking in this
context means to find an optimal index map I : i fi j and
a transformation that minimizes the RMSD.

For a given I the optimal rigid-body transformation,
defined by the rotation R(I) and the translation t(I), is
determined by a least-squares fit (Kearsley, 1989; Kabsch,
1976, 1978. However, there are M !

ðM�NÞ! possible index maps
I. Even for the small point clouds of interest, the size of
the search-space becomes prohibitively large.

In principle three well chosen point pairs would suffice
to determine the six rigid-body degrees of freedom. Based
on this observation we propose an iterative search proce-
dure in which one first only matches three appropriately
chosen point pairs. Although the resulting transformation
is not necessarily optimal for the entire point set, it forms
a basis for a subsequent match completion and refinement
routine. The initial three points are often referred to as
‘‘anchor-points’’ and are a common theme in motif search
and structure alignment algorithms. The algorithm pro-
posed here is similar for example to Geometric Hashing
(Nussinov and Wolfson, 1991) which is also based on the
idea of anchor points. We will exploit the fact that the
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feature point sets are not as densely packed as atomic data.
This allows us to omit the complex clustering step of the
Geometric Hashing algorithm and to directly refine the
matching in a very efficient, iterative manner.

3.1. Anchor-point selection

The task at hand is to select three suitable features in the
probe molecule as anchor points. We have already seen in
Fig. 5 that there are small deviations between the points
corresponding to probe and target. To minimize the effect
of such deviations on the matching accuracy, the anchors
should be sufficiently separated. Here we chose as first
anchor the point which exhibits the largest radial distance
from the center of mass of the probe molecule, as second
anchor the one which exhibits the largest distance from
the first one and as third the one which exhibits the largest
distance from the first two.

As an alternative anchor point selection scheme one may
also pick feature points that exhibit the smallest statistical
VQ variability. This variability arises due to the stochastic
nature of the neural gas algorithm, and gives an indication
of the convergence and robustness of an individual feature
point (Wriggers et al., 1999). Typically, a small number of
VQ calculations (here: eight) are repeated with a different
seed of the random number generator. One may then pick
the three points with the smallest mean-square variation as
anchors.

In principle, any three points in wcalc can serve as anchor
points in the matching procedure. In the following we have
implemented and considered results from the above two
anchor point selection schemes. The run time of the match-
ing (on order of a second) is sufficiently short to allow the
implementation of multiple strategies. This extensible
approach allows us to add selection schemes in the future
that reflect empirical observations about the stability and
suitability of feature points.

To reduce the complexity of the point matching prob-
lem, the selected anchors wcalc

A ;wcalc
B ;wcalc

C of the probe struc-
ture are only tested with points of the target map that are
part of a similar shaped triangle. Therefore the target point
set is pre-filtered in a two-step procedure:

• First we screen out all features i, j with kwem
i � wem

j k <
kwcalc

A � wcalc
B k þ d, where d is an edge length tolerance

parameter, and i.i denotes the Euclidean distance.
• Subsequently, within this set we screen out a subset for

which a k exists such that kwem
i � wem

k k < kwcalc
A �

wcalc
C k þ d and kwem

k � wem
j k < kwcalc

C � wcalc
B k þ d are

satisfied.

The resulting set of triangles forms the search space for
the next stage of the algorithm. The choice of tolerance
parameter d depends on the robustness and density of the
feature points, practical values are 5–15 Å.

Although it was not important here, it is straightforward
to implement an optimization of the triangle matching
routine using advanced geometric data structures (Lange-
tepe and Zachmann, 2006). This would enable a compari-
son of very large point clouds.

3.2. Match completion

The initial rigid body transformation is not necessarily
optimal for the entire object as it only relies on three point
pairs instead of the entire feature sets. However, the initial
transformation can be improved by augmenting the index
map I with more point pairs in addition to the anchor
points. In the match completion stage of the algorithm,
the features of the transformed probe point set are there-
fore matched with their neighbors in the target map. Each
matched point pair is investigated in a recursive manner,
forming a search tree that is visited using a depth first
strategy.

The match completion algorithm starts with the initial
index map I0 (and corresponding least-squares fit) of the
anchor points, providing a transformation R(I0), t(I0). Sub-
sequently, for each unmatched point wcalc

k the nearest
fwem

l jkwem
l � Rwcalc

k � tk < cg are considered as possible
matches, where c is an adjacency tolerance that limits the
radius of the zone that is searched for unmatched target
points wem

l . By adding the corresponding point pairs (wem
l ,

wcalc
k ) one at a time to I0, a group of new possible index

matches I 00; I
0
1; . . . ; I 0K is generated, where K is the total num-

ber of pairs satisfying the adjacency criterion. Each index
map generates a new transformation and so forth. Since
all the potential matchings I 0k are investigated, the search
tree grows K new branches. The search is terminated for
K = 0 (tree pruning) or when all N point pairs are matched.

The size of the search tree depends on the number of
potential matching partners K, which in turn depend on
the density of the point distribution and on the tolerance
c. As with d, the tolerance c is typically set to 5–15 Å in prac-
tical applications. This results in only a few K = 1 or K = 2
matching partners. We limit the maximum number of inves-
tigated neighbors to a user definable cap (here: K = 5) to
ensure a convergence of the algorithm even in worst-case
scenarios. The scheme in Fig. 4 provides an overview of
the initial anchor match and the match completion phase.

The order in which the unmatched points wcalc
k are ana-

lyzed becomes a factor if noise is present in the experimen-
tal data. Initially the number of matched point pairs is
small, so if an outlier is matched early, the probe molecule
will be significantly displaced from the ideal docking posi-
tion and the rest of the feature points will be missed or mis-
matched. To avoid this, we sort the unmatched points wcalc

k

by the distance to the nearest wem
l .

3.3. Complexity and efficiency

The complexity of the first part of the algorithm—the
anchor point matching—is bound by the potential number
of feature points with compatible distances to the anchor
points. Theoretically, the maximal number of potential



Fig. 4. Schematic rendering of the hierarchical matching algorithm. In the initial anchor matching phase three point pairs are matched and the resulting
transformation is applied to the entire probe molecule. In the match completion phase, this initial match is completed by adding unmatched target points
in the vicinity of already matched probe points. With each point pair added, the transformation is refined, i.e. a new least-squares fit is performed. Multiple
potential matching partners K > 1 are investigated independently, leading to a search tree.
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Fig. 5. Robustness of feature points in a multi-component fitting scenario.
A catalase tetramer (PDB entry 7CAT) and one of its monomers were low-
pass filtered (Chacón and Wriggers, 2002) and vector quantized to create
an idealized matching setup. The RMSD and Hausdorff distance between
the two point clouds were computed (see text) as a function of resolution,
to provide a measure of the invariance of the feature points under
polymerization. The results for the standard VQ algorithm and the
proposed Laplacian quantization (LQ) are shown.

Table 1
Efficiency of the feature point matching algorithm for various cardinality
(number of points) N and M

System N M d (Å) c (Å) Run time (s)

RecA 6 36 15 12 0.32
RecA 10 60 12 9 1.69
RecA 18 108 8 5 3.92
GroEL 6 84 15 12 2.96
GroEL 10 140 12 9 8.52
GroEL 18 252 8 5 26.41

The input data were a RecA hexamer (Yu and Egelman, 1997) low-pass
filtered to 15 Å resolution, and the GroEL 6 Å 3 D reconstruction avail-
able at the EBI EM data base. The atomic structures of the monomers
were obtained from the PDB entries 2REC and 1OEL. The run times were
measured on an Intel Pentium 4, 3.0 GHz Linux PC. Overall, the high
performance of the proposed algorithm is due to the branch limit that
prevents the combinatorial explosion of a full search.
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matching triangles in the target point set is
N
3

� �
¼ OðN 3Þ,

in the unrealistic case that all edges have the same length. In
practice the features do not have such homogeneous dis-
tances and one typically experiences a complexity of around
O(N2). The second part of the algorithm is bound by the
number of potential matching partners K in the vicinity of
an unmatched probe feature. As discussed above this
branching number K is commonly very small. An upper
bound of the complexity is O(KN�3) since every potential
matching partner has to be considered in a recursive man-
ner, but some of the branches are pruned. Table 1 shows
some actual docking times as a function of cardinality (N,
M) on a standard PC-Linux computer. The exact run times
depend also on the choice of tolerances d and c, as well as
the feature robustness, resolution and number of anchor
point matches, and are therefore system dependent.

We tested the scalability of the algorithm with respect to
the size of the target map. Actin is an ideal test-system as it
allows the construction of polymeric filaments (F-actin) of
variable length which can be utilized for efficiency valida-
tion with a constant point density (Fig. 6). Oligomeric
F-actin structures of variable length were constructed starting
from the atomic structure of a single G-actin monomer
(Wriggers and Schulten, 1999) following the helical
symmetry of the filament (Lorenz et al., 1993). Fig. 6 shows
the observed run time of the algorithm as a function of
monomeric subunits. The moderate increase in run time
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Fig. 6. Run-time of the algorithm as function of the size of the target
system. A single actin monomer structure (Wriggers and Schulten, 1999)
was docked into simulated EM maps created from oligomers. The insert
shows the arrangement of multi-colored monomers in the assembly.
Oligomers of variable length (1–50 monomers) were created following the
helical symmetry of the actin filament Lorenz et al., 1993. Each monomer
was represented by N = 5 feature points, and the simulated EM maps by
M = 5 to M = 250 points dependent on the number of monomers. The
parameters d = 15 Å and c = 12 Å were used for the matching algorithm.
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demonstrates that the algorithm scales well towards large
assemblies (N > M), enabling fast matching in real
compute time.

3.4. Outlier suppression

The practical tests with EM maps reveal that even with
Laplace quantization there are certain shifts in the position
of feature points that increase with lower resolution
(Fig. 5). These shifts may be due to a lack of interior detail
in low-resolution maps, or due to the effect of polymeriza-
tion on the density and on the corresponding point distri-
bution. To further reduce the effect of these discrepancies
we implemented an optional approximative matching with
outlier suppression that is described in the following.

We define a wildcard index map I(j) = � 1 that enables
the algorithm to skip outliers in the special case K = 0. The
optimization criterion is then defined as

RMSDðIÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

dist2ðiÞ

vuut ; where

distðiÞ ¼ ðRwcalc
i þ tÞ � wem

IðiÞ

��� ��� if IðiÞ > 0

0 else

(

Note that we have defined an alternative way of handling
the case K = 0. With outlier suppression, dead branches
are no longer automatically pruned, instead we are free
to set the adjacency threshold c to a smaller allowed point
deviation which results in more dead branches. In practice,
the number of these wildcards should be limited since a too
liberal use may lead to false positives if significant parts of
the probe molecule are no longer represented in the match-
ing. Practical tests suggest that not more than 0.1 N wild-
cards should be introduced.

Also we note that the above RMSD criterion tends to
favor wildcard matches as they do not contribute to the
RMSD. To encourage complete point assignments, wild-
card matches should be penalized. If N 0 is the number of
matches i with I(i) > 0, the point cloud similarity measure
we actually implemented is given by:

RMSDðIÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
ðN � N 0Þp2

wc þ
Xn

i¼1

dist2ðiÞ
 !vuut ;

where pwc is the wildcard penalty distance. In practice pwc

should be of the order of the feature point separation to en-
sure proper weighting relative to the standard deviations.
The outlier suppression scheme is an approximative point
matching technique since it considers only N 0 < N points.
We refer to Alt and Guibas (1996) for a general review
of approximative matching algorithms.

4. Post-matching refinement

The robustness and short run time of the proposed fea-
ture-point docking approach is in part based on the com-
pactness of the description of the biological objects.
Instead of considering all the voxel intensity values, here
only a small number of feature points is used to register
the probe molecule in the polymeric assembly. The down-
side of such a compact description is that a small error is
unavoidable in practice. To further reduce the fitting error,
we explored two additional refinement techniques.

Most algorithmic correlation-based fitting methods rely
on a grid search with translational and angular steps and
therefore typically benefit from a real-space refinement of
the found solution, leading to a local optimization of a
found fit. In (Chacón and Wriggers, 2002) an off-lattice
refinement step was developed, based on the standard
cross-correlation coefficient

CðR; tÞ ¼
Z

qemðvÞqcalcðv;R; tÞd3v: ð1Þ

This refinement step has been implemented as a standalone
tool colacor in version 2.2 of the Situs docking package
(http://situs.biomachina.org). However, the full computa-
tion of the cross-correlation does not benefit from the re-
duced quantization of the data we propose in this paper,
and requires significant extra time.

In (Birmanns and Wriggers, 2003) we proposed an alter-
native, more efficient, cross-correlation algorithm for the
high-force update rates required in interactive modeling
applications. This algorithm is based on a vector quantiza-
tion of the probe molecule wcalc

i which leads to the follow-
ing approximation:

http://situs.biomachina.org
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Fig. 7. Docking precision tested on four systems: thiolase, PDB entry
1AFW; catalase, PDB entry 7CAT; oxidoreductase, PDB entry 1NIC and
helicase, PDB entry 2REC. The accuracy of the fitting was measured as
the RMSD of the docked monomer to the known l oligomeric structure
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qcalcðv;R; tÞ �
XN

i¼1

dðv� wcalc
i ðR; tÞÞ

After introducing the approximation into Eq. (1) the
coefficient then assumes the following reduced form

CðR; tÞ ¼
XN

i¼1

qemðwcalc
i ðR; tÞÞ ð2Þ

We have shown in (Birmanns and Wriggers, 2003) that this
reduced coefficient can be evaluated on the microsecond
time scale on a standard PC. In addition, we have shown
that the precision of the fast correlation measure in an
algorithmic docking application is nearly identical to the
full correlation coefficient if a sufficient number of feature
points (about 1% of the number of atoms) is used. We have
therefore combined Eq. (2) with Powell’s optimization
method (Press et al., 1992). The resulting local refinement
procedure typically converges after less than 50 Powell iter-
ations, leading to a run-time cost of less than one second
on a typical PC.
that was used to generate the simulated EM maps (see text). The docking
accuracy of the novel fitting algorithm was recorded for both VQ
(continuous lines) and Laplace quantization (dotted lines). The synthetic
maps were generated with the following voxel sizes: 4 Å for resolution
values r > 12 Å, 3 Åfor resolutions 8 < r 6 12 Å and 2 Å for r 6 8 Å. The
anchor matching algorithm was parameterized with d = 15 Å, c = 12 Å,
no wildcard matches were allowed in this example.
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Fig. 8. Docking precision as a function of codebook-size: RecA helicase
monomer and hexamer were represented by N = 6, 10, 18 and M = 36, 60,
108 feature points, respectively. The docking precision was measured as in
Fig. 7. For N = 6 no wildcards were used, whereas in cases N = 10 and
N = 18, 3 and 4 wildcards, respectively, were allowed (pwc = 1.0 Å). The
tolerances d = 15 Å, 12 Å, 10 Å and c = 12 Å, 7 Å, 5 Å for N = 6, 10, 18
were used.
5. Results

The performance of the described multi-resolution
docking method was tested on our standard set of simulat-
ed oligomeric density maps (Chacón and Wriggers, 2002),
employing a low-pass filter to generate simulated EM maps
from known atomic structures at different levels of resolu-
tion. In a series of tests a single monomer of each system
was docked into a low-resolution map of the corresponding
oligomer. The docking was validated with four different
homo-oligomeric test systems. A dimer (1AFW Mathieu
et al., 1997), a tetramer (7CAT Fita and Rossmann,
1985), a trimer (1NIC Adman et al., 1995) and a hexamer
(2REC Yu and Egelman, 1997) each exhibit different shape
and size properties.

Fig. 7 presents the docking precision, i.e. the RMSD
between the docked subunit and the known oligomeric
structure, as a function of the resolution. The feature point
cardinality was set in this example to N = 6 and M = SN,
with S being the number of symmetry-related subunits in
the particular system. The size N of the point set represent-
ing the monomer is not critical (see below). For hetero-
oligomeric systems the numbers N and M should be
adjusted based on the relative volumes of probe molecule
and target map, i.e. the multiplier S may be non-integer
in such cases.

The docking precision results are very similar to the
published validation (Chacón and Wriggers, 2002) of the
colores docking tool that maximizes Eq. (1) in an exhaus-
tive search. In a number of cases (for example 1NIC and
1AFW) the new algorithm is able to push the resolution
limit of acceptable docking accuracy below that of the con-
ventional maximization of C. Although at lower resolu-
tions typically a higher RMSD is observed compared to
conventional methods (Chacón and Wriggers, 2002), a cat-
astrophic mismatch is often seen at a later stage (e.g. the
docking position for RecA helicase can be identified for
resolutions as low as 22 Å even without the Laplacian
filter). The results are in agreement with earlier findings
that suggest that the use of fiducials combined with pattern



S. Birmanns, W. Wriggers / Journal of Structural Biology 157 (2007) 271–280 279
recognition can give meaningful results even in cases where
the conventional cross-correlation breaks down due to lack
of interior detail in the matched objects (Wriggers et al.,
1999).

The complexity of the fitting algorithm is dependent the
number of feature points N and M. We have therefore
investigated whether the docking accuracy is sensitive to
the number of feature points employed. In Fig. 8 the dock-
ing precision is shown for three codebook sizes: N = 6, 10,
18 and M = 36, 60, 108, respectively. For all of these we
employed both standard VQ and the Laplace quantization.
The test shows that the best overall results were achieved
with (N = 10, M = 60) with outlier suppression, but
additional points did not significantly improve the
performance.

The current algorithm was designed for identifying com-
ponents of large assemblies. It is possible to improve both
efficiency and accuracy of the docking if the components
can be isolated directly in the EM density. Two possible
approaches are segmentation (Yu and Bajaj, 2005) and suc-
cessive subtraction (discrepancy mapping) of known struc-
tures (Volkmann et al., 2000). We conducted a test
separating a single monomer of the thiolase dimer
(1AFW), then docking it into a synthetic map of variable
resolution of the subunit (N = M = 6). The algorithm finds
an accurate docking position up to 21Å, whereas docking
the monomer into a complete map of the dimer already
produces a mismatch at 12 Å (as shown in the previous
test, see Fig. 7.) However, in practice it will be difficult to
isolate components of larger assemblies without error in
the artificial segmentation boundaries. Therefore, the gen-
eral case (N 6M) was considered here to allow for situa-
tions where not all EM density is accounted for.

6. Conclusions

The proposed point-set matching technique offers an
efficient solution to the multi-resolution docking problem.
Because of the speed and accuracy of the algorithm, sub-
components can be placed reliably into large macromolec-
ular assemblies. The efficiency of the algorithm also
enables a more interactive workflow, making it feasible
to embed the method into a visualization tool in our quest
to provide more user-friendly software to the scientific
community.

Compared to conventional correlation-based docking
programs our approach is not only more time-efficient,
but also has other fundamental advantages. Since feature
points describe the shape of the biological objects at a
higher, more abstract level, they offer a very stringent
criterion for matching, avoiding shifts and mismatches
often observed with density-based criteria. The method
also tends to yield fewer false positives, leading to a more
compact and meaningful ranking of results. Although indi-
vidual point deviations may reach values of 20–30% of the
nominal resolution, the overall docking precision that can
be achieved by the point cloud matching is much higher,
10% of the nominal resolution, which is on a par with other
algorithmic approaches (Wriggers and Chacón, 2001).

On the other hand the method also has some intrinsic
limitations. Firstly, the detection of smaller entities like sec-
ondary structure elements in ‘‘swiss cheese’’ like volumetric
maps would require to cluster the objects at a much finer
level of detail. This would lead to a significant increase in
the number of feature points and in the complexity of the
matching algorithm. This could be addressed in the future
by an adaptive clustering technique that enables a hierar-
chical matching. However, in its present form the intended
application is limited to intermediate resolution docking
scenarios in the absence of secondary structure detail. Sec-
ondly, the new implementation introduces a number of
parameters that need to be adjusted by the user.

This work was designed as a feasibility study so we have
not fully explored the parameter space. However, we are
able to provide the following brief ‘‘road map’’ to users
of the method.

• The results are not sensitive to the cardinality (N, M).
An upper bound for the number M of features describ-
ing the volumetric data can be found by dividing the vol-
ume of the target map by the volume of a resolution
element. The number N for the probe molecule should
be proportionally reduced relative to M based on the
relative volume differences between target and probe.

• The speed of the algorithm depends on the tolerances c
and d which should both be of the order of the nearest-
neighbor separation of feature points. If the two point-
clouds are similar, the variables are not critical for the
docking precision. The expected run time of the reduced
search increases significantly with larger tolerances.

• If there are discrepancies between matched data sets
and/or their point clouds, one should use outlier sup-
pression by choosing a small number of wild cards (no
more than 0.1 N) and a distance penalty pwc smaller or
equal to the nearest-neighbor separation of feature
points. One may also set c to a lower value to further
enforce that no outliers corrupt the matching.

• Any suboptimal results will still be refined in the subse-
quent fast Powell optimization that finds the nearest
maximum of the (reduced) cross-correlation coefficient.
This subsequent refinement further limits the effect of
parameter choices on the final docking precision.

The described fitting method was implemented in our
novel modeling program Sculptor (executables available
at http://sculptor.biomachina.org; Birmanns and Wriggers,
to be published). Because of the efficient nature of the
matching algorithm, the program allows a higher level of
interactivity compared to earlier ‘‘black-box’’-style fitting
tools. The program supports the clustering and filtering
techniques described in this paper. After docking, the user
can immediately explore the found solutions within an
intuitive graphical user interface. The feature-point match-
ings are ranked and listed in a dialog box, where one can

http://sculptor.biomachina.org
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select and organize solutions for further rendering. The
final solutions are visualized in standard molecular graph-
ics modes, or exported to a high-quality raytracing
program.
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