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Principal Component Analysis and Long Time Protein Dynamics
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It has been suggested that principal component analysis can identify slow modes in proteins and, thereby,
facilitate the study of long time dynamics. However, sampling errors due to finite simulation times preclude
the identification of slow modes that can be used for this purpose. This is demonstrated numerically with the
aid of simulations of the protein G-actin and analytically with the aid of a model which is exactly recoverable
by principal component analysis. Although principal component analysis usually demonstrates that a set of
a small number of modes captures the majority of the fluctuations, the set depends on the particular sampling
time window and its width.

. Introduction modes, for which,//t,, is very small, are contaminated and
Molecular dynamics has become an important tool to study alsq beco'me unreliable. The diffipulties due to the sh(_)rtness
proteins2 One of the major obstacles limiting its usefulness of simulation have been clearly p0|_nted out by Hodel €
' the context of free energy calculations and by Clarage & al.

is the shortness of achievable simulation times. These tlmes,and Faure et & in the context of incoherent light scattering
on the order of a few nanoseconds, are much shorter than the

time scales of many important protein processes, e.g., fofding. experiments. In a comparison of light-scattering patterns derived

Many attempts have been made (e.g., refs 3, 4) to extend thefrom PCA and normal mode analysis, the latter method gives
viany P € (€., rels o, better agreement with experiméfit.Our aim here is to shed
time scale of molecular dynamics simulations, but as yet, no

; . light on the difficulties of PCA to extract essential modes from
satisfactory solution has been found.

) a MD simulation, which can be employed for long time
One possible approach to reduce the number of degrees Ofdescriptions of proteins.

freedom is principal component analysis (PCA), which is also 4y can we reconcile the difficulties of PCA observed in
known as the KarhuneriLoeve expansiohin time series s haner and apparent successes in analyzing protein dynamics
analysis. A detailed |mplementat|on o_f the method in the current reported by other authord?15 If a particular large-scale motion
context can be found in ref 6, and its use has been recentlyyrigeg in a short simulation, PCA surely captures the feature.
reviewed in ref 7. This method was introduced to the protein y,yever, such features may be detectable just as well without
research community underlt?e name “quasi-harmonic analysis”pc e g., through atomic root mean square (rms) fluctuations.
by Karplus and co-workefs' to facilitate the computation of  » hontrivial use of PCA has been successful in describing the
configurational entropies. The method has also been employedc ot motions relevant to NMR spectroscdfy.As will be
with the hope of describing molecular dynamics trajectories in giscissed later, however, this success does not justify the
terms of a small number of variables, sometimes called essent'alapplication of PCA to describe long time dynamics of proteins
—~15 . . . . e - S

degrees of freedortt In section Il we will outline PCA and its difficulties in

It appears natural to use the PCA method to reduce the phasgonjunction with long time dynamics. In section Ill, the
space of proteins for long time molecular dynamics. For this gpplication of the PCA method is illustrated through simulations
purpose one may determine a small number of important modesgf G-actin. In section IV we explain analytically why PCA

by PCA and project the equations of motion on the resulting does not yield reliable slow modes. Section V provides
low-dimensional vector space. The idea has been successfullyconcluding remarks.

applied to reduce the dynamics of hydrodynamic syst&rrs.
this case a partial differential equation is reduced to a set of a||. Principal Component Analysis and Its Difficulty
small number of ordinary differential equations. This success

strengthens one’s expectation that PCA could serve as a useful Letq(t) = (ql(.t)'qZ(t)""%',“(t))' be the coordlngtes ® atoms .
method for protein dynamics reduction. In a protein at timd, where' denotes transposition. The basic

The purpose of this paper is to demonstrate that PCA is not idea of PCA is to seek the least-squares approximant for the

suitable for long time protein dynamics reduction with the position vector in the form

computational power available at present or in the foreseeable M

future. The PCA method works superbly in hydrodynamics, q(t) = Zau(t)ﬁa (2.1)
because in this case the computationally obtained correlation =

function is very accurate due to a sufficiently long sampling )
time. In contrast, PCA for proteins is problematic, since the WhereM is the number of relevant degrees of freedom and the

longest relaxation time for many proteins is on the order of ~ Vectorsy, are orthonormal basis vectors, which are determined
microseconds or longéf. The error in the correlation matrix ~ Dby the eigenvalue problem

for a mod_e of _time scale is on the orde_ 7/t Wheretiy is ATy = Ko7 2.2)

the sampling time. Due to these errors in slow modes, the fast are ¢

Here,K+ is the correlation matrix determined by the molecular
® Abstract published ilAdvance ACS Abstract&ebruary 1, 1996. dynamics trajectoryj(t):
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Ky =G0 — GOL)EO - GOL)Y,  (2.3)

where O[, denotes the time average oversOt < ti. The
eigenvaluel, is the time average dbg(t)|%

The hope is to obtain a set of equations of motion for a small
number of modeg,(t) corresponding to the largest eigenvalues
Aq Which provide a reduced representation of the long time
dynamics of a protein. If one knew the correct basis vectors
7« then one could obtain the equations with the aid of the
(nonlinear) Galerkif? method, as done in fluid dynamié%.
However, the shortness of the sampling time prevents the
identification of suitable basis vectorg,. The longest time
scaler of a protein scales as~ n#, wheren is the number of
amino acid residues. The exponent is of order unity. It cannot
be shorter than 2/3, i.e., the exponent which applies to diffusive
relaxation of modes in a solid body. Probably the upper bound
is given by a single-chain polymer in a good solvent withk:
1.672% which may be interpreted as the fluctuation time scale
of the completely unfolded protein conformation. According
to NMR studies, the longest relaxation time cannot be smaller
than 1us for a protein of the siza ~ 30017 Thus, for many
proteins the necessary sampling time must be extremely long.
The longest simulation time realistically accessible today, even

for a modest sized protein as G-actin, is a few nanoseconds.

Thus, slow motions cannot be properly identified.

Even if we could manage to obtain the data for at least one
relaxation time of the slowest mode, the existence of fluctuations
prohibits an accurate determination of the correlations between
the slow modes. Consequently, one cannot obtain reliable
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collective coordinates for them and, thus, one cannot use PCAFigure 1. Projection of the trajectory along the largest principal

to reduce protein dynamics without spoiling the most important
slow motion.

component and its autocorrelation function.

and equilibrated at 300 K for 5 ps. Finally, free molecular

There remains some hope that the PCA method, though notdynamics was performed for 490 ps.

capable of extracting long time scale modes, may capture
properly the modes with relaxation times well within the
simulation time window. We will show below that this is not
the case, either.

Ill. Principal Component Analysis of G-Actin

To illustrate the difficulties one encounters in the application
of PCA to protein dynamics, we simulate the protein G-actin
(globular actin). G-actin is the monomeric form of the
polymeric protein system F-actin (filamentous actin), which is
an important component of the cell cytoskeleton, where it is
involved in cellular motility?#~26 F-actin also forms the major
component of the thin filament of muscle tisstié® The crystal

The trajectories have been analyzed after 20 ps of relaxation
in the form of two consecutive periods of 235 ps. Coordinates
were sampled at a 0.1 ps interval. The simulation results will
be described elsewhete.

We sampled in our principal component analysis only the
positions of the 375 Ecarbons resulting inf8= 1275 degrees
of freedom. Amadei et df3*demonstrated that the character
of the fluctuation spectrum and even the identity of the larger
amplitude modes do not change significantly by a reduction to
C, atoms.

We subtracted, as done customarily in PCA, the translational
and rotational modes of the whole protein. These modes are
conserved for the whole system and are expected to have very
long relaxation times for the reduced set of variables we

structure of G-actin has been resolved by Kabsch and co-workersconsider. The stated subtraction endows the covariance matrix
in 1990%° G-actin’s 375 amino acid residues are organized in with six vanishing eigenvalues associated with the conserved
four subdomains, and in the present study the whole protein modes. The eigenvalues are actually not zero, since the
was simulated with explicit water molecules, a bound adenosine subtraction of the rigid-body modes only involves thev@lues,

diphosphate nucleotide, and an associated calcium ion. It shouldout are much smaller than the next smallest eigenvalues. The
be noted that a normal mode analysis of G-actin has been carriedormer eigenvalues are on the orderiof 108 A2, while the

out by Tirion and ben-Avraha¥?. The resulting modes have
been used to reduce the search span for building F-actin
polymers from G-actin monome#fs.

The molecular dynamics simulations were carried out with
X-PLOR2using a 12 A cutoff and an all-hydrogen force field,
a 1 fs integration time step, and a dielectric constant 1.
The protein was solvated in a 5.6 A shell of explicit water

latter eigenvalues measute~ 1074 A2,

Figures 1-3 present the projectiora,(t) of the trajectory
onto the eigenvectors corresponding to the three largest eigen-
valuesi, of the correlation matrix. The results demonstrate
that motion along these modes exhibits a relaxation time which
is longer than or comparable to the sampling window of 235
ps. Notice that if the relaxation time of a mode is significantly

molecules (1189 water molecules). The total system size waslonger than the window width, its relaxation cannot be observed,
9441 atoms. The system was first energy-minimized, then and the mode does not show up in the PCA result. Conse-
assigned initial atom velocities according to a Maxwell distribu- quently, significant modes reflecting the long term dynamics

tion, heated up to 300 K in steps of 30 K in a 5 ps time period, could be missed.
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Figure 2. Projection of the trajectory along the second largest principal Figure 3. Projection of the trajectory along the third largest principal
component and its autocorrelation function. component and its autocorrelation function.
The eigenvalued, of the covariance matriX+ and the 10%
correlation times, of the associated motion along the eigen- , i .
modes are shown for the two 235 ps simulations in Figures 4 10 S
and 5. The times, were obtained through . ! * e,
E “‘o
= (g 0 - 2ONO - RO L ]
—Jo 2 . o 'E'
@, ()0 B,0d ot b
wheret; is the shortest time at which the integrand, i.e., the 102 ;
autocorrelation function dodi,(t), vanishes. The, vs A, curve
obeys approximately the scaling laws- 1°63andi, ~ =15 100 F
for oo < 200. Although for a given length of the sampling period N T
the eigenvalueg, and relaxation times, do not depend on 0 100 10! 102 10°
the actual time window, these quantities increase with the o

sampling time. This increase arises because longer times allowrFigure 4. Mean square fluctuations of two consecutive 235 ps
further explorations of the phase space and is consistent withtrajectories of G-actin. The dependenceladn o can be fitted tol,
the observation that thens fluctuations of the atoms increase U @ for several decades.

. . C ) N
with the length of simulatio® This behavior is a clear recognize certain nonrandom patterns. However, this is not the

indication of insufficient simulation time. : . case, as Figure 6 demonstrates; in fact there is very little
To demonstrate further how unreliable the obtained eigen- structure inP

ol are e compar e modes ol fr e onSEEU A most sgficant messur of the mer of the o
’ purp resulting from the PCA method is furnished by the dimension

the matrix of the common subspace of the subspaces spanned by
~ 7 and{7%#?}. This dimension, given b
Pqﬁ — 7]giL).n;))Z) (3.2) {7} {75} 9 y
) M
where,® denotes thexth eigenvector obtained from ttieh tr(P-P) =Y P P, (3.3)
window (i = 1, 2) and where both andf run from 1 toM <« ; of" pa
3N.

If the motion was really constrained to an “essential” is shown in Figure 7 as a function 8. For a small number
subspace, the projections of the principal components shouldof eigenvectorsM = 10, less than 20% of the 300 largest
be nearly diagonal or block diagonal, or at least one should amplitude modes remain comparable in the sense of spanning
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102 of fluctuations in the common subspade the situation does
: not improve significantly.

We conclude from the PCA analysis of molecular dynamics
trajectories of G-actin that the PCA method fails to capture the
10! b essential subspace. We can explain this failure through an

F . analysis of a model system which is exactly recoverable by PCA
T [ UL if sufficient sampling time is provided.

10° b oo IV. Why PCA Does Not Work for System Reduction

& The actual motion of the modes in a protein are (non)linearly
coupled, so they(t)'s (2.1) are dynamically correlated. Hence,
the nonrelaxing slow modes slave faster modes (that is, the
1;0 BT p” S parameters of the faster modes are dependent on the slow
A modes), making the short time estimation of the faster modes
) o . unreliable. However, as we will see below, even without any
Figure 5. Correlation time versus mean square fluctuations of two

consecutive 235 ps trajectories of G-actin. Note that the decay times dynamlcal couplmgsﬁ, an ".‘S“ff'c'em length of sampllr_lg_tlme
exhibit a very good correlation with the amplitude fluctuation; the data Y/€ldS mode vectorsj, which suffer from strong statistical
can be fitted tor 0 1°63 errors.

We ask the following question. Can we recover the equation

10.1 MR | N
102 107

the same linear vector space on going from the first to the second

time window. ForM = 50 apparently about 50% of the da, 1
subspaces spanned by the modes overlap in successive windows, at aaa TN, (4.1)
and forM = 300 almost 70% overlap. However, the reader

should note, as shown in Figure 7, that purely randomly choseny,y pca with limited sampling time? Here we assurg

subspaces have significant overlap as well. Thus, the quotedrgpresents Gaussian white noise with zero mean and correlation
high overlap values do not attest to the reliability of the PCA  f,nction

modes in sampling the relevant subspace. In any case itis clear

that reduction of dynamics cannot be achieved with a small A

number of the largest amplitude modes. Even if one weights N, (t)N4(0) = 2kBT—‘1 0(t)d,4 (4.2)
the modes with the amplitudes in order to measure the amount T
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Figure 6. Comparison of the principal components for two consecutive 235 ps trajectories of G-actin provided by the overlap matrix (3.2).
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1

300

Figure 7. v = tr(P-P')/M as a function oM (see (3.3)). The dashed
line represents the expected valuefof both subspaces were formed
by sets of random, uncorrelated vectors.

where O Odenotes the average over noise. Henceforth, we
choose the unit of energy so thafT = 1. Equations 4.1 and
4.2 characterize,(t) as a Gaussian process with zero mean
whose correlation function is given by

By (t)ay(t) 0= 2,62 W75, (4.3)

If the true correlation matriX, which is diagonal, is given,
then by the Galerkin methétlwe can trivially recover the
original linear equation of motion. Thus, the question of
whether we can obtain the correct equation of motion boils down

J. Phys. Chem., Vol. 100, No. 7, 1998571

we conjecture the following universal features: there are scaling
relationst, ~ a~? andi, ~ a~¢ for a wide range ofx, where

o is the mode index. In the molecular dynamics investigation
of G-actin, we estimat@ = 1.5 and¢ = 0.89. These values
do not depend on the particular choice of the sampling window
so long as its width is the same. Even if the sampling window
width is increased, such power law behaviors are observed.
However, the relaxation times and amplitudes increase for each
o; that is, 7" > 7@ andA® > 1@ for eacha, if the window

(1) is wider than window (2). Needless to say, ti& mode

for window (1) and that for (2) can be completely different.

It is claimed that a very small number of PCA modes
dominate protein motion; in fact, usually around 1% of the
modes capture 90% of the totahs fluctuations of a molecular
dynamics trajectory® However, these dominant modes change
from one sampling window to another. Consequently, they
cannot serve to describe the motion in the later time windows.
Therefore, such modes do not have predictive power for the
long time behavior of proteins.

If one increases the width of the analysis window, more and
more slower modes will acquire larger amplitudes and show
up as dominant modes. Consequently, the top 10 modes with
largesti, values in our 235 ps sampling would become minor
modes, even if preserved, if a longer sampling time is chosen.

In summary, PCA does not reveal any reliable information
on time scales which are not actually sampled. A short
molecular dynamics trajectory does not yield an accurate
covariance matrixk{t) of protein fluctuations. Consequently,

to the question of an accurate estimate of the equal time any PCA modes cannot be determined reliably.

correlation matrix. We study the variance oK+)es
B (t)as(t) ., whered [, is the time average over the sampling
time tir, Wwhich can be written as

i B ()12, ()36 -
B, (L)L) B (3] (4.4)

Since thea's are mutually statistically independent Gaussian
variables, using (4.3) we obté&h

i trot

ttot 0

ot | bot| 7t
((3KTQ15)2 =1+ 5aﬂ)(t_;— + T_ﬂ) (ia/lﬁ) (4.5)

The variance is small only if the decay times of the modges
andrz are much smaller than the simulation titage Only in
that case wilK + be a good approximation to the true correlation
matrix which can be used to recover the dynamics.

Looking at (4.5), the reader might think that if the time scale
of mode a is sufficiently small (i.e.,to/tior << 1), then the
variance of K1)ag is small even ifrgltio is not small. However,
in this case K 1)qq is also small, so we lose the diagonal nature
of the true correlation matrix. This can be explicitly seen from

K20 7,4

22 ot (*-0)

As seen in Figures 4 and %, O o> andz O A%%3 Hence,
7oA, O 0256 so for largea (for small amplitude modes) this
ratio diverges; this asymptotic relation holds fosufficiently
smaller than Bl but much larger than unity. Therefore, even
fast modes whose relaxation time is well within the sampling
window cannot be recovered by PCA.

V. Concluding Remarks

The PCA method has been applied previously to various
proteins!~15 From these studies and the study provided here

Still, there are possible uses of PCA. As has been
demonstratedil 15 one can extract salient motions observed in
the sampling window. There is no mystery here; PCA is
designed to extract salient features from time series. The
problems in this use of PCA are, however, (i) that the modes
apply only for the analyzed window and (ii) that PCA results
can be obtained directly probably without the cumbersome
diagonalization of the correlation matrix (2.3).

A more nontrivial use of the PCA modes is to study local
short time scale motion of proteins as relevant to NMR
spectroscopy! In this case what is needed is the summation
of the contribution from many fast modes for a given atom or
groups of atoms, so that the law of large numbers allows us to
overcome the sampling error. That is, even though each mode
is highly unreliable, its sum may become reliable. This is,
however, true only for the quantities to which no long time
contribution is significant. Thus, Deby&Valler factors cannot
be computed reliably with the aid of the PCA modes. Diffusive
light scattering is another problematic example, as clearly
demonstrated in recent papers by Clarage &t ahd Faure et
a|.20
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