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It has been suggested that principal component analysis can identify slow modes in proteins and, thereby,
facilitate the study of long time dynamics. However, sampling errors due to finite simulation times preclude
the identification of slow modes that can be used for this purpose. This is demonstrated numerically with the
aid of simulations of the protein G-actin and analytically with the aid of a model which is exactly recoverable
by principal component analysis. Although principal component analysis usually demonstrates that a set of
a small number of modes captures the majority of the fluctuations, the set depends on the particular sampling
time window and its width.

I. Introduction

Molecular dynamics has become an important tool to study
proteins.1,2 One of the major obstacles limiting its usefulness
is the shortness of achievable simulation times. These times,
on the order of a few nanoseconds, are much shorter than the
time scales of many important protein processes, e.g., folding.2

Many attempts have been made (e.g., refs 3, 4) to extend the
time scale of molecular dynamics simulations, but as yet, no
satisfactory solution has been found.
One possible approach to reduce the number of degrees of

freedom is principal component analysis (PCA), which is also
known as the Karhunen-Loeve expansion5 in time series
analysis. A detailed implementation of the method in the current
context can be found in ref 6, and its use has been recently
reviewed in ref 7. This method was introduced to the protein
research community under the name “quasi-harmonic analysis”
by Karplus and co-workers8-10 to facilitate the computation of
configurational entropies. The method has also been employed
with the hope of describing molecular dynamics trajectories in
terms of a small number of variables, sometimes called essential
degrees of freedom.11-15

It appears natural to use the PCA method to reduce the phase
space of proteins for long time molecular dynamics. For this
purpose one may determine a small number of important modes
by PCA and project the equations of motion on the resulting
low-dimensional vector space. The idea has been successfully
applied to reduce the dynamics of hydrodynamic systems.16 In
this case a partial differential equation is reduced to a set of a
small number of ordinary differential equations. This success
strengthens one’s expectation that PCA could serve as a useful
method for protein dynamics reduction.
The purpose of this paper is to demonstrate that PCA is not

suitable for long time protein dynamics reduction with the
computational power available at present or in the foreseeable
future. The PCA method works superbly in hydrodynamics,
because in this case the computationally obtained correlation
function is very accurate due to a sufficiently long sampling
time. In contrast, PCA for proteins is problematic, since the
longest relaxation timeτ for many proteins is on the order of
microseconds or longer.17 The error in the correlation matrix
for a mode of time scaleτ is on the orderxτ/ttot, wherettot is
the sampling time. Due to these errors in slow modes, the fast

modes, for whichxτ/ttot is very small, are contaminated and
also become unreliable. The difficulties due to the shortness
of simulation have been clearly pointed out by Hodel et al.18 in
the context of free energy calculations and by Clarage et al.19

and Faure et al.20 in the context of incoherent light scattering
experiments. In a comparison of light-scattering patterns derived
from PCA and normal mode analysis, the latter method gives
better agreement with experiment.20 Our aim here is to shed
light on the difficulties of PCA to extract essential modes from
a MD simulation, which can be employed for long time
descriptions of proteins.
How can we reconcile the difficulties of PCA observed in

this paper and apparent successes in analyzing protein dynamics
reported by other authors?11-15 If a particular large-scale motion
arises in a short simulation, PCA surely captures the feature.
However, such features may be detectable just as well without
PCA, e.g., through atomic root mean square (rms) fluctuations.
A nontrivial use of PCA has been successful in describing the
fast motions relevant to NMR spectroscopy.21 As will be
discussed later, however, this success does not justify the
application of PCA to describe long time dynamics of proteins.
In section II we will outline PCA and its difficulties in

conjunction with long time dynamics. In section III, the
application of the PCA method is illustrated through simulations
of G-actin. In section IV we explain analytically why PCA
does not yield reliable slow modes. Section V provides
concluding remarks.

II. Principal Component Analysis and Its Difficulty

Let qb(t) ) (q1(t),q2(t),...,q3N(t))′ be the coordinates ofN atoms
in a protein at timet, where′ denotes transposition. The basic
idea of PCA is to seek the least-squares approximant for the
position vector in the form

whereM is the number of relevant degrees of freedom and the
vectorsηbR are orthonormal basis vectors, which are determined
by the eigenvalue problem

Here,KT is the correlation matrix determined by the molecular
dynamics trajectoryqb(t):X Abstract published inAdVance ACS Abstracts,February 1, 1996.

qb(t) = ∑
R)1

M

aR(t)ηbR (2.1)

λRηbR ) KTηbR (2.2)

2567J. Phys. Chem.1996,100,2567-2572

0022-3654/96/20100-2567$12.00/0 © 1996 American Chemical Society

+ +

+ +



where〈 〉ttot denotes the time average over 0e t e ttot. The
eigenvalueλR is the time average of|aR(t)|2.
The hope is to obtain a set of equations of motion for a small

number of modesaR(t) corresponding to the largest eigenvalues
λR which provide a reduced representation of the long time
dynamics of a protein. If one knew the correct basis vectors
ηbR, then one could obtain the equations with the aid of the
(nonlinear) Galerkin22 method, as done in fluid dynamics.16

However, the shortness of the sampling time prevents the
identification of suitable basis vectorsηbR. The longest time
scaleτ of a protein scales asτ ∼ nâ, wheren is the number of
amino acid residues. The exponent is of order unity. It cannot
be shorter than 2/3, i.e., the exponent which applies to diffusive
relaxation of modes in a solid body. Probably the upper bound
is given by a single-chain polymer in a good solvent withâ =
1.67,23 which may be interpreted as the fluctuation time scale
of the completely unfolded protein conformation. According
to NMR studies, the longest relaxation time cannot be smaller
than 1µs for a protein of the sizen ≈ 300.17 Thus, for many
proteins the necessary sampling time must be extremely long.
The longest simulation time realistically accessible today, even
for a modest sized protein as G-actin, is a few nanoseconds.
Thus, slow motions cannot be properly identified.
Even if we could manage to obtain the data for at least one

relaxation time of the slowest mode, the existence of fluctuations
prohibits an accurate determination of the correlations between
the slow modes. Consequently, one cannot obtain reliable
collective coordinates for them and, thus, one cannot use PCA
to reduce protein dynamics without spoiling the most important
slow motion.
There remains some hope that the PCA method, though not

capable of extracting long time scale modes, may capture
properly the modes with relaxation times well within the
simulation time window. We will show below that this is not
the case, either.

III. Principal Component Analysis of G-Actin

To illustrate the difficulties one encounters in the application
of PCA to protein dynamics, we simulate the protein G-actin
(globular actin). G-actin is the monomeric form of the
polymeric protein system F-actin (filamentous actin), which is
an important component of the cell cytoskeleton, where it is
involved in cellular motility.24-26 F-actin also forms the major
component of the thin filament of muscle tissue.27,28 The crystal
structure of G-actin has been resolved by Kabsch and co-workers
in 1990.29 G-actin’s 375 amino acid residues are organized in
four subdomains, and in the present study the whole protein
was simulated with explicit water molecules, a bound adenosine
diphosphate nucleotide, and an associated calcium ion. It should
be noted that a normal mode analysis of G-actin has been carried
out by Tirion and ben-Avraham.30 The resulting modes have
been used to reduce the search span for building F-actin
polymers from G-actin monomers.31

The molecular dynamics simulations were carried out with
X-PLOR,32 using a 12 Å cutoff and an all-hydrogen force field,
a 1 fs integration time step, and a dielectric constantε ) 1.
The protein was solvated in a 5.6 Å shell of explicit water
molecules (1189 water molecules). The total system size was
9441 atoms. The system was first energy-minimized, then
assigned initial atom velocities according to a Maxwell distribu-
tion, heated up to 300 K in steps of 30 K in a 5 ps time period,

and equilibrated at 300 K for 5 ps. Finally, free molecular
dynamics was performed for 490 ps.
The trajectories have been analyzed after 20 ps of relaxation

in the form of two consecutive periods of 235 ps. Coordinates
were sampled at a 0.1 ps interval. The simulation results will
be described elsewhere.33

We sampled in our principal component analysis only the
positions of the 375 CR carbons resulting in 3N) 1275 degrees
of freedom. Amadei et al.13,34demonstrated that the character
of the fluctuation spectrum and even the identity of the larger
amplitude modes do not change significantly by a reduction to
CR atoms.
We subtracted, as done customarily in PCA, the translational

and rotational modes of the whole protein. These modes are
conserved for the whole system and are expected to have very
long relaxation times for the reduced set of variables we
consider. The stated subtraction endows the covariance matrix
with six vanishing eigenvalues associated with the conserved
modes. The eigenvalues are actually not zero, since the
subtraction of the rigid-body modes only involves the CR values,
but are much smaller than the next smallest eigenvalues. The
former eigenvalues are on the order ofλ ≈ 10-8 Å2, while the
latter eigenvalues measureλ ≈ 10-4 Å2.
Figures 1-3 present the projectionsaR(t) of the trajectory

onto the eigenvectors corresponding to the three largest eigen-
valuesλR of the correlation matrix. The results demonstrate
that motion along these modes exhibits a relaxation time which
is longer than or comparable to the sampling window of 235
ps. Notice that if the relaxation time of a mode is significantly
longer than the window width, its relaxation cannot be observed,
and the mode does not show up in the PCA result. Conse-
quently, significant modes reflecting the long term dynamics
could be missed.

KT ) 〈(qb(t) - 〈qb(t)〉ttot)(qb(t) - 〈qb(t)〉ttot)′〉ttot (2.3)

Figure 1. Projection of the trajectory along the largest principal
component and its autocorrelation function.
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The eigenvaluesλR of the covariance matrixKT and the
correlation timesτR of the associated motion along the eigen-
modes are shown for the two 235 ps simulations in Figures 4
and 5. The timesτR were obtained through

where t1 is the shortest time at which the integrand, i.e., the
autocorrelation function ofaR(t), vanishes. TheτR vs λR curve
obeys approximately the scaling lawsτ ∼ λ0.63 andλR ∼ R-1.5

for R e 200. Although for a given length of the sampling period
the eigenvaluesλR and relaxation timesτR do not depend on
the actual time window, these quantities increase with the
sampling time. This increase arises because longer times allow
further explorations of the phase space and is consistent with
the observation that therms fluctuations of the atoms increase
with the length of simulation.34 This behavior is a clear
indication of insufficient simulation time.
To demonstrate further how unreliable the obtained eigen-

modes are, we compare the modes obtained for the consecutive
time windows of the simulations. For this purpose we define
the matrix

whereηR
(i) denotes theRth eigenvector obtained from theith

window (i ) 1, 2) and where bothR andâ run from 1 toM ,
3N.
If the motion was really constrained to an “essential”

subspace, the projections of the principal components should
be nearly diagonal or block diagonal, or at least one should

recognize certain nonrandom patterns. However, this is not the
case, as Figure 6 demonstrates; in fact there is very little
structure inP.
A most significant measure of the merit of the modesηbR

resulting from the PCA method is furnished by the dimension
of the common subspaceU of the subspaces spanned by
{ηbR

(1)} and{ηbR
(2)}. This dimension, given by

is shown in Figure 7 as a function ofM. For a small number
of eigenvectors,M ) 10, less than 20% of the 300 largest
amplitude modes remain comparable in the sense of spanning

Figure 2. Projection of the trajectory along the second largest principal
component and its autocorrelation function.

τ ) ∫0t1dt 〈[aR(t) - 〈aR(t)〉][aR(0)- 〈aR(t)〉]〉

〈aR
2(t)〉 - 〈aR(t)〉

2
(3.1)

PRâ ) ηbR
(1)‚ηâ

(2) (3.2)

Figure 3. Projection of the trajectory along the third largest principal
component and its autocorrelation function.

Figure 4. Mean square fluctuations of two consecutive 235 ps
trajectories of G-actin. The dependence ofλ on R can be fitted toλR
∝ R-1.5 for several decades.

tr(P‚P′) ) ∑
R,â

M

PRâPâR (3.3)
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the same linear vector space on going from the first to the second
time window. ForM ) 50 apparently about 50% of the
subspaces spanned by the modes overlap in successive windows,
and forM ) 300 almost 70% overlap. However, the reader
should note, as shown in Figure 7, that purely randomly chosen
subspaces have significant overlap as well. Thus, the quoted
high overlap values do not attest to the reliability of the PCA
modes in sampling the relevant subspace. In any case it is clear
that reduction of dynamics cannot be achieved with a small
number of the largest amplitude modes. Even if one weights
the modes with the amplitudes in order to measure the amount

of fluctuations in the common subspaceU, the situation does
not improve significantly.
We conclude from the PCA analysis of molecular dynamics

trajectories of G-actin that the PCA method fails to capture the
essential subspace. We can explain this failure through an
analysis of a model system which is exactly recoverable by PCA
if sufficient sampling time is provided.

IV. Why PCA Does Not Work for System Reduction

The actual motion of the modes in a protein are (non)linearly
coupled, so theaR(t)’s (2.1) are dynamically correlated. Hence,
the nonrelaxing slow modes slave faster modes (that is, the
parameters of the faster modes are dependent on the slow
modes), making the short time estimation of the faster modes
unreliable. However, as we will see below, even without any
dynamical couplings, an insufficient length of sampling time
yields mode vectorsηbR which suffer from strong statistical
errors.
We ask the following question. Can we recover the equation

by PCA with limited sampling time? Here we assumeNR
represents Gaussian white noise with zero mean and correlation
function

Figure 5. Correlation time versus mean square fluctuations of two
consecutive 235 ps trajectories of G-actin. Note that the decay times
exhibit a very good correlation with the amplitude fluctuation; the data
can be fitted toτ ∝ λ0.63.

Figure 6. Comparison of the principal components for two consecutive 235 ps trajectories of G-actin provided by the overlap matrix (3.2).

daR

dt
) 1

τR
aR + NR (4.1)

〈NR(t)Nâ(0)〉 ) 2kBT
λR

τR
δ(t)δRâ (4.2)
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where 〈 〉 denotes the average over noise. Henceforth, we
choose the unit of energy so thatkBT t 1. Equations 4.1 and
4.2 characterizeaR(t) as a Gaussian process with zero mean
whose correlation function is given by

If the true correlation matrixK , which is diagonal, is given,
then by the Galerkin method22 we can trivially recover the
original linear equation of motion. Thus, the question of
whether we can obtain the correct equation of motion boils down
to the question of an accurate estimate of the equal time
correlation matrix. We study the variance of (KT)Râ t
〈aR(t)aâ(t)〉ttot, where〈 〉ttot is the time average over the sampling
time ttot, which can be written as

Since thea’s are mutually statistically independent Gaussian
variables, using (4.3) we obtain35

The variance is small only if the decay times of the modesτR
andτâ are much smaller than the simulation timettot. Only in
that case willKT be a good approximation to the true correlation
matrix which can be used to recover the dynamics.
Looking at (4.5), the reader might think that if the time scale

of mode R is sufficiently small (i.e.,τR/ttot , 1), then the
variance of (KT)Râ is small even ifτâ/ttot is not small. However,
in this case (KT)RR is also small, so we lose the diagonal nature
of the true correlation matrix. This can be explicitly seen from

As seen in Figures 4 and 5,λR ∝ R-1.5 andτ ∝ λ0.63. Hence,
τR/λR ∝ R0.56, so for largeR (for small amplitude modes) this
ratio diverges; this asymptotic relation holds forR sufficiently
smaller than 3N but much larger than unity. Therefore, even
fast modes whose relaxation time is well within the sampling
window cannot be recovered by PCA.

V. Concluding Remarks

The PCA method has been applied previously to various
proteins.11-15 From these studies and the study provided here

we conjecture the following universal features: there are scaling
relationsτR ∼ R-θ andλR ∼ R-ú for a wide range ofR, where
R is the mode index. In the molecular dynamics investigation
of G-actin, we estimateθ ) 1.5 andú ) 0.89. These values
do not depend on the particular choice of the sampling window
so long as its width is the same. Even if the sampling window
width is increased, such power law behaviors are observed.
However, the relaxation times and amplitudes increase for each
R; that is,τR

(1) > τR
(2) andλR

(1) > λR
(2) for eachR, if the window

(1) is wider than window (2). Needless to say, theRth mode
for window (1) and that for (2) can be completely different.
It is claimed that a very small number of PCA modes

dominate protein motion; in fact, usually around 1% of the
modes capture 90% of the totalrms fluctuations of a molecular
dynamics trajectory.13 However, these dominant modes change
from one sampling window to another. Consequently, they
cannot serve to describe the motion in the later time windows.
Therefore, such modes do not have predictive power for the
long time behavior of proteins.
If one increases the width of the analysis window, more and

more slower modes will acquire larger amplitudes and show
up as dominant modes. Consequently, the top 10 modes with
largestλR values in our 235 ps sampling would become minor
modes, even if preserved, if a longer sampling time is chosen.
In summary, PCA does not reveal any reliable information

on time scales which are not actually sampled. A short
molecular dynamics trajectory does not yield an accurate
covariance matrix (KT) of protein fluctuations. Consequently,
any PCA modes cannot be determined reliably.
Still, there are possible uses of PCA. As has been

demonstrated,11-15 one can extract salient motions observed in
the sampling window. There is no mystery here; PCA is
designed to extract salient features from time series. The
problems in this use of PCA are, however, (i) that the modes
apply only for the analyzed window and (ii) that PCA results
can be obtained directly probably without the cumbersome
diagonalization of the correlation matrix (2.3).
A more nontrivial use of the PCA modes is to study local

short time scale motion of proteins as relevant to NMR
spectroscopy.21 In this case what is needed is the summation
of the contribution from many fast modes for a given atom or
groups of atoms, so that the law of large numbers allows us to
overcome the sampling error. That is, even though each mode
is highly unreliable, its sum may become reliable. This is,
however, true only for the quantities to which no long time
contribution is significant. Thus, Debye-Waller factors cannot
be computed reliably with the aid of the PCA modes. Diffusive
light scattering is another problematic example, as clearly
demonstrated in recent papers by Clarage et al.19 and Faure et
al.20
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