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Abstract

A three-dimensional (3D) version of the spectral signal-to-noise ratio (SSNR)-based resolution measure is introduced. The
measure is defined for a class of 3D reconstruction algorithms that use interpolation in Fourier space. The statistical properties of
the SSNR are discussed and related to the properties of another resolution measure, the Fourier shell correlation (FSC). The new
measure was tested on 3D structures calculated from a simulated set of quasi-evenly spaced 2D projections using a nearest-neighbor
interpolation and a gridding algorithm. In the latter case, the results agree very well with the FSC-based estimate, with the exception
of very high SSNR values. The main applicability of the 3D SSNR is tomography, where due to the small number of projections
collected, FSC cannot be used. The new measure was applied to three sets of tomographic data. It was demonstrated that the
measure is sufficiently sensitive to yield theoretically expected results. Therefore, the 3D SSNR opens up the possibility of evaluating
the quality of tomographic reconstructions in an objective manner. The 3D distribution of SSNR is of major interest in single-
particle analysis. It is shown that the new measure can be used to evaluate the anisotropy of 3D reconstructions. The distribution of
SSNR is characterized by three anisotropy indices derived from principal axes of the 3D inertia covariance matrix of the SSNR.
These indices are used to construct a 3D Fourier filter which, when applied to a 3D reconstruction of a macromolecule, maximizes
the SNR in real space and minimizes real-space artifacts caused by uneven distribution of 2D projections. © 2002 Elsevier Science
(USA). All rights reserved.
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1. Introduction data. Thus, both the progress made and the reliability of

the results must be monitored with the help of so-called

Single-particle analysis has become an established
method of structural analysis of large macromolecular
complexes. The main advantages are the fact that the
molecules can be captured in their native state and, in
contrast to X-ray crystallography, the fact that true
projections of Coulomb potentials are measured.
Therefore, at least in principle, complete information
about the mass distribution in the imaged molecule is
available. Unfortunately, since the molecules appear
randomly oriented on the support grid, it is necessary to
establish geometrical relations between various particle
views using computational methods. The alignment
procedures used are easily affected by the noise in the

*Fax: +1-713-500-0652.
E-mail address: pawel.a.penczek@uth.tmc.edu.

“resolution measures” (Frank, 1996), more properly
called phase consistency measures.

The available resolution measures fall into two cat-
egories: measures based on comparisons of averages
calculated for subsets of the data and measures based on
averaging of Fourier transforms of individual images. In
the first group, we have the differential phase residual
(DPR)! (Frank et al., 1981) and the Fourier ring cor-
relation (FRC) (Saxton and Baumeister, 1982). A
marked advantage of these measures is that they are

U Abbreviations used: 2D, two-dimensional; 3D, three-dimensional;
EM, electron microscopy; 3D EM, three-dimensional electron micro-
scopy; DPR, differential phase residual; FRC, Fourier ring correlation;
FSC, Fourier shell correlation; SNR, signal-to-noise ratio; SSNR,
spectral signal-to-noise ratio.
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equally well applicable to two-dimensional (2D) and
three-dimensional (3D) data. In the latter case, the
volumes resulting from 3D reconstruction algorithms
take the place of the 2D averages. What is problematic is
that the statistical properties of these measures are not
well understood; moreover, they are not applicable in
3D cases where the number of available projections is
small, such as tomography. The second group of mea-
sures includes the Q-factor (Kessel et al., 1985; van Heel
and Hollenberg, 1980) and the spectral signal-to-noise
ratio (SSNR) (Unser et al., 1987). Since they operate on
Fourier transforms of individual images, statistical
properties of the data set are directly captured. The
rarely used Q-factor does not yield results that can be
expressed as a one-dimensional function of frequency.
Recently, the Q-factor was successfully used in the
context of refinement of orientation parameters in sin-
gle-particle analysis (Grigorieff, 1998) and its statistical
properties have been subsequently discussed (GrigoriefT,
2000). The SSNR for 2D images was introduced by
(Unser et al., 1987) and the article contains a detailed
analysis of the statistical properties of this measure. The
subsequent attempt to extend the measure to 3D was
only partly successful, as the approach proposed was
based on the estimation of the noise suppression coef-
ficient using a computer simulation approach (Unser
et al., 1996).

The lack of a 3D resolution measure that would be
applicable to small data sets particularly affects tom-
ography. Since the introduction of the double-tilt
tomography (Penczek et al., 1995) and recent efforts to
use frozen-hydrated specimens (Baumeister et al., 1999;
Baumeister and Steven, 2000; Frey and Mannella,
2000; Mannella et al., 2001; Nicastro et al., 2000), there
has been increased interest in this technique. Tomog-
raphy is particularly valuable because it is applicable
not only to isolated particles, but also to larger struc-
tures, such as mitochondria, whole cells, and thick
sections (up to 10um) of other biological material.
Moreover, unlike in single-particle analysis, the struc-
ture can be observed in its unique form, as there is no
need for averaging of multiple, individual objects.
Thus, the environment of the structure and interactions
with membranes and other organelles can be studied. A
major limitation of tomography is that the number of
2D projections that can be collected is restricted. Due
to radiation dose constraints, the number of projec-
tions does not exceed 100-200. Therefore, existing 3D
resolution measures (DPR and FSC) are not applica-
ble, as the necessity to split the set of available 2D
projections into halves would make the estimate of
resolution unreliable.

In what follows, we will demonstrate that a 3D SSNR
can be derived for a particular class of 3D reconstruc-
tion algorithms. The applicability of the new resolution
measure extends beyond tomography, as for single

particles it makes it possible to evaluate the resolution
anisotropy of 3D reconstructions.

2. Spectral signal-to-noise ratio in two dimensions
2.1. Definition of the 2D SSNR

The spectral signal-to-noise ratio has been introduced
in the context of 2D images by (Unser et al., 1987) as

SR —1; S(R)>1

SSNR(R) = {0; S(R) <1, (1)

with the spectral variance ratio

| G
S(R) = — Z”ER’%;]‘:]F]‘ s, n=1,...,nz, (2)
K—1 EneR Zk:l |Fi = F|
where F' is a 2D Fourier transform of the kth image
from a data set of K images, R is the approximately
constant spatial frequency region in Fourier space (in-
dexed by n) for which SSNR is evaluated, and

n 1 n
g 3R (3)

is the average Fourier component for frequency #. In the
same article, it was also shown that for SSNR(R) # 0,
S(R) has a noncentral F distribution with nz and
(K — 1)ng degrees of freedom and noncentrality pa-
rameter A = nzgSSNR7(R), where SSNR7(R) is the true
spectral signal-to-noise ratio of the averaged image.
Since the distribution of S(R) can be approximated by a
central distribution, it can be shown that its average and
variance are well approximated by (Unser et al., 1987)

E{S(R)|SSNR(R)} =~ SSNR7(R) + 1, 4)

Var{S(R)|SSNR(R)}
= 2[(ng + (K — 1)ng — 2)(1 + 2SSNR7(R))
+ ngSSNRZ(R)|/[nr((K — 1)ng — 4)]. (5)

The 2D SSNR is a one-dimensional function of spatial
frequency. In order to use it as a resolution measure-
ment it is enough to choose an arbitrary cut-off level. An
appropriate level can be selected as SSNR(R) = 1, the
level at which signal and noise powers become equal.

The calculation of 2D SSNR for a set of 2D
aligned images is straightforward. The alignment pa-
rameters found (relating to translation and rotation)
are applied to the original images using an interpola-
tion scheme in real space, 2D Fourier transforms of
all images are computed, and the necessary terms in
the numerator and denominator of Eq. (2) are calcu-
lated. Thus, despite the fact that the interpolation
between two grids is required, the images that enter
the 2D SSNR calculation are sampled on compatible
Cartesian grids.
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2.2. Relation between spectral signal-to-noise ratio and
fourier ring correlation

FRC, together with its 3D counterpart, Fourier shell
correlation (FSC), is the most commonly used resolu-
tion measure in single-particle analysis. Therefore, the
relation between the FRC and the SSNR is of major
interest for practical applications. Is the resolution es-
timated using either of the measures identical? Is the
error (or the variance) of both measures the same? The
situation is complicated by the fact that in single-particle
analysis, the FSC is used in two different ways. One
approach is to derive two ‘“‘independent’ initial refer-
ence volumes, split the data set into halves, and then
proceed with the 3D refinement of the orientation pa-
rameters independently for each set. Another approach
is to proceed with the refinement of 3D orientation pa-
rameters for all the available 2D projection data si-
multaneously. In order to monitor the progress, during
each refinement cycle the data set is randomly split into
halves, and the two volumes are calculated and com-
pared in Fourier space yielding the FSC measure. The
obvious questions are the bias implicit in the second
approach and whether the first approach is in any way
superior.

If the noise in two data sets is independent, which is
the case in the first approach to the resolution analysis,
it is easy to derive a relation between FRC and SSNR. It
is assumed that the signal components in two sets are
identical; moreover, the analysis is performed on two
averages, F" and G", respectively, each calculated from
L = K/2 individual images. Thus, we have the defini-
tions

F'=F'+N!', G =F'+M' n=1,.. . m,
F"=FI+N", G =F}+M",
L L
Fr=13F, @ =130, (6)
k=1 k=1
n lL n n lL n
N =13 Ni,  M" =15 M,

k=1 k=1

where we assumed an additive measurement model with
F} being the true, unknown signal in the nth Fourier
voxel. Assuming Gaussian, independent noise in indi-
vidual images, we have

EIN] = E[M] =0,
EININ'] = EIMiM") = S0y, (7)
E[(N")z] - E[(M")z] =1lg7.
The FRC is defined as
2 ner IG"

(SR (Speela?) )

n=1,...,ng. (8)

FRC(R) =

The extension of FRC to three dimensions is achieved
simply by carrying the summation over shells instead of
rings, and it is referred to as FSC. With this in mind, the
analysis presented below is equally applicable to FSC.

The expectation value of FRC is calculated as

E[FRC] = E[3 F'G"] _
p{(zer) (Seer)} ]
OB %12 __SSNR_
ZWF;"+E,IZJ}1\,Z§LF;;+ISSNR+1.

The same relation was derived earlier (Bershad and
Rockmore, 1974; Frank and Al-Ali, 1975; Saxton, 1978)
in the context of cross-correlation between two real-
space images. In addition, in this earlier work the cross-
correlation was calculated between individual images,
not the averages, as in Eq. (9). Nevertheless, as it follows
from Eq. (9), the expectation value of the FRC has the
same form in either case. By solving Eq. (9) for SSNR
we obtain

FRC
NR = ——— 1
S8 1 — FRC’ (10)
which, taking into account that the FRC was calculated
from the data set split into halves, must be modified to

(Unser et al., 1987)

FRC
1- FRC) (1)
Saxton (1978) also derived the variance of the cross-

correlation coefficient, which can be simplified using
the relation between the FRC and the SSNR given by

Eq. (11):

SSNR = 2(

1 (14 3FRC — 4FRC*)(1 — FRC)

(12)

In particular, if there is no signal present (FRC = 0), the
variance of the estimate is

Var(FRC|FRC = 0) = %7 (13)
R

which is the basis for the often used limit for the reso-
lution tests in single-particle analysis, such as the 30 test
(van Heel, 1987). Nevertheless, if other FRC levels are
used as resolution limits, Eq. (12) should be used in-
stead, particularly since the variance of the FRC ap-
proaches zero when FRC approaches 1. It is also worth
noting that the variance of FRC does not depend on the
number of individual images L used to calculate the
averages in Eq. (9).

If the FRC is used to estimate SNR level in the data,
relation given by Eq. (10) [or (11)] must be used and the
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variance of such estimate is (Bershad and Rockmore,
1974):
(1 4+2FRC/(1 — FRQ))*
nrp — 3
(1 4+ 2SSNR(FRC))’

= P . (14)

Var(SSNR(FRC)) =

In order to compare it with the variance of the SSNR,
we assume that SSNR < ng, which is the case for all but
very low frequencies. Under this assumption, Eq. (5) can
be simplified to

Var(S) = ng (1 +2SSNR7). (15)
R

In order to directly compare relative errors of SSNR
and SSNR (FRC), we plotted two curves,
\/nrVar(SSNR(FRC))/SSNR and +/nzVar(S)/SSNR,
as functions of FRC (Fig. 1). It is remarkable that for
very low SSNR in the data (FRC below 0.2), the relative
error is smaller for SSNR (FRC) than for SSNR. SSNR
yields increasingly more accurate estimates for increas-
ing relative levels of the signal. Moreover, its relative
error decreases to zero with increased FRC, while the
relative error of SSNR (FRC) decreases to a constant
value. Thus, SSNR is a better estimator of the signal-to-
noise ratio in the data.

In the second approach to the resolution analysis, the
two averages are calculated based on randomly drawn,
exclusive samples of the same set of images. In this case,
the derivation of Eq. (9) no longer applies, as the rele-
vant estimators must include finite population correc-
tions (Cochran, 1963). As an example, we can calculate
expectation values of some of the terms in Eq. (9). If the
estimates are based on L elements from the sample of K
elements, then

100

Relative error
>

-
T

O 707 03 04 05 05 07 08 09
FRC

Fig. 1. The relative error (gs5/S) for two resolution measures. Solid

curve SSNR [Eq. (14)]; dashed line FRC [Eq. (12)]. The horizontal axis

is plotted in FRC units; the respective SSNR values can be obtained

using Eq. (10).
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Based on Egs. (16) and (17), we can expect that the
finite sample correction will introduce a bias into the
estimate of FRC and change its variance. Nevertheless,
the accuracy of the estimate should increase with the
size of the data set K. Indeed, as demonstrated by
numerical simulations, the general behavior of the
FRC based on the comparison of two random halves
of the data set is quite similar to that of the FRC
calculated for two independent data sets. In the nu-
merical simulations, in each test a data set containing
ng X K random, normally distributed numbers was
generated with a deterministic signal added such that a
predefined signal-to-noise level was achieved. Next, the
set was randomly split into halves and the FRC was
calculated. The last step was repeated 1000 times using
different random halves of the set, yielding the average
and the variance of the FRC for the set. The results are
included in Table 1. Since the results were only mar-
ginally dependent on the number of “images” K (tested
for K =10, 50, 100, 500, 1000), only results for

= |F}

Table 1
Numerical simulations of the variance of the FRC for the FRC esti-
mate based on splitting of the data set into halves

N SNR
0.1 1.0 10.0
100 (a) 0.0245 1.32 10.1
(b) 0.0367 1.34 10.2
(c) 0.0180 0.401 0.836
(d) 0.070 0.060 0.021
(e) 0.097 0.074 0.021
500 (a) 0.0374 0.946 10.3
(b) 0.0386 0.952 10.4
(c) 0.0189 0.323 0.838
(d) 0.033 0.029 0.010
(e) 0.044 0.033 0.009
1000 (a) 0.0530 0.99 9.99
(b) 0.0559 0.99 10.0
() 0.0272 0.332 0.833
(d) 0.022 0.020 0.007
(e) 0.031 0.023 0.007

Note. The size of the data set used was nz x K, where K = 1000. ng
is the number of samples used to calculate the FRC. SNR is the signal-
to-noise ratio set for the simulated data set. (a) Actual SNR of the
generated ng samples. (b) Average SNR in the sample, as estimated by
the FRC calculations. (c) Average FRC [(b) is calculated from (c) using
Eq. (11)]. (d) Standard deviation of the FRC estimate. (e) Theoretical
standard deviation of the FRC according to Eq. (12).
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K = 1000 are shown. The results demonstrate that the
FRC-based estimation of the SNR in the sample, when
performed on randomly selected halves of the data set,
is quite robust, particularly with an increased number
of samples nz used for the calculation. The value ob-
tained also better approximates the behavior of the
true SNR with the increase of the SNR in the data.
Very importantly, the standard deviations of the FRC
calculated from numerical simulations agree very well
with the theoretical standard deviation of FRC, as gi-
ven by Eq. (12). Again, the agreement improves with
increased number of samples n; and with increased
SNR in the data. This demonstrates that the finite
sample correction can be ignored in practical 3D EM
applications due to the fact that the estimates are cal-
culated from the same data set split into halves.

When the two methods of the resolution estimation
are compared, it must be acknowledged that true in-
dependence of two subsets of the data set is unlikely to
be achieved in practice. The first method, i.e., that
based on the separate 3D refinements of the respective
halves of the available set of 2D images, is based, like
the second method, on the random division of the data
set into halves. Nevertheless, unlike in the second
method, this division is done prior to the refinement of
orientation parameters and subsequent calculation of
final 3D structures. Therefore, the refinement proce-
dure becomes an integral part of the resolution esti-
mation. In such a case, at least in principle, the finite
sample correction bias is also present, only in this
approach the whole refinement procedure should be
repeated for various random subsets of the data set if
one wants to draw conclusions about its influence on
the resolution. Equally unappealing is the realization
that when the refinements are performed on data sets
reduced by half, the effective SNR in each subset is
reduced accordingly; thus, the resulting resolution is
unlikely to match the resolution that could be achieved
if the refinement was carried out for the whole data
set.

3. Spectral signal-to-noise ratio in three dimensions using
nearest-neighbor interpolation

Calculation of the SSNR in three dimensions re-
quires consideration of the 3D reconstruction algorithm
used to obtain the structure. First, it must be recognized
that the data are available in the form of 2D projections
of the structure and these projections are—in general—
arranged arbitrarily in 3D space. Second, as it follows
from the central section theorem, the 2D Fourier
transform of a 2D projection of a 3D object forms a
central section of the 3D Fourier transform of this
object. Thus, it is often more convenient to analyze the
problem of 3D reconstruction as a problem of inter-

polation in Fourier space. This interpolation must be
performed between 2D Fourier central planes arbitrar-
ily oriented in space and the 3D Fourier Cartesian grid.
From this point of view, it becomes clear that the in-
terpolation scheme used or, more generally, the 3D re-
construction algorithm employed, will have a major
influence on the quality of the reconstructed object
(which in turn can be expressed in terms of 3D SSNR).
For most reconstruction algorithms, the noise-reducing
effect of the 3D reconstruction procedure must be es-
tablished empirically. It has been suggested that this can
be achieved by calculating a 3D reconstruction using a
set of computer-generated noise-only images arranged
at the same angles as the available projection data
(Unser et al., 1996). The required empirical step remains
the major disadvantage of the proposed approach. If,
instead, we will restrict our attention to a class of 3D
reconstruction algorithms that involve interpolation in
Fourier space, the 3D SSNR can be calculated expli-
citly.

The simplest approach to interpolation is to assign a
grid point to the nearest point on the destination grid.
Although the quality of this method can be expected to
be poor, it remains the fastest approach because there is
no need to calculate interpolants. This also significantly
facilitates calculation of the 3D SSNR. The only dif-
ference in comparison with the 2D case is that due to
uneven distribution of 2D planes in 3D space and due to
geometrical discrepancies between the two grids, the
number of Fourier coefficients per each Fourier voxel
will vary. Thus, the average signal in the n’th Fourier
voxel is given by

K
F”:KLZE?, n=1,...,nz. (18)

nok=1
We assume an additive measurement model
F =F}+ N, (19)

where F” is the unknown signal (independent between
frequencies), and N is a zero-mean noise independent
both between frequencies n and measurements k. The
expectation value of the power of the signal is

1
:ZK_gE

1 .
=Z@mﬂmmggﬁmw&
1
ZQW%K%) (20)

where ¢/ is the variance of the noise in the the nth
Fourier voxel. The expectation value of the power of the
noise Ny = F;! — F" is

2
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To calculate the expectation value of the ratio of the
power of the signal to the power of the noise we neglect
higher order terms and approximate it by
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Fig. 2. The central slice of a test 3D structure (modified 70S ribosome
from E. coli) (a) and one of its projections with Gaussian noise added

(b).
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Thus, the 3D nearest-neighbor SSNR (SSNR;pny) is
given by

1 Ky n 2
Zn K, kle}c

SSI\II{3DNN = 1 22 - 17 (23)

Zn K_,,O-N
or, using the estimator for the noise variance, by

2
Kn n

Zn KLH k=1 F}c

SSNR3DNN = - 1 (24)

K, 2
Zn[(%,ﬁz:kil |F}(ﬂ_Fn|

For simplicity, here and in what follows, we omit the
statement SSNR > 0 . If we assume the same number of
Fourier elements per each voxel, i.e., K, = K, Eq. (24) is
reduced to Egs. (1) and (2): therefore, under this as-
sumption it is equivalent to the 2D case.

In order to test SSNR3pnN, We prepared a nonsym-
metric 3D test structure [derived from the previously
solved structure of the Escherichia coli 70S ribosome
(Gabashvili et al., 2000)] modified such that it comprised
three different density values (1, 2, and 3). The structure
was placed in a cubic volume with a linear size of 75
voxels and the background was set to zero (Fig. 2a).
Next, using an angular step of 4° a set of 1253 quasi-
evenly spaced 2D projections (Penczek et al., 1994) was
calculated and corrupted by independent Gaussian noise
resulting in real-space SNR = 5 (Fig. 2b). Using the
known Eulerian angles, this set of 2D projections was
used to calculate SSNR;pnN according to Eq. (24). In
addition, the set of 2D projections was randomly split
into halves, and two volumes were calculated and
compared in Fourier space yielding an FSC-based esti-
mate of the resolution. The results are shown in Fig. 3,
where for better comparison two sets of curves are given
using either of the relations between SSNR and FSC
[Egs. (10) and (11)]. According to these results, the
SSNRi;pnn  underestimates resolution in the whole

0 0.1 0.2 0.3

Fig. 3. Test of SSNR;pnN using simulated test data of 1253 quasi-evenly spaced 2D projections (SNR = 5). Solid curve, SSNR;3pnn; dashed curve,
FSC for volumes calculated using the nearest-neighbor interpolation; dotted curve; FSC for volumes calculated using the gridding algorithm. (a)
Curves in SSNR units. (b) Curves in FSC units. Horizontal axis is the spatial frequency in absolute units (Nyquist frequency =0.5).
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frequency range. The reason is that SSNR;pnN yields
the resolution of the 3D reconstruction as performed
using an unsophisticated interpolation scheme in Fou-
rier space. Thus, in addition to the usual resolution-
limiting factors, such as the noise in the data and limited
number of projections and their particular distribution,
the resolution is adversely affected by the additional
inaccuracies (noise) caused by the nearest neighbor in-
terpolation.

4. Spectral signal-to-noise ratio in three dimensions using
an interpolation scheme

The interpolation in the Fourier domain is a difficult
task, as even small interpolation errors in Fourier space
tend to produce large artifacts in real space. In principle,
a space-limited signal is fully represented by a discrete
set of evenly spaced Fourier samples. Consequently, the
original Fourier space signal can be recovered at any
nonsampled location using a convolution with a sine
function (Papoulis, 1962). This, however, is rarely done
in practice, as the computational cost is prohibitive.
Instead, either a truncated sine function is used or other
interpolating kernels are incorporated. In the latter case,
a trade-off between the length of the kernel and the size
of the interpolation errors is necessary. In the context of
EM, a number of such kernels have been proposed: a
cubic convolution (Carazo et al., 1986), a moving win-
dow Shannon reconstruction incorporating a version of
the attenuated sine kernel (Lanzavecchia et al., 1993),
and a bilinear interpolation (Grigorieff, 1998). An al-
ternative, but closely related approach to the Fourier
domain interpolation is the so-called ‘“gridding algo-
rithm” (O’Sullivan, 1985). In this method, instead of
designing a kernel that would minimize real space arti-
facts, a kernel is chosen such that it has both compact
support in the Fourier domain and regular behavior in
real-space. Thus, the gridding algorithm comprises three
steps: the Fourier grid is convolved with the convolution
kernel and the samples on the new, regular grid are re-
covered; the inverse Fourier transform of the gridded
data is calculated; and the interpolation artifacts are
corrected by dividing the real-space interpolated func-
tion by a Fourier transform of the convolution kernel. A
number of possible kernel functions have been proposed
(Jackson et al., 1991; Schomberg and Timmer, 1995). It
can be demonstrated that even for a very compact
convolution kernel (not exceeding a few Fourier pixels)
the gridding algorithm, when applied to EM data, re-
sults in 3D reconstructions of quality surpassing that of
other Fourier interpolation methods (Penczek, in prep-
aration).

When the 3D reconstruction is performed using a
Fourier interpolation method, a Fourier voxel on the
interpolated, regular 3D grid is obtained as a weighted

sum of the Fourier coefficients of the 2D projections,
with the weight values depending on the convolution
kernel used and geometrical distances between grid
points
Ky pompen
i W
wn ’
where W" = K” . W is the sum of (positive) convolu-
tion weights w1th1n the nth voxel. Thus, assuming the

additive measurement model [Eq. (19)], the expectation
value of the power of the signal for frequency R is

nn nnrn |2
E Z|Fn|2 :ZE ’ZkVVkFV:;nZZkVI/ka}
ner n

F'= (25)

- — () +EM

wn?

o (S WEFT)E[ 3, Ny
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_ Z ( Fy? Wﬂ i N) (26)

Unlike in the nearest neighbor interpolation, the
variance term in Eq. (26) contains the ratio of the sum
of squared weights to the squared sum of weights.
Due to the presence of the weights, the noise com-
ponent must be estimated using the sum of weighted
variances

I o o | 1
Zn: n O = Z wr (K, — 1)/K,)

K
W”Fn—Fnz,
Wnkz:l: k|k |

(27)

whose expectation value is

1 1 & )
E n Fn F}'I
3 7 i
_ L 1 Z WnFn I/Vann2
W (K — 1) /KW
B 1 1
W ((Ky = 1) /KW

wn N

1 1 SR\ e
7ZWn(( —1/K)<1 77 )aN. (28)

By comparing Egs. (26) and (28) with Eq. (22), we
conclude that in the presence of weights it is impossible
to obtain an exact estimate of the 3D SSNR. The reason
is the different weighting of the noise variance in Eqs.
(26) and (28). Nevertheless, it is possible to calculate the
two weight components 3~ #” and #" and redefine the
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Fig. 4. Test of SSNR3p,, using simulated test data of 1253 quasi-evenly spaced 2D projections (SNR =2 5). Solid curve, SSNR3p,,; dashed curve, FSC
for volumes calculated using the gridding algorithm. (a) Curves in SSNR units. (b) Curves in FSC units. Horizontal axis is the spatial frequency in

absolute units (Nyquist frequency = 0.5).

“weighted signal” such that the variance components in
Egs. (26) and (28) will have the same expectation value:
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If the 3D SSNR were based on Eq. (29), its values
would be consistently underestimated by the weight ra-
tio factor that appears in front of the squared “true”
signal. Thus, we define the SSNR3p,, for an arbitrary
interpolation scheme as
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(30)

Equation (30) does not yield “exact” signal-to-noise
ratios in the reconstructed volume. This is due to the
presence of weights resulting from the convolution with
the interpolating kernel. These weights affect signal and
noise components differently rendering the exact esti-
mation of the 3D SSNR impossible. Nevertheless, as

demonstrated in the tests performed (see below), the bias
present affects mainly very high SSNR values, while in
practice, in EM, the low SSNR values are of main in-
terest, as they indicate the resolution limit in a recon-
structed structure.

The tests were performed on the same simulated data
set used for the testing of SSNR3pNN, and the resulting
curves are shown in Fig. 4. As indicated above, the
SSNR3p, agrees very well with the FSC-based estima-
tion in the range between SSNR =0 and SSNR = 100.
Using Eq. (4), we find that this corresponds to the range
of FSC between 0 and 0.99. Thus, in terms of FSC, the
bias affects the estimate in the narrow range of very high
values that are well above the numbers that are relevant
for the analysis of the resolution in 3D EM.

5. Estimation of the resolution of the tomographic
reconstructions by the 3D SSNR

The 3D SSNR was applied to the estimation of res-
olution of three tomographic data sets of plastic-em-
bedded preparations of the Semliki Forest virus in situ
(data were kindly provided by Mike Marko and
Chyongere Hsieh from Wadsworth Center, Albany,
NY) (see Figs. 5 and 6) SSNR3p,, was implemented as
defined by Eq. (30) such that the reconstructed volume
must be a cube. This does not agree with the recon-
struction geometry routinely used in single- and double-
axis tomography, where due to the way the specimen is
prepared (thin section), the reconstructed volumes are
slabs. On the other hand, in many applications of tom-
ography, objects of interests do not fill the reconstructed
volume evenly. Instead, we may encounter a number of
biologically relevant regions dispersed within a rather
featureless environment. Moreover, due to various
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Fig. 5. Selected z-slice of a double-tilt reconstruction of Semliki Forest
virus. Arrows point to some of the individual virus particles.

Fig. 6. Double-tilt 3D reconstruction of a selected Semliki Forest virus.

distortions of the specimen during the preparation and
microscopy, it can be expected that the resolution is
nonuniform within the volume. Therefore, instead of
evaluating the resolution for the whole reconstructed
volume, it may be preferable to obtain resolution esti-
mates for a number of regions of interest. This approach
was chosen in the current implementation of the 3D
SSNR. Thus, the estimation of the resolution requires
appropriate shifting of 2D projection data so the object
of interest is located at the origin of the system of
coordinates. Next, the SSNR is estimated within a small
cube centered on the object.

The first data set comprised 119 double-tilt images.
The y-axis series was collected in the range from —60° to
+60° and the x-axis series in the range from —59° to 56°
both in 2° steps. The section thickness was 110 nm. The

accelerating voltage was 400kV and the pictures were
taken in focus. The SSNRj3p,, curves were calculated for
three selected viruses (Fig. 7a). All three curves are very
similar and indicate that there is a pronounced drop in
the signal strength beyond 80 A, although useful infor-
mation extends to ~40 A.

The two remaining data sets were collected in order
to test the influence of the section thickness on the res-
olution. Both were single-axis tilt series; the first was
collected in the range from —60° to +60° the second
from —60° to +56° both in 1° steps. The section thick-
ness was 110 and 60nm, respectively, with all other
microscopy settings the same as in the case of double-tilt
reconstruction. For each set, the 3D SSNR was calcu-
lated for two selected viruses (Figs. 7b and c.) The res-
olution of the 60-nm reconstruction is noticeably better
than the resolution of 110 nm and the curve extends to
nearly 20 A. Moreover, the resolution of the double-tilt
reconstruction is, as expected, markedly higher than the
resolution of the single-tilt reconstruction with the same
section thickness. Therefore, it can be concluded that a
combination of a better data collection strategy with an
appropriate choice of the section thickness should result
in further improvement in resolution of the tomographic
reconstructions.

6. Evaluation of the resolution anisotropy of single-
particle reconstructions by the 3D SSNR

In the single-particle analysis, the structural infor-
mation about the macromolecule is obtained by aver-
aging multiple copies of various 2D views of presumably
the same object. The distribution of orientations of the
particle views on the support grid is not determined by
the data collection geometry, as in the case of tomog-
raphy, but by various factors that remain mostly beyond
experimental control. These factors may include the
hydrophobicity of the macromolecules and their inter-
actions with the supporting grid and with the water
surface. As a result, in most cases the distribution of
particle views is nonuniform. This has a major impact
on the quality of the 3D reconstructions. For some re-
construction algorithms, such a nonuniform distribution
of projections may result in directional artifacts, par-
ticularly if the reconstruction parameters are not ad-
justed properly (Boisset et al., 1998). In general, for any
reconstruction algorithm, an uneven distribution of
projections will result in an uneven distribution of
SSNR in the reconstructed volume, which in turn will
cause elongation-like artifacts in real space. Therefore, it
is essential that the distribution of projections is moni-
tored, particularly during the 3D projection refinement
procedure (Penczek et al., 1994). The difficulty is that
the relation between the distribution of projections and
the associated distribution of SSNR in 3D Fourier space



P.A. Penczek | Journal of Structural Biology 138 (2002) 34—46 43

7100 7750 130 7750

0.75

0.50 F

0.25}F

0.00

7750

0.75

0.00

77100 7750

750 7750

Fig. 7. Resolution estimation for tomographic reconstructions of a Semliki Forest virus in situ. (a) Double-tilt reconstruction, section thickness
110 nm. (b) Single-tilt reconstruction, section thickness 110 nm. (c) Single-tilt reconstruction, section thickness 60 nm.

is not straightforward. For noise-free projection data,
it is true that the uniform distribution of projection
views is a necessary condition for a full coverage of 3D
Fourier space, but the converse is not true. Many pos-
sible nonuniform projection geometries result in a full
coverage of Fourier space (Orlov, 1976). An extreme
example is the full-range single-axis tilt geometry. The
situation is even more complicated for projection data
corrupted by noise. In such a case, while the distribution
of projections is easily evaluated [see Fig. 10 in (Penczek
et al., 1994)], the more relevant distribution of signal in
3D Fourier space can be assessed only with the help of
the 3D SSNR measure introduced in the previous sec-
tion.

The SSNR per Fourier voxel is derived as in Eqs.
(26)—(30) by omitting the summation over the same-
frequency components and is given by

s~ | S W
SSNR,,(n) = &4+ —1. (31)

Ky,—1 wn 2
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Equation (31) yields a 3D map of SSNR,, values. The
map is centrosymmetric; i.e., SSNR,, (k) = SSNR,,(—k),
and thus, its 3D shape can be conveniently characterized
by a 3D inertia covariance matrix (Pratt, 1992):

ki kky o ke
C=> SSNR, (k)| kk, Kk Kk |. (32)
k k. k. K

Matrix C is a symmetric, positive definite matrix; thus,
it has three nonnegative real eigenvalues and associated
real eigenvectors. The square roots of the eigenvalues
A = /3 = 3 correspond to the lengths of principal axes
of the ellipsoid that approximates the shape of the dis-
tribution of the 3D SSNR, and the eigenvectors yield the
directions of the axes. The distribution of the SSNR is
characterized by the three anisotropy indices

_ Vu .
aui(\/i—l—i-\//l_z-l-m)/?” u=172,3, (33)

with a; = @y = a; =1 meaning the desired, isotropic
distribution of the SSNR.
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After the 3D reconstruction and corresponding
SSNR are calculated, the anisotropy indices and the
directions of main axes are used to design a low-pass
filter. Unlike standard, spherically shaped filters, a
general ellipsoidal shape is used. In this way, the re-
sulting SNR in real space is optimized without inducing
undesired artifacts, which might be caused by more
complicated filter shapes. For symmetric objects, the
SSNR analysis becomes more elaborate, as the segment
of the 3D SSNR space corresponding to the unique
range of Eulerian angles must be mapped onto whole
space. As an example, for the C, symmetry group the
range for the azimuthal angle is 360/n degrees. After the
inertia covariance matrix is calculated and both the main
axes and their directions are found, they must be map-
ped back into the unique range and the filter is designed
as a superposition of multiple ellipsoids.

The distribution of 3D SSNR was calculated and
visualized for a set of 3740 Eulerian angles taken from a
single-particle analysis of an asymmetric structure
(Fig. 8). The anisotropy indices are a; = 1.03,a, = 1.01,
as = 0.97, where the numbers correspond to the main
axes in Fig. 8. Thus, the distribution of the SSNR is
slightly flattened and the resolution in the direction of
the third main axes is the worst. In terms of real space
effects, it can be expected that the structure will be
elongated in this direction, while the structural details
will be resolved best in the direction of the first main axis

Fig. 8. Three-dimensional distribution of SSNR for a 3D reconstruc-
tion calculated using a set of 3740 Eulerian angles taken from a single-
particle analysis of an asymmetric structure. X, Y, Z indicate the
original Cartesian coordinates used to calculate the structure and 3D
SSNR. Digits correspond to main axes of the distribution of the 3D
SSNR.

of the SSNR distribution. As expected, the directions of
the main axes of the SSNR distribution are unrelated to
the directions of the original system of coordinates.

7. Conclusions

Measures of consistency of 3D reconstructions are of
major importance in single-particle analysis and in tom-
ography. They provide an objective way to evaluate
the quality of the results and, when used properly, are
helpful in constructing low-pass filters that eliminate
excessive noise from the reconstructed structure. Al-
though it is generally agreed that resolution measures
are indispensable in single-particle analysis, the practice
of resolution estimation varies considerably and it re-
mains a source of intense discussions (van Heel et al.,
2000). Briefly, different cut-off levels for resolution
claims have been vigorously defended; it remained un-
clear what was the influence of splitting of the data set
into halves for FSC estimation and whether this step
should be taken before or after the refinement of ori-
entation parameters; finally, the impact of various image
processing steps—including the alignment of the data set
itself—has been discussed.

It can be argued that the SSNR provides, at least
conceptually, the most straightforward approach to the
concept of consistency (or resolution) of the data set.
This measure yields ratios of power of the spectral signal
to the power of spectral noise for predefined frequency
ranges. Thus, in analogy to real-space SNR consider-
ations, the useful information requirement is that the
level of signal should exceed the level of noise. This leads
to a sensible “resolution” criterion; namely, that the
limit of reliable information is at the level of SSNR =1
or, equivalently, at FSC = 1/3 [see Eq. (11)]. The in-
terpretation of this requirement is unambiguous: due to
the linear property of the Fourier transformation, in-
clusion of Fourier terms with SSNR below 1 will corrupt
the real-space map by noise-dominated components.

According to the analysis presented, the SSNR-based
estimate of the spectral signal-to-noise ratio in the data
set has a lower statistical uncertainty than the FSC-based
estimate of this ratio. The exception is the region of very
low SNR, in which both measures are largely equivalent.
Thus, because there is a direct relation between the two
measures, FSC can be used for evaluation of the spectral
signal-to-noise ratio in the data set equally as well as the
SSNR. Finally, it was demonstrated that the bias in FSC
estimation caused by using averages drawn from the
same data set is negligible, in terms of both the FSC
value and its variance. Thus, it must be concluded that,
unless the uncertainty about the performance of the
alignment procedure is a factor, the FSC can be applied
with high confidence to the resolution estimation of a
data set refined as a whole. It also follows that, whenever
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applicable, FSC should be given preference over 3D
SSNR for the simple reason that FSC can be used for
structures obtained with any 3D reconstruction algo-
rithm, while the 3D SSNR was defined only for a class of
Fourier space interpolation-based reconstruction meth-
ods. The exception is tomography, where due to the
small number of projections, FSC would yield mislead-
ing results. In this case, 3D SSNR is the only measure
that can provide a reliable resolution estimation.

The major shortcoming shared by all the available
resolution measures is their inability to distinguish be-
tween ‘“‘true’ signal and the correlated noise component
(Grigorieff, 2000). The latter is caused by the alignment
procedures used to orient in 3D space 2D projections of
unknown structure. While the SSNR does not resolve
the signal versus noise problem, it yields another im-
portant piece of information, namely, the distribution of
the variance in 3D Fourier space. This, in principle,
should provide a basis for distinction between various
contributions to the observed signal.

In addition to resolution as a function of 1D fre-
quency, the 3D SSNR provides an estimate of the sig-
nal-to-noise ratio for each Fourier component. Based on
the 3D distribution of the SSNR, it is possible to eval-
uate the anisotropy of the resolution of the 3D structure.
As demonstrated, this anisotropy is not necessarily re-
lated to the distribution of angular directions of 2D
projections used to calculate the structure. Thus, the
examination of the distribution of the 3D SSNR is the
only possible way to detect related real-space artifacts.
The severity of these artifacts can be quantified by the
calculation of anisotropy indices of the 3D SSNR map.

The 3D SSNR has been implemented in the SPIDER
image processing system (Frank et al., 1996) and the
scripts related to the resolution estimation for tomo-
graphic reconstructions are available at http://www.
wadsworth.org/spider_doc/spider/docs/spider_avail.html.
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