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Three-dimensional reconstruction from electron
micrographs requires the selection of many single-
particle projection images; more than 10 000 are
generally required to obtain 5- to 10-Å structural
resolution. Consequently, various automatic detec-
tion algorithms have been developed and success-
fully applied to large symmetric protein complexes.
This paper presents a new automated particle rec-
ognition and pickup procedure based on the three-
layer neural network that has a large application
range than other automated procedures. Its use for
both faint and noisy electron micrographs is dem-
onstrated. The method requires only 200 selected
particles as learning data and is able to detect im-
ages of proteins as small as 200 kDa. © 2002 Elsevier

Science (USA)
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INTRODUCTION

The availability of well-ordered two- or three-di-
mensional (3-D)1 crystals allows protein structure to
be determined by electron (Henderson et al., 1990;
Murata et al., 2000) or X-ray crystallography
(Deisenhofer et al., 1984), respectively. However,
such crystals are difficult to obtain, especially for
membrane proteins. An alternative is to analyze
electron microscopy images of randomly oriented
protein particles (Orlova et al., 1996). In this case,
image-averaging procedures (Frank et al., 1978; van
Heel and Frank, 1981) improve the signal-to-noise
ratio allowing resolutions between 5 and 10 Å to be
obtained (Bottcher et al., 1997; Conway et al., 1997;
Matadeen et al., 1999; van Heel et al., 2000). The

1 Abbreviations used: 3-D, three-dimensional; cryo-EM, cryo-
electron microscopy; NN, neural network; SD, standard devia-

tion; TEM, transmission electron microscopy.
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technique has been widely applied to negatively
stained samples (Frank et al., 1982; Phipps et al.,
1993; Sato et al., 1998) and in more recent years to
cryoelectron microscopy (cryo-EM) images where
the contrast between protein and ice is minimal
(Radermacher et al., 1994; Serysheva et al., 1995;
Sato et al., 2001). The selection of a large number of
particles from the micrographs is a prerequisite for
success. For example, more than 10 000 images of an
asymmetric 200-kDa protein had to be manually
selected from cryo-EM micrographs to obtain the
structure to 19 Å (Sato et al., 2001). Clearly the use
of an automated particle pickup algorithm would
allow this tedious and rather subjective procedure to
be avoided.

Several particle detection algorithms have been
devised (Frank and Wagenknecht, 1984; Lata et al.,
1995; Thuman-Commike and Chiu, 1996; Boier
Martin et al., 1997; Ludtke et al., 1999). These meth-
ods are classified into three types: the first is a
cross-correlation method with reference images
(Frank and Wagenknecht, 1984; Thuman-Commike
and Chiu, 1996; Ludtke et al., 1999); the second is a
combination method of convolution with a Gaussian
function and discriminant analysis (Lata et al.,
1995); and the third is a cross-point method (Boier
Martin et al., 1997). The correlation methods have
been used mainly to select highly symmetrical virus
or large protein particles. Accordingly, a reliable
reference could be obtained by symmetrization.
They showed few results applied to detect asymmet-
ric particles. In this case, multireferences corre-
sponding to the particle rotated at various Euler
angles must be employed. The weak signals arising
from small asymmetric proteins with masses be-
tween 100 and 300 kDa are difficult to detect by such
methods. However, the structure of exactly these
proteins is frequently of prime importance for fun-
damental biology as well as for applications such as
drug development. In the present paper we report

the development of a reference-free, high-precision
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particle recognition and pickup procedure that is
applicable to small asymmetric proteins. It is based
on the neural network (NN) system (Rosenblatt,
1961; Minsky and Papert, 1969; Rumelhart et al.,
1986), a powerful algorithm that has solved many
pattern recognition problems (Kammerer and Kup-
per, 1990; Hasegawa et al., 1996) including oral lan-
guage recognition (Trentin and Gori, 2001). The NN
has many types of network structures and algo-
rithms (Ritter et al., 1992). We find that the three-
layer pyramidal-type structure with the back-prop-
agation algorithm accomplishes high-recognition
accuracy in the pickup task.

MATERIALS AND METHODS

Purification of the sodium channels and electron microscopy.
The extraction of voltage-sensitive sodium channels from the
electric organ of Electrophorous electricus eels and their purifica-
tion have been described previously (Sato et al., 1998, 2001). The
images recorded from negatively stained samples using a Hitachi
H7000 electron microscope at an acceleration voltage of 100 kV
(Sato et al., 1998) and from unstained cryo samples using a
JEM3000SFF electron microscope at an acceleration voltage of
300 kV (Fujiyoshi, 1998; Sato et al., 2001) were used to test the
NN method. The pixel size of the micrographs was 6.25 and 2.83
Å, respectively, and the applied underfocus values for cryo sam-
ples ranged from 3.7 to 7.6 �m.

Construction of the NN. A multilayer NN consists of three
types of layers: an input layer, a hidden layer, and an output
layer (Fig. 1). We designated a pyramidal-type neural network
structure, in which the units in each layer consist of 1600 or 1024
units (input layer), 81 units (hidden layer), and 1 unit (output
layer). The units of the input layer receive the corresponding pixel
density of the input image. In this process, the real calculations
were done on simplified one-dimensional lined units instead of
the two-dimensional arrayed units. Thereby, the information is
simplified by the conversion of the input image data of the two-
dimensional array into that of a one-dimensional input unit line.
Each unit of the input layer has a linear function at the output.
Therefore, outputs of the units are equal to the received input
pixel densities:

yinp�i * N � j� � pi, j. (1)

Here, pi,j is the input pixel density of an image, whereas yinp is
the output of the input layer unit. i and j are the lateral and
horizontal positions of the input images, respectively.

N is the lateral and/or horizontal size of the input image (in this
case 40 or 32) and (i * N � j) is the linear position of its output.
In the equations, generally y means output, whereas x means
input of a unit.

In the next hidden layer, every unit in the hidden layer receives
weighted inputs from all units in the input layer

xhid(l) � �
k�1

N � N

whid�l,k� � yinp�k� � wave�l � � p� � �l (2)

p� �
1

N2 �
i�1

N �
j�1

N

pi, j (3)

�l � wbias�l � � 1 (4)

where xhid(l) is the total input of a hidden layer unit from the input
layer units and from the average and bias unit, whid(l,k) is the
weight between the hidden layer and the input layer unit, and
Wave(l) is the weight between the hidden layer and the average of
the input image (p� ). �l is a bias input, and it can be considered
equivalent to its weight (wbias) because the output of the bias unit
is always 1. k is a position in the input layer units, whereas l is a
position in the hidden layer units. The hidden layer units have a
sigmoidal function at the output:

yhid�l � �
1

1 � exp��xhid(l))
. (5)

While each unit in the input layer transmits signals to all units
in the hidden layer, each unit of the hidden layer uses a single
output to transmit its information further to an output layer unit.
The NN output (yout) was calculated using the following equa-
tions:

xout � �
l�1

L

wout�l � � yhid�l � � �out (6)

�out � wbias(out) � 1 (7)

yout �
1

1 � exp��xout)
. (8)

Similarly xout is the total input of an output unit. wout(l) is the
weight between the output layer and the hidden layer, and �out is
the bias input to the output layer. L is the total number of hidden
layer units (9 � 9 units). The back-propagation algorithm adjusts
the connection weights (whid(l,k) and wout(l)), offset weights (wbias(l)

and wbias(out)), and weights of the input image average (Wave(l)).
The three-layer NN employed was constructed to achieve au-

tomatic particle selection independent of a predefined reference.
The outputs from each unit in the hidden layer and from the
single unit of the output layer were sigmoidal functions of their
total inputs. A bias of 1 could be weighted and applied to the
inputs of all hidden and output layer units. Weights initially
ranging from �0.5 to 0.5 at first allowed the signals transferred
between the three layers to be adjusted during the training pro-
cess by a back-propagation algorithm (Rumelhart et al., 1986).
The average intensity of the input layer was also calculated.
Adjustment of the information to the hidden layer via an average
unit enabled robust particle detection regardless of shifts in the
individual input image averages. The number of neurons used in
the input layer depended on the size of the particles to be recog-
nized. In the present case, 32 � 32 and 40 � 40 units were
required to detect particles on the negatively stained and
cryo-EM micrographs, respectively; 9 � 9 units were adopted for
the hidden layer for both types of images.

Image processing. The intensities of the input digital images
to the NN were normalized to values between 0 and 1 to match
the output value range and to eliminate the gap of average
intensity of each EM image. For the negative stain images the
average value of the entire EM image intensity was first sub-
tracted from each pixel. After the addition of 256, the pixel values
were then divided by 512. The sizes of the cryo-EM images were
reduced by half before 2D normalization and a high-pass filter
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was applied (31 � 31 pixels; cut-off frequency 0.05). For normal-
ization, after subtraction of the average image intensity from the
entire image, 4 times the SD was added. Each pixel value was
then divided by 8 times the SD. Since these image processings are
linear conversions, the resulting particle images have shifts only
in the distributions of their pixel densities.

Learning process. The learning process of the NN consisted of
repeatedly presenting input and output data to the network
whereby the actual output was compared to the desired output
using a back-propagation algorithm. The NN learned the nega-
tively stained images or cryo-EM images to produce a specific NN
recognition system for the pickup task. In this process, 200 par-
ticle images were manually selected from each micrograph set to
serve as a positive learning data set (desired output 1). The 200
particle images are divided into four groups of 50 images each
(Fig. 2). The required negative learning data set (desired output
0) was created from two different kinds of artificial random noise,
normally distributed and uniformly distributed random noise
(Fig. 2, bottom right), in order to improve the recognition accu-
racy. The normally distributed noise parameter was set to a mean
value of 0.45–0.55 and to a SD of 0.2. The uniformly distributed
noise images were set to a brightness range between 0.25 and
0.75. Each learning data set was a mixture of the single-particle
image rotated at 90° increments to create four images, two nor-
mally distributed noise images and two uniformly distributed
noise images (Fig. 2, bottom).

For the training process, the density of each pixel of an input
image was read to a corresponding input layer neuron whereby
the desired output was set to 1 for each interactively selected
particle image indicating correct data and to 0 for each random
noise image indicating incorrect data. The average value of the
input layer was also calculated and transferred to an average unit
and further to the hidden layer. The weights used to transfer
information between individual neurons of the input, hidden, and
output layers were initially randomly but uniformly distributed
between �0.5 and 0.5. They were adjusted after each new input
image by back-propagation, which compares the output with the
desired result, being changed by a learning rate of 0.05 toward
the direction to minimize the sum of the squared errors until the
optimum value had been attained (Rumelhart et al., 1986).

In the first training step a learning data set of 400 learning
images (200 rotationally created single-particle images and 200
noise images) was repeatedly presented to the NN until the
average mean square error was 0.01–0.003. To optimize the net-
work weighting further, a new set of 400 learning images was
then presented and the procedure repeated and so on until all 200
particle learning images had been included (four cycles). The
whole 4-step cycle (one turn) was further repeated 20 times using
the same particle images and newly generated noise images (Fig.
3a). In total 16 000 noise images were employed for the training.

Pickup procedures. The recognition and selection of particle
images in the large area of an electron micrograph were done in
three steps: (1) A square area of defined size was extracted from
the micrograph. (2) Either its correlation with the references
(cross-correlation method), fitted to the Gaussian peak, or its NN
output (NN method) was calculated and the values were entered
on the corresponding map. Steps (1) and (2) were repeated, shift-
ing the square region by one pixel until the whole micrograph had
been scanned and mapped. Finally, (3) the maxima on the map
were identified and the corresponding square regions extracted
from the original micrograph.

Image analysis system. All filtering and NN learning pro-
cesses were performed with the image-processing toolbox of Mat-
lab Version 6 (MathWorks, Inc.) on a personal computer running
Windows 98 (Pentium III, 800 MHz, 512 Mb RAM). The three-
layer NN was programmed using the Matlab script M-files.

RESULTS

A flow diagram outlining NN learning and auto-
mated particle recognition and pickup procedure
which we have developed is shown in Fig. 1a. A
three-layer NN structure was adopted (Fig. 1b). In
the first step, examples of the randomly oriented
protein particles are manually selected from the fil-
tered electron micrographs. The learning data set
for one cycle was a mixture of the rotated particle
images and artificially generated random noise im-
ages (Fig. 2). This learning data set was employed
for the neuronal learning process (see Materials and
Methods), which consists of repeatedly presenting
learning data sets to the network and comparing the
output from the output unit with the desired output
by back-propagation until the best connection
weights among the three layers have been defined
(Fig. 3a). For this process, outputs of 0 and 1 define
the images as noise or particle, respectively. A learn-
ing error is increased by the replacement of the
learning data set and decreased by the repeated
learning of one data set. Therefore, the time course
of the learning error exhibits a curve just like the
teeth on a saw (Fig. 3b). After training, the NN
contains the features of the particle structure in
terms of the connection weights employed on read-
ing the input data into the central hidden layer.
That is, interpreting these connection weights as
pixel densities, the two-dimensional shapes stored
in the connections (recognition images; Fig. 3c) are
comparable to average projections of the single par-
ticle viewed at various Euler angles (reported in
Sato et al., 1998, 2001).

The accuracy of the NN method of particle pickup
is compared to that of conventional correlation tech-
niques in Fig. 4. The same particle and background
noise images interactively selected from micro-
graphs of sodium channel proteins were analyzed by
the two techniques, the NN method and the cross-
correlation particle recognition method. In both
cases they were distinguished when they arose from
negatively stained samples as documented by the
traces and histograms shown in Fig. 4a. The corre-
lation values of the particle and noise images from
these high-contrast micrographs range from 0.26 to
0.78 and from 0.09 to 0.35, respectively, and the two
histogram peaks can be separated at a 0.32 border
value. However, particles and noise were even more
precisely distinguished by the NN procedure. The
results are distributed into sharp peaks at 1 (parti-
cle) and 0 (noise) showing NN recognition to be
extremely reliable. In contrast, only the NN method
was able to reliably distinguish between the channel
particles and background noise on the low-contrast
micrographs recorded from unstained samples by
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cryo-EM, as shown in Fig. 4b. In this case the cor-
relation values obtained for particle and noise im-
ages are almost identical, whereas NN analysis still
yields a comparatively clear-cut result. Although
there is a margin of uncertainty, 59.2% of all particle
images and 95.0% of all noise images are correctly
distinguished when the border value is taken to be
0.74 on the output scale.

The selection accuracies of the NN and cross-cor-
relation particle recognition methods when applied
to scan micrographs of negatively stained sodium
channel proteins are compared in Fig. 5. The corre-
lation method, using average images as references,
yielded a correlation map with a distribution of low
peaks surrounded by comparatively high back-
ground noise (Fig. 5a). Almost all particles were
recognized (Fig. 5b). The output map from the NN
method (Fig. 5c) exhibited well-defined peaks above
almost zero background, making particle recogni-
tion very efficient (Fig. 5d). Furthermore, the convo-
lution method with a Gaussian function, where the
width is set to fit the diameter of the sodium chan-

nel, showed a smooth undulating image (Fig. 5e). Its
peak points are biased in certain areas and corre-
spond to the background noise in most cases (Fig.
5f). Therefore, the result is even worse than the
correlation method and the NN method.

This difference from the correlation map is illus-
trated by the histograms displayed in Fig. 5g. While
the correlation values have a normal distribution,
the NN map densities form a sharp peak at zero
with a long tail toward positive values. A significant
difference between the two methods is illustrated by
their detection of the protein dimer present in the
micrograph shown in Fig. 5. While this is recognized
as a single particle by the correlation method (Figs.
5b and 5h, middle), NN analysis correctly detects
the presence of two protein particles (Figs. 5d and
5h, right).

The selection accuracies were similarly tested us-
ing low-contrast cryo-EM images of unstained so-
dium channel proteins. The correlation maps exhib-
ited high background noise above which the faint
maxima corresponding to particles could not be re-

FIG. 1. NN particle picking. (a) Flow diagram outlining the learning and automated particle pickup procedure. The learning process
surrounded by the gray line is shown in more detail in Fig. 3a. (b) Schematic representation of the three-layer NN and its learning process.
The learning and recognition images are read into and set in the input layer and propagated to the next layer by the connection weights
between the units. The connection weights are adjusted by the back-propagation algorithm to minimize the difference between the actual
output and the desired output. The unit shown to the left of the input layer is the bias and to the right the average. The former has the
value 1 and the latter is the average value of the input image. The unit shown to the left of the hidden layer also has a bias of value 1
and is weighted similarly and transmitted to the output. Examples from a typical micrograph learning set are shown in the inset.
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liably distinguished (Fig. 6a). Indeed, even those
regions with the highest correlation values fre-
quently contained only noise (Fig. 6b; n � 20). NN
analysis of the same images resulted in maps exhib-

iting many clear peaks (Fig. 6c). Regions yielding
output values above 0.98 (n � 20 for Fig. 6c) were
recognized as particles. When examined, 95% of
these regions were found to contain well-defined

FIG. 2. A schematic diagram for the creation of a learning data set. It was created basically from 200 manually selected single-particle
images, which were partitioned into four groups. The 50 single-particle images in a group were rotated clockwise 90°, 180°, and 270°, to
create 200 images. Each learning data set was a mixture of the rotated images, 100 normally distributed noise images, and 100 uniformly
distributed noise images. A learning data group contains 1600 images in total.
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particles (Fig. 6d). This was similar for a further five
images; between 90 and 95% of the regions with
output values above 0.98 contained well-defined par-
ticles. For the micrograph shown in Fig. 6, only four
regions corresponded to regions picked by the corre-
lation method (Fig. 6d, asterisks). Further, the con-
volution method with the Gaussian function showed
several broad peak points (Fig. 6e). These peak
points included several good particles (Fig. 6f). The
selection accuracy was not as good as the NN and
almost similar to that of the correlation method.

Five examples of particles picked up by the NN
method are shown in Fig. 6g together with corre-
sponding views of the current 3-D model (Sato et al.,
2001). The comparative robustness of the NN
method is documented by the histograms shown in

Fig. 6h. Again the correlation values have a normal
distribution with a short tail. Although the NN map
densities are distributed over the whole range, there
are sharp peaks at 0 with a long tail toward 1 arising
from regions clearly identified as noise and particles,
respectively.

As a final test, a cryo-EM image of a thin ice layer
without single particles (Fig. 7a) was examined by
both methods. Back projections of the sodium chan-
nel model were used as references for the cross-
correlation (Fig. 7b). The resulting map was very
similar to that shown in Fig. 6a, which was calcu-
lated for a cryo-EM micrograph where particles were
present. This confirms that in the cross-correlation,
regions selected as particles generally just contained
background noise. Indeed, the highest correlation

FIG. 3. Detail of the learning process and the features of the particle stored in terms of connection weights. (a) A flow chart of the
primary learning process of the NN. The flow chart shows details of the part surrounded by the gray line in Fig. 1a. (b) The changes of
the sum of the squared errors at learning cycles. In total, the errors are decreased gradually by repeated learning; however, the
replacement of a learning data set increases it temporarily. (c) Examples of visualized features of the two-dimensional filters stored in
terms of connection weights between the hidden and input layers after the training (20 turns). Each image represents the connection
weights of the hidden unit from the input layer units. Those in the upper panels arise from negatively stained protein particles and those
in the lower panels from the unstained protein particles by cryo-EM.
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FIG. 4. Ability of the NN and cross-correlation methods to distinguish between single particles and background noise. Both analysis
methods were applied to 500 particle images and 500 background noise images interactively selected from the micrographs. (a) Results
for micrographs of negatively stained sodium channels obtained by conventional transition electron microscopy. The five average
projection images shown (Sato et al., 1998) (top left) were rotated clockwise through 360°, by 2° increments to provide a total of 900
reference images for the cross-correlation. The graphs display the maximum cross-correlation value and NN output for each particle (red
lines) and background noise (black lines) image. The x-axis indicates the image sequence. Histograms of the outputs are shown on the
right. Here, the x-axis indicates the total number of images with a given value. Although the cross-correlation method can distinguish
between particles and background noise the NN method is clearly the more reliable. (Bottom left) The 5 images with the highest NN
values (0.996–1.0); the particles are well defined. (Bottom right) The 5 particle images with the lowest NN values (0.306–0.403); the
particles are difficult to distinguish. (b) Results for micrographs of unstained sodium channels obtained by cryo-EM. Data as in (a) except
that the 10 references shown were the projections of the model (Sato et al., 2001) and rotated clockwise through 360° by 2° increments
to generate 1800 references for the cross-correlation. From the histograms it is quite clear that while particles and noise are not
distinguishable by cross-correlation they are still reliably separated by the NN method. (Bottom left) The 5 images with the highest NN values
(1); the particles are visible. (Bottom right) The 5 particle images with the lowest NN values (0); the particles are barely distinguishable.
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found in the absence of particles was 0.219 (Fig. 7d)
and in their presence 0.227. This small difference of
3.5% proves that most of the signal arising from
particles overlaps with that arising from noise (as
already demonstrated in Fig. 4b), making the two
almost impossible to distinguish by this method.
The NN output map for the empty ice layer (Fig. 7c)
is markedly different from that obtained when par-
ticles are present (Fig. 6c). Accordingly its maximum
value was only 0.453 compared to the 1.0 value
obtained when particles were present. This large
difference, 54.7%, means that particles can be reli-
ably distinguished from background noise.

In general, increasing the electron accelerating
voltage and decreasing the amount of defocus used
to record micrographs increases their resolution.
However, under these conditions contrast is de-
creased, making small proteins such as 200-kDa
sodium channels even more difficult to discern on
cryo-EM micrographs. However, after learning from
images recorded at large defocus, the NN could also
recognize such particles on micrographs recorded at
1-�m defocus with an omega filter to decrease back-
ground noise (data not shown).

DISCUSSION

At present, the resolution achieved by single-par-
ticle analysis is limited by the number of projection
images available and the generally large defocus
used to record them. Particle recognition and selec-
tion programs are indispensable tools. However, a
recognition program capable of reliably detecting
symmetric and asymmetric protein particles even
when these are imaged at extremely low contrast is
lacking. As illustrated by the results presented, the
NN recognition method can fill this gap. Comparison
with the widely used, reference-dependent cross-cor-
relation technique (Frank and Wagenknecht, 1984;
Thuman-Commike and Chiu, 1996; Ludtke et al.,
1999) showed the NN method to be superior under
all of the conditions tested. In this essentially refer-

ence-free method, particle images interactively se-
lected by the operator and presented to the NN
together with artificially generated noise images
train the NN to identify the features of a particle.

In the NN method the connection weights as-
signed to the particle featured during training work
as template-matching filters, allowing particle rec-
ognition. The better the signs of the pixel densities
match those of the connection weights, the larger
the input into the hidden unit becomes. In the
present study, the NN makes 81 template-matching
filters (groups of connection weights) since 81 hid-
den units were adopted. The connection weight be-
tween the hidden layer and the output layer acts as
a mixer of each output created by the template filter
matching. Thereby, a limited number of template-
matching filters of 81 seems to work well even on a
particle projection of the intermediate Euler angle
from that of the filters. For the number of the unit in
the hidden layer of the NN, 81 seems accurate
enough to pickup the present pseudo-fourfold sym-
metric sodium channel. Thus, the net weight of the
layers defines image fields as particles or noise and
indicates the precision of the assignment; the closer
the value is to �1, the better the match to the
particle templates. This higher precision of the NN
is most likely due to the automatically designed
many matching filters and to the sigmoidal func-
tions for the hidden and output layers. After the
initial learning process, training of the NN can be
continued as required and the selection accuracy
improved by using further training data sets com-
prised of automatically picked particles. Although
the initial interactive selection of the required num-
ber of particle images (approximately 200) is time-
consuming, it is more objective than creating a ref-
erence from a small number of the faint images of
small proteins obtained by cryo-EM.

The detection accuracy of the convolution method
with a Gaussian function decreased when it was
stained. The accuracy of this method seems to be

FIG. 5. Selection accuracy of the NN and cross-correlation particle recognition methods when applied to micrographs of negatively
stained proteins. (a) Typical correlation map obtained using the 900 references generated by rotating five average projection images (Fig.
4a) clockwise through 360° by increments of 2°. A mean filter of 5 � 5 was applied to aid recognition. The white square indicates the
position of a protein dimer. (b) Particle selection on the corresponding micrograph. The selected particles, marked by squares, correspond
to the 40 highest peaks on the map. The arrow indicates the protein dimer that correlated as a single particle. (c) Output map obtained
from the same micrograph by the NN method. A mean filter of 5 � 5 was applied. Particles appear as well-defined bright spots, two of
which indicate the position of the dimer (white square). (d) Particle selection by the NN method. As in (b) the 40 highest peaks on the map
were used. The selected particles are marked by squares. Most correspond to those selected by cross-correlation. However, in this case the
protein dimer is selected as two monomers (arrow). (e) Output map obtained from the same micrograph by the convolution method with
a Gaussian function. The width of the Gaussian function fits the particle size (20 pixels). (f) Particle selection by the convolution method.
The selected areas are almost without particles. The scale bar represents 200 Å. (g) Histograms of the maps shown in (a) and (c). The
correlation values form a normal distribution (left), whereas the NN map densities (right) give rise to a sharp peak at zero with a long
tail toward positive values. The arrows indicate their maximum values and the error bars the variation (standard deviation, SD) of the
maximum values of these and a further five maps. (h) The protein dimer and its detection by the correlation and NN methods.
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FIG. 6. Selection accuracy of the NN and cross-correlation particle recognition methods when applied to micrographs of unstained
sodium channels recorded by cryo-EM. (a) Typical correlation map obtained using 1800 references generated by rotating 10 average
density images (Fig. 4b) clockwise through 360° by increments of 2°. A median filter of 3 � 3 was followed by a mean filter of 5 � 5 to aid
recognition. (b) Particle selection on the corresponding micrograph. The selected particles, marked by white squares, correspond to the 20
highest peaks on the map, which has a maximum value of 0.227. (c) Output map obtained from the same micrograph by the NN method.
A median filter of 7 � 7 was followed by a mean filter of 9 � 9 to minimize the effect of very sharp erroneous peak which is rarely observed
in the background noise (Fig. 4b, lower NN traces). (d) Particle selection by the NN method. As in (b) the 20 highest peaks on the map
were used; map maximum 1.0. The selected particles are marked by white squares. Only a few of the regions (marked with asterisks) are
the same as those selected by cross-correlation. (e) Output map obtained from the same micrograph by the convolution method with a
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easily influenced by the high background noise cre-
ated by the staining. Furthermore, the failure to
detect a particle image by this method might be due
to the special internal structure of the sodium chan-
nel since it has a central core surrounded by an
internal cavity and further by an outer shell (Sato et
al., 2001).

The single-particle images adopted for the train-
ing are the projections of a sodium channel which is
oriented almost randomly (Sato et al., 2001). There-
fore, the present NN pickup method works best
when the user arbitrarily picks up enough single
particles in the EM image. When the user facti-
tiously chose a certain kind of single-particle image

of a certain Euler angle, the NN had a tendency to
show a biased selection, too (data not shown). How-
ever, we think this shortcoming has the possibility of
becoming an advantage, since the bias could lead to
the classification of single-particle images during
the pickup task by selected learning data. Certainly
some kinds of proteins are known to possess a biased
particle direction in the thin buffer layer formed in a
holey carbon grid. In such a case, more learning
images would be required to cover various Euler
angles.

In conclusion, the NN particle pickup method pro-
vides a much-needed tool that allows fast and reli-
able particle recognition of images recorded at a

FIG. 7. Selection accuracy of the NN and cross-correlation particle recognition methods when applied to a micrograph of thin ice alone
(no protein sample) recorded by cryo-EM. (a) The test micrograph. The scale bar represents 200 Å. (b) Correlation map obtained using the
1800 references generated for sodium channel recognition on cryo-EM micrographs. As in Fig. 6a, a median filter of 3 � 3 was followed
by a mean filter of 5 � 5 to aid recognition. Note the marked similarity of the two maps. (c) Output map obtained by the NN method. As
in Fig. 6c, a median filter of 7 � 7 was followed by a mean filter of 9 � 9. The two maps bear little similarity to one another. (d) Histograms
of the maps shown in (b) and (c). The correlation values form a normal distribution with a short tail (left), whereas the NN map densities
(right) give rise to a sharp peak at zero with a tail toward positive values. The arrows indicate their maximum values and the error bars
the variation (SD) of the maximum values of these and a further five corresponding maps.

Gaussian function. The width of the Gaussian function fits the particle size (24 pixels). (f) Particle selection by the convolution method.
The scale bar represents 200 Å. (g) Five particles selected by the NN method (top) together with corresponding views of the current 3-D
model (Sato et al., 2001) (bottom). (h) Histograms of the maps shown in (a) and (c). The correlation values form a normal distribution with
a short tail (left), whereas the NN map densities (right) give rise to a sharp peak at zero with a long tail toward positive values. The arrows
indicate their maximum values and the error bars the variation (SD) of the maximum values of these and a further five corresponding
maps.
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lower defocus condition required for higher resolu-
tion of smaller particles.
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