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7 Image Analysis of Electron Micrographs
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7.1 INTRODUCTION
7.1.1 Need for image processing

If electron microscope techniques were perfect, this chapter would be unnecessary. B-*
even the best conceivable instruments and techniques yield images with deficienas
some of which can be reduced by subsequent processing of the micrographs. In increas:rg
order of severity, the three most serious corrigible deficiencies are projection. loss N4
phase information and noise. Projection (i.e. the contribution of the entire thickness &
the specimen to the transmitted wave) and loss of phase information (which contrbuis
to the intensity of the image only when that is defocused enough to limit its resoluncr
can both, in principle, be corrected completely, provided there is no noise. But. at hig™
magnification, noise is unavoidable; we are allowed only a choice between its two ma:=~
sources. We can use an adequate exposure for the image, and the electrons will destroy
all high-resolution detail in the specimen*; or we can limit the exposure 1o preserne ety
specimen, and the “image” will consist of relatively few electrons with a somewhil
random distribution.

If we take the second option, the higher potential resolution of an undamaged specimsT
can be realized only by summing very many identical images. This is possible only <
the structure has a large number of identical repeating units—i.c. an accurdis.
undistorted, symmetry. If, however, the symmetry is low, we are forced to accepl the
first option, and the resolution is then limited by specimen damage. The type of symmetr}
present in the specimen thus determines both the optimal level of exposure (and e
of preparation), and also the extent to which the micrographs can be corrected. Thus
the most useful image-processing techniques exploit symmetries with the largest numb?
of repeating units: two-dimensional crystals and helices. At the lowest level, howeyer
where the particles are asymmetrical and disoriented, it is questionable whether imzg
correction will ever be able to proceed very far.

* This destruction is the consequence of two features of the electron: its low mass (giving a long warekr
unless its momentum is high, when there is sufficient energy to cause serious specimen damage): and
more. its charge (needed for focusing, but capable of ionizing the specimen). (Damage would be very
lower with, for example, ncutrons of thermal energies, but their use in a high-resolution microscops
almost insuperable technical difficulties.) In addition to the two basic, unavoidable sources of noise. ¢l
micrographs generally suffer from an additional (and even larger) noise resulting from irregularities 17
supporting film or in the negative stain.
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146 M. f. Moody

The processing of micrographs thus follows a logical sequence. First the symmetry
(if any) is determined, then it is exploited for image enhancement by averaging, and
finally the effects of projection are removed by combining the data from several different
images. The arrangement of sections in this chapter (after the first introductory one)
follows this order.

7.1.2  Previous accounts of the subject

The most detailed general references include the books by Misell (1978) and by Saxton
(1978); Baker’s (1981) bibliography lists the literature up to the end of 1979. More
recently, several excellent accounts of specific techniques have appeared; these will be
referred to in the appropriate sections of this chapter. By referring the reader to such
publications, it has been possible to prevent this chapter from growing to an even more
inordinate length. '

7.1.3  Purposes of this chapter

This chapter has two somewhat distinct purposes. First, it aims to introduce microscopists,
whose training has been biological rather than physical, to a series of techniques that
use relatively sophisticated mathematical methods. There are several reviews that cover
primarily the applications of image analysis. These include Crowther and Kiug (1975),
Acbi et al. (1982), Crowther (1982), and Aebi et al. (1984). Reference to these, or to
original papers, permits microscopists to judge the relevance of these techniques to their
own problems. If the techniques are relevant, and the microscopist wishes to understand
how they work, a clear and (preferably) non-mathematical introduction is then needed.
This chapter therefore starts with a long section outlining the techniques’ two main
theoretical pillars, symmetry-theory and Fourier transforms.

The second purpose is to survey all the image-analysis techniques, including the recent
ones, but concentrating particularly on those that have had the greatest number of
successful applications. An attempt has been made, both to survey them from a coherent
viewpoint (to make apparent their interconnections), and to make the main sections of
this survey as non-mathematical as possible. Although there are places where mathematics
is indispensable, these have been concentrated in a few parenthetical sections that can
be omitted without rendering the account incomprehensible. (These sections are
7.2.3(i)-7.2.4, 7.4.5(a), (b), 7.4.6(d), 7.4.7(b), 7.5.3(b), 7.5.3(d) and 7.6.4(c)~(d). The first
of these groups gathers together the mathematics of helical diffraction and of diffraction
from rotationally symmetric objects, topics for which there is no convenient summary.)

7.1.4 Starting image processing

Two very different classes of research worker, with very different needs, might embark
on using image-processing techniques. One class, the biological electron microscopist,
is probably best advised to collaborate, at least initially, with an established group,
though an understanding of the basis of the techniques would probably make the results
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of the collaboration more useful and relevant. The other class is a research group already
equipped in some area of molecular biophysics (such as crystailography or NMR) which
wishes to start processing electron micrographs. For hardware, they will need access to
an optical diffractometer, a microdensitometer giving accurate computer-readable data,
and a computer that is preferably above the 16-bit minicomputer level. (An output
device for displaying optical density arrays as pictures would also be very convenient.)
As for software, many packages are available; see the descriptions by Smith (1978),
Saxton et al. (1979), Frank et al. (1981), Trus and Steven ( 1981), Van Heel and Keegstra
(1981) and Hegerl and Altbauer (1982). In addition to these, the original software written
at Cambridge is now also installed and adapted at Brandeis University and at the EMBL

(Heidelberg).

7.2 BASIC PRINCIPLES
7.21 Outline of biological symmetry

In symmetry theory, as in any area of applied mathematics, one studies the mathematical
implications of a hypothesis that could be true in systems of interest; then experimental
tests of these implications can reveal the validity of the hypothesis. In symmetry theory,
the hypothesis concerns the arrangement of identical subunits {which may be single
macromolecules) in a larger aggregate. The hypothesis is that, being identical, these
subunits have no reason to become arranged in any way that differentiates between
them. All the subunits in the aggregate are thus supposed to be indistinguishable—not
only in their internal structure, but also in the ways in which they associate with their
neighbours. This indistinguishability is called equivalence. Identical proteins do not
invariably associate in this way; indeed, given the constant thermal movements within
protein molecules, it is most unfikely that any two “identicai” proteins could have the
same structure at any given moment. Nevertheless, many protein aggregates do show
the structures to be expected if their subunits were exactly equivalent, presumably because
the time-averaged properties are identical. This is most useful, since some sort of
symmetry is essential for the picture averaging required for high-resolution electron
microscopy.

We now look at the mathematical implications of the hypothesis of equivalence. An
aggregate of equivalent subunits will have symmetry: the aggregate will look exactly the
same after it has been moved in certain ways. For example, rotation about a certain
axis and by an appropriate angle may bring each subunit into exactly the position that
was previously occupied by another subunit. Movements that have this effect (symmetry
operations) cannot include reflections or inversions if the subunits contain only L-amino
acids or p-sugars. Then the only permitted symmctry operations arc rotations,
translations (i.e. uniform movements with no rotational component), and combinations
of them (screw displacements).

Only certain combinations of symmetry operations have the required self-consistency
to be realized in symmetrical aggregates. These permissible combinations are called
symmetry groups. Many symmetry groups contain, as subgroups, smaller permissible
combinations; for example, an object with six-fold rotational symmetry must also have
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two-fold rotational symmetry. The symmetry groups are best classified according to the
number of independent translations.

(a) Point-groups

When this number is zero, so that rotations are the only symmetry operations, we have
the point-groups. A single N-fold rotation axis constitutes the cyclic point-group C,,
the symmetry of a ring of subunits. If there is a double ring, which is the same when
turned upside-down (requiring two-fold axes perpendicular to the N-fold axis), we have
the dihedral point-group Dy. (Dihedral symmetry is often found in enzyme complexes,
and it s also the highest point-group symmetry that is consistent with helical symmetry.)
The remaining point-groups are the tetrahedral, octahedral and icosahedral groups,
named after the regular polyhedra which possess these point-group symmetries. The
icosahedral point-group, with 60 equivalent positions, describes the symmetry of many
spherical viruses, and special techniques have been developed to exploit this symmetry
for three-dimensional reconstruction from micrographs (Section 7.6).

(b) Line-groups

One independent translation generates, by itself, a line of subunits. (If such a line possesses
a two-fold axis, it is non-polar.) Aggregates of fibrous proteins (collagen, tropomyosin,
“etc.) often give band patterns with this sort of one-dimensional symmetry. They are
one-dimensional in projection, because the molecules are so flexible that order is easily
lost in the direction perpendicular to the fibre’s length. A different symmetry type is
given if the single independent translation is combined with a rotation to yield a screw
displacement. Repeated application of this gives helical symmetry. (The great biotogical
importance of this justifies a special section (7.2.3) for helical structures and their Fourier
transforms.) Certain types of helical symmetry apply to lattices, as well as to isolated
fibres. Of these, the most important is the two-fold screw axis. Successive subunits are
rotated by 180° about the helix axis, so that they point alternately to the left and right.
If such a structure is viewed in projection, the left- and right-pointing subunits appear
as mirror images. Such an arrangement is called a glide-line (see Fig. 7.52). (Note that,
although glide- or mirror-lines cannot apply to the three-dimensional structures of
biological macromolecules, they can apply to the projections of these structures.)

(c) Plane-groups

Two independent translations, without rotational symmetry, generate a sheet with the
symmetry of the plane-group pl. The shect can also have an overall rotational symmetry,
but only with two-, three-, four- or six-fold axes (giving the plane-groups p2, p3, p4 or
p6; International Tables for Crystallography, 1983). Aggregates of globular proteins can
give thin crystals whose images are based on these plane-groups. The most favourable
cascs for image analysis occur when the molecules form monolayers; these arise naturally
in some cell membranes and walls, especially in bacteria. Because of the distinction
between the interior and exterior of the cell, the two surfaces of such a monolayer display
quite different parts of the molecules, consistent with the plane-groups pl, p2, p3, p4 or
p6. But synthetic monolayer crytals that form in solution often show no such distinction
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between the two surfaces. This implies that there must be two-fold rotation- or screw-axes
relating the two surfaces, and the symmetry must be one of the two-sided plane groups
listed by Holser (1958).

(d) Space-groups

Finally we come to symmetries with three independent translations. These are the classical
crystallographic space-groups (International Tables for Crystallography, 1983).. As
before, operations (such as mirror- or glide-planes, or centres of symmetry) that change
chirality cannot be present if all the amino acids are “L” and all the sugars are “p".
Then, instead of the full 230, only 65 space-groups are permitted. Although of lundamental
importance in protein crystallography, these are much less useful in electron microscopy;
structures thick enough to have the full symmetry of any space-group are unlikely to
give good images.

Sometimes molecules form symmetrical groupings before they associate to form the
crystal. The rotational symmetry of the groupings may, or may not, apply to the crystal
as a whole. It can do so only if certain conditions are satisfied: the symmetry axis must
be two-, three-, four- or six-fold, and it must be positioned correctly in the crystal (e.g.
perpendicular to the sheet in a one-sided crystal). If these conditions are not met, the
symmetry axis is local (or non-crystallographic), and applies only within a small region
of the crystal.

7.2.2 Introduction to Fourier transforms

Fourier transforms are of fundamental importance in the theory of image formation and
also in most of the methods which have been developed for image analysis and processing.
The accounts of these topics given here use, in the main, a set of results from Fourier
transform theory which are applied in simple intuitive or geometrical form. Because of
its simplicity, this form of the theory is very widely used in initial investigations. It is
often possible to see the main outlines of a problem in this way, and to postpone
application of the detailed mathematical theory to the point where precise numerical
values are required. (Readable mathematical accounts are given by Lipson and Taylor,
1958, and by Bracewell, 1986; see also Chapter 3.)

(a} Simple one-dimensional pictures and Fourier analysis

We start by considering the basic principles of Fourier analysis. Suppose that we wish
to analyse a periodic curve—a curve that repeats exactly after a certain distance a. ( This
Cl{rve—Fig. 7.15~—could be thought of as the microdensitometer trace along an electron
micrograph—Fig. 7.1a—of a fibrous protein aggregate showing periodic banding; we
Sha!l refer to it as the “picture™.) We are interested in determining its component
periodicities, each of which will be called a Fourier component (or simply a component).
The type of component used by Fourier analysis is a cosine wave (Fig. 7.1¢,d), completely
fieﬁned by three variable parameters (Fig. 7.1c). These are amplitude (half the difference
In height between a peak and a trough); period (the distance between two successive
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Fig. 7.1 An illustration of the principles of one-dimensional Fourier analysis. {a) An electron micrograph
shows periodic banding. (b) Its optical density trace plots optical density (O.D.) as a function of the
x-coordinate. This periodic function is the sum of the three Fourier components shown in (c), (d) and
(e). (c) The three defining parameters of the basic Fourier component are indicated. s is the shift of
the first maximum; s = period x phase/360°. (d) This Fourier component has a different shift s’, and
a period which is a submultiple of the basic period a. (e} This Fourier component is a constant term
that causes the minimum of the sum (curve (b)) to be greater than zero.

peaks); and the shifts (relative positions) of different cosine waves, measured by their
phases.

How should we measure phases? Should we simply measure the distances by which
all the cosine waves must be shifted, relative to some arbitrary line? This plan has the
disadvantage that the same shift has a far greater effect on a wave of short period
(Fig. 7.1d) than on one of long period (Fig. 7.1c). So it would seem best to use the ratio
shift/period. This ratio could have any value from zero to infinity. However, the cosine
waves repeat exactly when shifted by the length of their period. Consequently a shift by
any whole number of periods makes no difference. Therefore we need to represent the
ratio so that it repeats after every whole number. This can be done by using an angle,
given by 360° times the ratio of shift/period, to represent phase.

If the band pattern were symmetrical about the origin (Fig. 7.2a), then all its Fourier
components would be cosine waves with one of two possible phases. A cosine wave
(Fig. 7.2b) is symmetrical about the origin, where it has either its maximum or its
minimum. If it has its maximum there, its phase is (+) or 0°; if it has its minimum
there, its phase is (— ) or 180°.

By means of Fourier analysis, we can find a set of such cosine waves whose sum
equals the original curve (or picture). Thus the periodic curve in Fig. 7.1b equals the
sum of the cosine waves in Figs 7.1c and d, plus the uniform density in Fig. 7.te. The
set of component cosine waves obtained from a picture is unique; there is only one set
to analyse, or to compare with the set obtained from another picture.

Once we have found the Fourier components of a picture, we need to represent them
in a diagram. Since each component of Fig. 7.1 has three numbers (period, amplitude
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Fig. 72 (a) This function is symmetrical about the origin {i.e. it is the same at x and at — x). (b} One
of its Fourier components, a cosine wave with no shift. (The other type of component is a negative
cosine wave, equivalent to a shift of half its period.)

and phase), it might seem that three-dimensional space would be appropriate. But, if
we used this for one-dimensional pictures, how could we represent two-dimensional
pictures? It turns out that the most suitable representation is to use one number as the
coordinate along an axis(soa one-dimensional picture has a one-dimensional transform).
Then, at each point along the axis, we have two numbers, that is, a vector.

Which of the three quantities (period, amplitude, phase) should we represent along
the axis? When plotting the picture, the axis represents distance. So it seems that we
should use period, the only number that measures a distance. However, the periods of
the possible Fourier components vary from some minimum (a cosine wave with the
small oscillations needed to represent the finest detail in the picture), up to infinity (an
infinite period is needed to provide the uniform background level in the picture, as in
Fig. 7.1e). A more convenient range is obtained if, instead of using the period, we use
its reciprocal (called spatial frequency). Instead of ranging from a minimum to infinity,
spatial frequency ranges from zero to some maximum. The remaining two numbers
(amplitude and phase) are represented by a vector. Since phase is measured as an angle,
we use it to set the angle of the vector. The vector’s length therefore represents the
amplitude, which ranges from zero (for a Fourier component that is missing in the
picture), up to some maximum (corresponding to the strongest Fourier component}.

So we are led to a representation like that in Fig. 7.3. Each vector represents a Fourier
component, as we have just explained. The position of the vector (the position of its
widest part in Fig. 7.3) gives the spatial frequency (1/period) of the component. The
vector at the origin, with zero spatial frequency and hence infinite period, gives the
background density of the picture. If (as we assume in this figure) the picture is periodic
with a repeat g, then all the component cosine waves must also repeat after a distance

) ‘\\ phase’
—_ _‘_g\l\umplnude ( Ty >
X

| ! } RN
[4 /a 2/a 7

Fig.7.3 Representation of the three Fourier components of Fig. 7.1in a single diagram. Each component
is a vector, drawn as a V-shape whose point is the tip of the vector. The wide part of the “V” is the
vector’s base, and lies on the X-axis. The vector’s angle is the Fourier component’s phase, and its
length is the component’s amplitude. The origin of each vector is positioned at the reciprocal of the
component's period, along a spatial-frequency or X-axis.
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a. Therefore they must have periods a,a/2, a/3,... or spatial frequencies 1/a,2/a,3/a,... .
Since the spatial frequencies are the reciprocals of real distances, the spatial frequency
coordinate axis is considered to lie in reciprocal space. To remind us of the connection
between the two axes, the real axis is labelled x, and the reciprocal (or spatial frequency)
axis is labelled X.

(b} General pictures and the Fourier transform

Non-periodic pictures. The representation shown in Fig. 7.3 is satisfactory for the
one-dimensional periodic density distribution shown in Fig. 7.1a, but it will need three
extensions to represent other types of picture. First, pictures often fail to repeat exactly.
This causes no problem with their representation. Vectors are now required with spatial
frequencies that are not exact multiples of 1/a—indeed, we need an infinity of vectors,
continuously distributed as a function of the spatial frequency X. Such a distribution
is called a Fourier transform, or F.T. (which, for brevity, we shall often refer to simply
as a transform, when there is no ambiguity). The other two extensions will be discussed
below.

Complex pictures. These are pictures that show variations not merely of amplitude —
darkness-—but also of phase. The electron waves that have passed through the specimen
are like this, and their phase distribution is important if we are discussing imaging
processes { Chapter 4). The need for complex pictures also arises when we discuss the
Fourier transform of a Fourier transform, for then the “picture” is itself a transform,
and its pixels have both amplitude and phase. The problem is that such a picture has
twice as much information as the conventional kind, so there must also be twice as
much information in its transform. But how are we to extend our transform representation
to encompass twice as much information? We are already using vectors (each point
carries two independent numbers), and there is no convenient way to pack twice as
much information (four numbers) into each point. So we must double the length of the
transform: the spatial frequency axis becomes extended in the negative direction, and
we add components with negative spatial frequencies. Because of its generality, this
extended representation will be used from now on. But, while using it, we shall often
be discussing the transform of an ordinary picture, in which only the amplitude (optical
density) varies. For such pictures, both sides of the axis are unnecessary: the positive
side suffices, as in Fig. 7.3. In this case the negative side contains no new information,
and must mirror in some way the distribution on the positive side. What is the form of
this mirroring? It turns out that the amplitudes on both sides are mirrored exactly.
However, the phase on the ncgalive side of the axis, instcad of being identical to the
phase on the positive side, has the opposite sign (Fig. 7.4). This special type of symmetry
isfound only in the transforms of pure amplitude pictures, and is called Friedel symmetry.

4]
'“N“Z"",%"i

-1/a a

Fig. 7.4 Spatial frequencies (X} are now allowed to be negative, so as to represent the transforms of
complex functions. This diagram represents the transform of a real function; so the transform vectors
(described in Fig. 7.3) at 1/a and — 1/a must have the relationship (Friedel symmetry) shown here.
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The phases are even simpler if the picture also has two-fold symmetry (i.c. looks the
same when turned upside-down). Then only pure cosine waves are needed as its Fourier
components, as with the one-dimensional case shown in Fig. 7.2. The phases are then
only 0° or 180°.

Two-dimensional pictures. To represent these, we need Fourier components that cover
the two-dimensional x, y-plane. Three such components are sketched in Fig. 7.5c,e and g.
When added together, they yield the periodic picture (a). To represent these two-
dimensional components, we need two spatial frequency axes (X and Y), so our reciprocal
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Fig. 7.5 The Fourier transform (F.T) of a two-dimensional picture. {a) A periodic (repeating)
two-dimensional picture. {(b) F.T. of (a), which is the sum of (d), (f) and (h). (¢} Simplest Fourier component
of (a): uniform density. (The vertical shading indicates that it is positive.} (d) F.T. of (c). (e) Simplest
non-uniform Fourier component of (a): cosine waves parallel to the y-axis, with period a,. () F.T. of (e).
(g} Third Fourier component of (a): oblique cosine waves with period a,. (hY F.T. of (g).
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space becomes (wo-dimensional. The simplest component is the uniform density (c)
This is a cosine wave of infinite period, i.c. of zero spatial frequency, so its correspondiné
vector (d) lies at the origin. The next simplest (¢) has bands parallel to the y-axis and
varies only along the x-axis. Conscquently this is really a one-dimensional component
upd its representation is confined to the corresponding spatial frequency axis (X-axis)’
Since the bands in (¢) are real (the phase variations are discontinuous), we have twc;
vectors with Friedel symmetry, ie. of equal length, and with equal and opposite phases
(here zero). Finally, we consider the tilted set of bands (g). Where shall we put the
vectors for this? Our choice must be consistent with what we have already used for the
bands (e). There the two vectors lie on a line (X -axis) that is perpendicular to the bands;
and the distance of each vector from the origin is the reciprocal of the period a, of the:
bfmds. Maintaining this rule with the bands (g), we have the vectors shown in (h). The
picture (a), being the sum of the three components (c), (¢) and (g), has a transform (b)
which is the sum of the vectors in (d), (f) and (h).

Suppose we rotate this two-dimensional picture; what will happen to the transform?
Rotation of the picture will rotate all the sets of density bands. And rotation of these
will rotate the positions (not the phases) of the vectors that represent them in the
trqn;form. (For their position is fixed by the condition that the line joining them to the
origin must be perpendicular to the bands.) Consequently, rotation of the picture causes
the same rotation of the transform.

A picture consisting of a single point. The picture in Fig. 7.5a was periodic, needing
only a very few components, represented by the vectors in Fig. 7.5b. We next consider
a non-pell'lodic picture—the very simplest, a point. To begin with, we place the point
at the origin. A point (or, in a one-dimensional plot, a peak) can be represented by
supe.rposing a whole series of pure cosine waves (Fig. 7.6). All the waves have their
maxima coinciding at the origin, where they add together to give a peak, Elsewhere, the
waves interfere, and their sum gives nothing. Now all these waves (the Fo;rier
componenls of the point) have the same amplitude, the same phase (0°, since they are
all in phase at the origin), and a continuous spread of spatial frequencies. The transform
of the peak (Fig. 7.7a) is thus given by a uniform distribution of vectors (Fig. 7.7b).

WL

Fig. 7.6 lllustration of how a peak at the origin can be constructed by summing cosine waves of all
possible pg_ri()ds, A small selection of those waves is shown here; they reinforce near the origin. At
larger positive or negative values of x, some of the cosine waves become negative and others osiiive
so that the sum there approximates to zero. P l

() by - T

x 1
0 0
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Fig. 7.7 A Fourier transform pair representing the fact illustrated in Fig. 7.6. (a) A peak at the origin.
As in Fig. 7.6, this can be represented as the sum of cosine waves of all different periods. (b) Each of
these (’()n‘lp()vwnl Cosine waves is a vector of zero phd,\(’. ’
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he origin, but displaced from it (Fig. 7.8a).
We still need the same set of cosine waves, but now their maxima must add together
at the new position of the point. To move the maxima to the new position, the waves
need a phase shift. But a constant phase shift would move all the waves by the same
fraction of their period, ie. by different distances, and there would be no one point at
which they would all get into phase. So the phase shift must vary with spatial frequency,
and it turns out that the required variation is a uniform rotation, as shown in Fig. 7.8b.

Finally, suppose that the peak is a point in two-dimensional space. If this “point-peak”
were at the origin of real space, we would apply the same argument as for a
one-dimensional peak at the origin. So we should need a continuous distribution of
two-dimensional cosine waves, all with 0° phase and with every possible spatial frequency
and direction. (Reciprocal space would be completely filled with identical arrows, all
pointing to the right) If the required point-peak were displaced from the origin
(Fig. 7.9a), the phases of the vectors would change, as before. Along the line joining the
point-peak to the origin of real space, we should have a one-dimensional picture, as in
Fig. 7.8a, with the transform in Fig. 7.8b. That one-dimensional diagram contains all
the features of the two-dimensional picture. The perpendicular direction is redundant;
in the transform, it contains only exact copies of the vectors in Fig. 7.8b. So the actual
distribution that we need for a point-peak in two-dimensional space is shown in
Fig. 7.9b. The amplitude is everywhere constant, but the phase rotates uniformly. This

@ ——I—JIL%X ® s ¢/JJLIB-)>(
0 a

0 /a

Next suppose that the peak was not at t

the origin in Fig. 7.7 is shifted to x = a. (b) In order to bring all the cosine

Fig. 7.8 (a) The peak at
x = a, their phases must rotate uniformly, as shown here.

waves into coherence at

(a) (o)

small point a distance a from the origin. (b} F.T.
howing the rotation seen in Fig. 7.8. The field of
fronts are perpendicular to the vector

Fig. 7.9 (a) Two-dimensional picture consisting of a
of (a), consisting of vectors of the same length, and s
vectors has the appearance of plane complex waves. The wave
in (), and their separation is the reciprocal of its length.
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“phase wave” has its wave fronts perpendicular to the line joining lht? pf)int-peak to
the origin of real space. The period is the reciprocal of the lf:ngth of this line. .

If the point-peak were in the same position on the other side of the r_cal space origin,
Fig. 7.9a would be turned through 180°. What would be the corresponding phasc-waye?
The rotation of the point-peak is equivalent to rotating the coordinate axes while k.eepmg
the point-peak fixed. Consider only the phases on the x-axis. The new phase at a distance
+ x from the origin would be the same as the old phase at —x. Two consequences
follow. The phase at the origin, where + x = — x, is unchanged. And the phase changes
now found when moving from the origin in a positive direction mu§t be the same as
those previously encountered when moving in a negative direction. Flgure§ 7.8 and. 7..9
show that, when moving in a negative direction, the phase rotated clockwise; so this is
the sense in which it must now rotate when moving in a positive direction. o

We can obtain a pair of points (as in Fig. 7.11a) by adding together a point in the
upper right quadrant (Fig. 7.9a) and a corresponding ppint in the lower. left quad.rant.
The transform of this pair of points is then the sum of Fig. 7.9b, and of this same Flg}ne
when the vectors have a reversed direction of rotation. Because of the close connection
between the phase waves of these two transforms, we get a simple rgsult yvhen we add
them together. This is shown, for just the X-axis of reciprocal space, in Fig. 7.10b. The
vectors from Figs 7.8 or 7.9 are shown by continuous lines, and those from the rotated
picture are shown by broken lines. The superposition of the two sets of.vectors at Fi.lch
point is shown in Fig. 7.10c. It is clear that all the vectors resulting frorp this superposm.on
have either 0° or 180° phase. This means that they are either positl've (0°) or neg.al‘lve
(180°). In two dimensions, we obtain the result shown in Fig. 7.1 1:a picture (a) consns%mg
of just two point-peaks (or pixels, or vectors), of equal amplitude and zero phase, gives
a transform (b) consisting of a single density wave, of the sort used as components in
Fig. 7.5. .

But suppose the phases of the two vectors on the left were not zero; yhat connection
between their phases would ensure that the transform was a single density wave? At the
origin of the transform, we sum all the vectors of the pi(fture.. If these vectors ‘have
Friedel symmetry, as in Fig. 7.4, they can be divided into pairs with the. same amplltude
but opposite phase. When added together, the members of such a pair must (like the

(a) ® - 1K T8 X
0
e
X
0 /a

Fig. 7.10 (a) A pair of peaks, the right-hand peak (continuous line) being the same as that in Fig. 7.8.
(b). The F.T. of each peak in (a} (the vectors with a continuous line refer to the right-hand peak). !\_lole
that the vectors from each peak rotate in opposite directions, and are consequently related by mirror
symmetry about the X-axis. (c) The sum of the two sets of vectors in (b), i.e. the overall F.T. of (a).
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Fig. 7.11  (a) Two-dimensional picture consisting of a pair of peaks, each a distance a from the origin.
(b) F.T. of (a); the vectors are horizontal (i.e. real), and arranged in bands that repeat with a spatial
frequency 1/a. (The intensity, however, repeats with a spatial frequency of 1/2a.)

vectors of Fig. 7.10b), give a resultant that is parallel to the X-axis. Elsewhere in the
transform, the contributions of each member of a pair will rotate by equal angles in
opposite directions (as in Fig. 7.10b). So the resultants must always be paraliel to the
X-axis, i.e. we have a single density wave.

(c)  The Fourier transform of a Fourier transtorm

We now have two alternative ways of viewing the Fourier transform. The first is more
appropriate to an ordinary picture, without phase variations. We find the picture's
component periodic density bands, as in Fig. 7.1 or Fig. 7.5. Each set of bands gives
rise to a pair of vectors in the transform. For a picture without phase variations, the
vectors have Friedel symmetry.

In the second way of viewing the transform, we start by dividing the picture into
pixels. If the “picture” is a Fourier transform, the “pixels” are vectors. Each pixel or
vector gives rise, in the transform of the picture, to a phase wave like that in Fig. 7.9.
The wavefronts are perpendicular to the line Joining the pixel to the origin of real space,
and the phase of the wave, at the origin of reciprocal space, is given by the phase of the
pixel. A pair of equal pixels, symmetrically arranged about the origin, and with Friedel
symmetry, gives rise to a density wave in which the peaks alternate in sign.

Bearing in mind these two ways of viewing Fourier transformation, we consider the
effect of two successive Fourier transformations, i.e. of Fourier-transforming a Fourier
transform. We view the first transformation in the first way, ie. as a decomposition of
an ordinary picture into density waves, each of which gives rise to a pair of vectors in
reciprocal space (as in Fig. 7.5). But we view the second transformation in the second
way, i.e. as the conversion of cach pair of vectors, related by Friedel symmetry, into a
corresponding density wave. So, by double Fourier transformation, density waves become
converted into vector pairs, and then back again into density waves. It would seem that
we end with the same picture with which we began. This is very nearly true—it is identical
(for a two-dimensional picture) except for being rotated through 180°
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(d) Six basic rules lor Fourier transforms

Intuitive prediction of the effects of Fourier transformation is much facilita.ted by means
of six rules or theorems. These can be grouped into three pairs. (See Fig. 7.12 for a
summary.) Although we still shall refer to the object which is Fourier-transformed as
the “picture”, implying that it is two-dimensional, nevertheless these rules apply equally

10 three-dimensional objects.

Algebraic: linearity. The first two rules concern the effect of algebraic operations. First
we consider addition or subtraction. Addition, as applied to pictures, means superposxtlon.
Subtraction, defined as the inverse of addition, means the removal of one picture from
another, if necessary by making the density negative. The first rule simply.slates lhgt
the addition or subtraction of two pictures causes the addition or subtraction of their
Fourier transforms. Transformation is thus described as linear. In a linear system, scale
factors are reproduced faithfully: a picture can be multiplied by, say, 3 through two
superpositions with itself; the addition rule implics that the transform undergoes the

same process, and is also multiplied by 3.
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Fig. 7.12  The three pairs of rules concerning F.T.s, explained in the text. (E.T. pairs are indicated by
the double-headed arrow.)
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Algebraic: multiplication. The simplicity of the rule for the addition or subtraction of
two pictures does not, however, extend to their multiplication. The multiplication of
two pictures is defined in the following way. The pictures are superposed, and the densities
of the corresponding pixels are multiplied together to give the density of the pixel in
the product. In such a multiplication, zero always wins (i.e. the product is zero if either
of the factors is). So the multiplication of two pictures gives a picture with the combined
blank spaces of both. We can make use of this to impose a screen on a picturc. When
a photograph is converted into dots or thin lines ready for half-tone reproduction, the
process can be viewed as one of multiplication by an array of dots or lines representing
the screen. This process is referred to as “sampling™ a picture.

How is the transform of a “product picture”, resulting from the multiplication of two
pictures, related to their individual transforms? It is not simply the two transforms
multiplied together; instead, they are convoluted with cach other. Convolution is an
important operation that we shall encounter frequently. If two images (pictures or
transforms) are convoluted together, each pixel of the first picture is replaced by an
entire copy of the second. The density (or intensity or strength) of this copy is proportional
to that of the pixel. Also, the final result is the same irrespective of which image is put
first in the convolution. It is most easily grasped when one of the pictures consists of a
few points, like the stars in a constellation. After convolution with the other picture,
each star is replaced by a copy of it, the density of the copy being proportional to that
of the corresponding star (Fig. 7.13). Multiplication and convolution arise commonly
when analysing micrographs. If the micrograph consists of many identical images
repeated on a lattice, then it can be viewed as one image convoluted with the lattice.
Imaging defects, which apply to all parts of the picture, can also be viewed as a
convolution. On the other hand, masking out unwanted parts of a picture can be viewed
as multiplication with a masking function that is zero under the mask, and unity within
the aperture.

Isometric movement: rotation. Rotating the picture produces exactly the same rotation
on the transform (see Section 7.2.2(b)). This has the effect that any rotational symmetry
present in the object is also present in the transform.

Isometric movement: translation. Translation is uniform movement without rotation.
Translation of a picture produces multiplication of the transform by a complex wave.
This is because the translated picture can be regarded as the original picture convoluted
with a displaced vector (such as that in Fig. 7.9a). So its transform is the original
transform multiplicd by the transform of the vector; and that (shown in Fig. 7.9b) is a
complex wave. We have only to enlarge our definition of multiplication to encompass
pictures with phase as well as amplitude, i.e. complex vectors. When multiplying these,
the amplitudes are multiplicd together (as with real vectors), and the phascs arc added
together.

- . .
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Fig. 7.13 A series of points arranged in the pattern of a familiar steflar constellation is convoluted (+)
with a circle. This replaces each point by a copy of the circle.
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Distortion: scale rule. This states that uniform compression of the picture, in some
direction, produces uniform stretching of the transform, in the same direction and by
the same ratio (Fig. 7.14a, b). It follows that uniform stretching of the picture must also
produce uniform compression of the transform; and also that an overall enlargement
or reduction of the size of the picture produces an overall reduction or enlargement
{respectively) of the size of the transform. The scale rule is true because uniform stretching
of the picture enlarges periods in the direction of stretch, i.c. reduces spatial [requencies
in this direction, and hence moves the corresponding vectors in the transform closer to
the origin of reciprocal space.

Distortion: projection rule. Suppose we compress a picture in some chosen direction.
If we continue compressing it in this way, we shall eventually squeeze the entire picture
onto a line that is perpendicular to the direction of compression (left of Fig. 7.14). Onto
this line we shall have projected the picture. During this process, the transform will be
stretched in the direction along which the picture was compressed (right of Fig. 7.14).
Only a small part of the transform will remain unaltered: the part along a line,
perpendicular to the stretch direction, and passing through the origin (right of
Fig. 7.14b). Continued stretching will eventually remove all other parts of the transform
into outer reciprocal space. So we find that projection of the picture, onto some line,
produces a transform that derives exclusively from the central line with the same
orientation (Fig. 7.14¢c). Consequently the one-dimensional transform of the projection
is the central section of the transform, taken in a parallel direction.

{b)

{c)

Fig-7.14  (a) A picture (consisting of a uniform circle) and its F.T. Since the picture has circular symmetry,
so also has the F.T. (b) The circle has become squashed along the y-axis, so that it is now an eflipse.
Correspondingly, the F.T. has become stretched along the Y -axis. (c) The squashing of the circle has
been carried to the limit where it is just a line of density on the x-axis. Correspondingly, the stretching
of the F.T. has been carried to the limit where it consists only of the part previously on the X-axis, but
now extending uniformly along the Y -direction.

]
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Suppose we project the picture onto a line, and then project everything along this
line onto a point, which now registers the total density of the picture. The corresponding
part of the picture’s transform is now its central point. So the value of the transform
there equals the total density of a picture.

(e) Simple one-dimensional transforms

Some idealized types of picture recur so frequently in our discussions that we present
their Fouricr transforms now. We start with one-dimensional pictures, for which the
density can be plotied as a function of the single spatial dimension (x).

“Shah”-function. This is named after the Cyrillic character i (which apparently derives
originally from an Egyptian hieroglyph for “garden”). It consists of equally-spaced,
identical peaks (left of Fig. 7.15). We have seen (Section 7.2.2(b)) that a single peak can
be generated by the superposition of cosine waves of identical amplitude, zero phasc,
and with all possible periods. However, the peaks of the shah-function have the constant
spacing a, so all the component density waves must have their periods restricted to
submultiples of a. It is thercfore reasonable that the transform of the shah-function is
as shown in the right of Fig. 7.15, i.e. another shah-function (or “comb™).

Rectangle. This is not a two-dimensional rectangle, but a one-dimensional picturc
consisting of a uniform line, of length b. The plot of its density, shown on the lcft of
Fig. 7.16a, is rectangular— hence its name. Hs transform is shown on the right of Fig.
7.16a. This has a peak at the origin, since the average density of the “rectangle™ is
positive. Elsewhere the function (called a “sinc” function) oscillates, passing through
zero at nodes with spatial frequencies (1/b, 2/b, 3/b,... (b s the length of the “ rectangle™).
We can see that the nodes must be positioned at just these spatial frequencies by the
following argument. If we take the “rectangle™ and convolute it with a shah-function
of spacing b, all the copies of the “rectangle™ will fit exactly together without gap or
overlap, giving a uniform density (Fig. 7.16b). This uniform density line can be regarded
as a “rectangle” of infinite length, i.e. infinitely stretched out. Applying the scale ruilc.
its transform will be the transform of the “rectangle™, but squashed to zero width, i.c.
to a single peak. The transform of the shah-function in Fig. 7.16c is also known, and
the transform of convolution is multiplication. So only one term remains unknown in
the new equation (Figs 7.16b,c); this is the transform of Fig. 7.16a. We sec that the
transform of the original “rectangle” (i.e. the “sinc” function ) is such that, when multiplied
by a comb with peaks at 0, + b, + 2b, + 3b,..., it yields a single peak at the origin.
The sinc function must therefore annihilate the shah’s peaks at + b, £2b. +3b,.... It
can only do this by having nodes at just these points.
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Fig. 7.15  On the left, a “shah-function” consists of equidistant peaks spaced a distance a apart. On
the right, its F.T. consists of the same function with peaks spaced 1/a apart.




162 M. F. Moody
@ 1
- T ;x j E |\/| : |\/| 5%
b2 0 b2 -2/b -i/b 0 b V]

®
&1 5 5k -LLLLd PR RN, v I B s
- e x .a'bl.f x x

1l !

X X
Vb

Fig. 7.16 (a) A rectangular density-function of width b (on the left) has the ’jsinc-function" FT shown
on the right. (b) If the rectangular density-function (left) is convoluted (t)_ with a §hah-functlon of the
same spacing, it gives a uniform density, which equals a recta.ng.ulaf density-function stret.ched out to
infinity. (c) The F.T. of (b). The F.T. of convolution (#) is multlplucatfon;‘of the shah~funct|qn, an.other
shah-function; and of the rectangular density-function stretchgd to lnﬁnlgy, a peak._ As explained in the
text, this result demonstrates that the zeroes of the sinc-function must lie at multiples of 1/b.

Triangle. Like the “rectangle”, the “triangle” is also the name ofa densily-fupction.
It describes a line whose density rises uniformly up to a maximum, from which it th_en
uniformly declines. This density-function (left of Fig. 7.17b) is given w.hen many copies
of the rectangle function are added together along the{r length, as in Elg. 7. l"7a. Bu.t this
process is just convolution with a line density function. So the “t:mngle density of
Fig. 7.17b can be regarded as the convolution of two “rectangles” with each other.
Writing this as an equation (right of Fig. 7.17b), we take t.ransforms of e.ach term on
the right-hand side (Fig. 7.17¢). It is apparent that the required t.rar‘x’sform is the square
of the transform of the “rectangle” (i.e. the square of thf:"‘smc funcpon). So the
oscillations of that transform become both smaller and positive (left of Fl’g 7.17c).

It is as if the pronounced oscillations in the transform of the “rectangle ' were caused
by its sharp edges, whose removal in the “triangle”. damped the oscillations. Qn
this argument, we should suppose that further smoothnqg pf the edges of the deps:ty
function would yield an even smoother transform. The limit wou.ld' be reached with a
very smoothly declining function whose equally sn'mot!lly declining transform was
indistinguishable from it in shape. Such a function exists: it is the bell-shapved Gaussian
distribution curve so important in statistics (Fig. 7.18). .(But, although having the same
shape, a Gaussian and its transform have reciprocal widths.)

(fy Simple two-dimensional translorms

Square lattice. We now progress to two-dimensional density functions or pictures, b.ut
we shall relate these to the one-dimensional functions considered above. We start with
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Fig. 7.17 (a} Many superpositions of a rectangular density-function, of width b, yield a triangular
density-function of width 2b. (b) These multiple superpositions of the rectangular density-function (left)
are equivalent (right) to the convolution of this function with itself. (c) F.T. of (b). The rectangular
density-function gives the sinc-function (Fig. 7.16), and convolution (#) gives multiplication. Henee the
F.T. of the triangular density-function is the square of the sinc-function; this is shown on the left.
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Fig. 7.18  The Gaussian curve with variance a/7 (left) has the F.T. (right), which is the same function,
but with variance 1/(na®). Thus the curve widths are reciprocal; stretching the left curve compresses
the right one.

{c)

the square lattice (left of Fig. 7.20a), but we have to approach this in stages. The first
stage is a set of equidistant parallel lines (Fig. 7.19). We obtain these lines from the
one-dimensional comb function by indefinitely stretching it perpendicular to its length,
so that each point becomes an infinite line. By the scale rule, the transform is infinitely
compressed in the same direction. So we obtain the row of peaks shown on the right
of Fig. 7.19, and we are ready for the next stage. Let two such sets of equidistant parallel
lines, oriented perpendicular to each other, be multiplied together (right of Fig. 7.20a).
Since zero always wins in multiplication, we are left with density only at those points
where ncither picturc was zcro, i.e. at a sct of points on a squarc lattice. We have now
expressed the square lattice, in an equation, as two sets of parallel lines multiplied
together. Next we take the transforms of each term on the right-hand side of the equation
(Fig. 7.20b), replacing multiplication by its transform, convolution. To convolute the
two rows of peaks, we replace each peak of one row by the whole of the other row. We
obtain another square lattice, but the lattice spacing is the reciprocal of that in the first.
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Fig. 7.19 A two-dimensional picture consisting of infinite, equidistant, parallel straight lines (left) has
a F.T. tright) consisting of a line of equidistant points.
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Fig. 7.20 (a) A square lattice (left) can be represented (right) as the product of two sets of parallel
fines. (b) F.T. of {a). On the right, the paralle! lines give (as in Fig. 7.19) lines of points, and multiplication
gives convolution (#). Hence (left) the F.T. of the square lattice is another square lattice.

Arbitrary two-dimensional lattice. Any two-dimensional lattice can be obtained from
a square lattice by subjecting it to stretch and compression. The directions of stretch
and compression, which must be oriented appropriately with respect to the lattice, deform
it by shear. So we can write an equation with the arbitrary lattice on the left-hand side
(Fig. 7.21a). When we take its transform, we use the scale rule to turn the stretch into
a compression, and the compression into a stretch. This effectively turns the stretch—
compression process (i.e. the shear) through 90° (Fig. 7.21b). So, when applied to the
square lattice, it results in a (reciprocal) lattice with the same shape as the real lattice
on the left-hand side, but rotated by 90°. This simple relationship between real and
reciprocal lattices applies only in two dimensions, but it is useful in the analysis of optical

diffraction patterns.

Square and parallelogram. The square can be constructed by the convolution of two
perpendicular lines: a copy of the second line is placed at every point of the first
(Fig. 7.22). As usual, we complete the transform equation (below), using the transform
of a one-dimensional line. Multiplying these two transforms together, we obtain the
transform of the square.

.
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Flg.' 7.21 ('a) Points arranged in a lattice of arbitrary shape (left) can be represented (right) as a square
lattice subject to suitable compression and stretching. (These distortions are indicated by the
§hear-symbol on the extreme right: this is composed of a compression-symbol, with arrows pointing
inward, combul?ed with a stretching symbol, with arrows painting outward.) (b) £.T. of (a). On‘ the right
the squareilatuce gives another square lattice, as in Fig. 7.20. The compression gives stretching and,
tf.)e str.etchlng gives compression (as in rule (e) of Fig. 7.12); this is equivalent (right) to rolatini; the
distortion through a right-angle. (So the shear-symbol on the right has turned through a right-angle.)
Hence (left) the F.T. of the lattice is the same lattice rotated through a right-angle. He

Fig. 7.22 (9) A square of uniform density (left) can be represented as the convolution of two line
:fg:we?':s (S'ght)“(b) F.T. of 33). fach line segment gives (right) a sinc-function tsee Fig. 7.16) stretched

g the direction perpendicular to that segment. They are muitiplied i iving the
transform of the original square. 8 Y iplied together (right), giving the
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Fig. 7.23  (a) A parallelogram of uniform density (left) can be represented as a distorted square (right).
(See legend to Fig. 7.21 for an explanation of the shear-symbol.) (b) F.T. of (a). As in Fig. 7.21, the
distortion becomes rotated through a right-angle. Consequently the F.T. of the square (middle) becomes
distorted (left) to resemble the original parallelogram rotated through a right-angle.

The transform of the parallelogram can be obtained from that of the square by
stretching and compression (Fig. 7.23), rather as in the case of the arbitrary lattice.

Pictures lacking two-fold symmetry. The transforms of the above shapes consist only
of positive or negative regions (“real” transforms). How does this simplification occur?
Positive transform points have phase 0°, and negative points have phase 180° (so that
the vector points in the negative direction). If the picture should happen to be the same
when turned upside-down (two-fold axis), then so also must be the transform (by the
rotation rule). But a two-fold axis applied to the transform replaces each point by its
Friedel mate. We recall that, for any transform of a picture that has no phase variations,
the Friedel mate has the same amplitude, but its phase has the negative value (Fig. 7.4).
If the Friedel mate is to be identical, the negative of the phase must be the same as the
phase. This is true only if the phase is 0 and 180°. That is the reason why the transforms
of the square and rectangle are “real™.

We conclude these examples of two-dimensional transforms with one which is not
“real”, because the picture does not have two-fold symmetry. The transform of such a
picture has continuously varying phase as well as amplitude. To represent it, we have
to show both amplitude and phase at each point. We do this (as in Figs 7.3, 7.5 or 7.9)
by placing, on lattice points, small vectors with pointed tips and wide bases, like conifers.
Their lengths represent the transform’s amplitude, and their orientation its phase.

We consider the transform of a simple picture: three points at the vertices of an
equilateral triangle (Fig. 7.24a). This transform is shown in Fig. 7.24b. Since the picture
has a three-fold symmetry axis, so also does the transform, in which the X-axis values
reappear on the symmetrically related X' and X” lines. The picture has no-:phase
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Fig. 7.24 (a) Three points at the vertices of an equilateral triangle. (b) 1.T. of (a). It is represented, as
in Fig. 7.3, by vectors. X’ and X" are lines where the F.T. has the same values as along X (a consequence

of the three-fold syrnmetry of (a)).

variations, so the transform has Friedel symmetry, and its amplitude consequently has
two-fold symmetry. Thus the amplitude has both two-fold and three-fold“symmelry, Le.
six-fold symmetry. The transform can be seen to consist of circular “blobs. of amglltude
of about the same size, this size being related to the size of the triangle in the plcu‘{r_e.
(That feature is explained in Section 7.2.2(h).) Where the ampliu{dc of each “blob™ is
substantial, the phase is nearly constant. Virtually all the changes in phase are cpnﬁned
to the boundaries between adjacent “blobs”. The amplitude is zero only at a few lsolate?
points (*“nodes™). This situation differs from that in “real” transforms, where the * l_)lobs R
which are either positive or negative, are separated by lines where the transform is zero.

(g) Transforms of pictures of crystals

As explained under Section 7.2.1, crystals can have translational symme'try in one, two
or three dimensions (the first two being the most useful in electron mlcrographs)..ln
each case, the translational symmetry is compatible with certain rotationa.l symmetries.
- A crystal’s translational symmetry has simple consequences for t.he Fquncr transform.
For the crystal can be represented as the convolution of its latuce. with the rpolecule
(or group of molecules) that constitute the repeating structure. The image or picture of
the crystal can likewise be represented by a convolution wh_lch puts a copy of some
motif (the image of the repeating structure) at each lattice point (Fig. 7.25a). Applqug
the convolution theorem, the transform of this picture is the transform of the motil,
sampled at the points of the reciprocal lattice (Fig. 7.25b).



168 M.F.Moody
{@)

XXX < e e .
..... e o & e @
.'.... e 8 s e ® @

0000000 - ) > I
eo0o0000 A Tt

..... e o e @ e

.... . . 0 -

(]

Fig. 7.25 (a) Uniform circles arranged on a hexagonal lattice (left). This equals {right) the convolution
of one such circle with a hexagonal lattice. (b) F.T. of (a). The F.T. of the lattice (right) is the same lattice
rotated through 90" (as in Fig. 7.21). The F.T. of the circle (centre) also has circular symmetry (rule (c)
of Fig. 7.12). The original pattern’s F.T. {left) is the product of the two F.T.s on the right; i.e, it is the
middle F.T. “sampled” at the points of the F.T. on the right.

If the crystal also has an axis of rotational symmetry, then the transform will possess
the same axis of symmetry. The intensities of the spots in the transform, the only visible
features of an optical diffraction pattern, must show Friedel symmetry, since the original
picture had no phase variations. For a two-dimensional transform, this means that the
intensities have two-fold symmetry, even if the crystal has no rotational symmetry. This
two-fold Friedel symmetry of the intensities becomes combined with any other rotational
symmetry the transform may possess. Thus a crystal with a three-fold axis (p3, the
symmetry of bacteriorhodopsin) gives a transform with three-fold symmetry, but the
intensities show six-fold symmetry. If the transform intensities have two-, four- or six-fold
symmetry, it is therefore necessary to look at the phases to see if the true symmetry is
only half of this.

It is also possible that the repeating structure (motif) has rotational symmetry that
is not present in the crystal as a whole. Then the transform of the motif (first term on
the right of Fig. 7.25b) has the rotational symmetry of the motif (the circle directly
above it), but the reciprocal lattice (second term in Fig. 7.5b) lacks this symmetry. (It
is a case of the lowest symmetry winning.) So the rotational symmetry of the motif is
no longer clearly apparent on the left of Fig. 7.25b. However, there exist special techniques
for finding it.

(h) Sampling theorem

Pictures of finite extent give Fourier transforms that are smooth functions. As with the
smooth functions in mathematical tables, it might be thought that such transforms can

’

’
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be conveyed adequately only by many columns of figures, giving the values sampled at
very close intervals. However, this is not the case: the sampling interval can be quite
coarse if the correct procedure is used to reconstruct the transform.

The proof is sketched in Fig. 7.26. It is given for one-dimensional distributions (still
called “pictures”) and their transforms, but the theorem applies in two- or three-
dimensional space. On the first line (Fig. 7.26a), we write down an identity: the picture
to be transformed (left) equals itself repeated indefinitely, provided this is then multiplied
by a “rectangle” function that annihilates all the copies except one. On the second line
(l?), we represent the indefinitely repeated copies of the picture as a convolution of the
picture with a “shah” function. We now have an extended identity, in real space. and
on the third line (¢c) we take Fourier transforms of each term. The transforms of the
“shah™ and the “rectangle™ were treated in Section 7.2.2(e¢). The operations of
multiplication and convolution are transforms of each other. The Fourier transiorm of
the picture is represented, for brevity, by “F.T.(picture)”. In the fourth line (d) this
transform is represented explicitly, so that the transform equals itsell, first multiplied by
a comb, and then convoluted with a “sinc™ function (see the right of Fig. 7.16a). On
the last line (e) we show the consequence of multiplying the transform by the “shah™:
we get that transform, sampled at points corresponding to the peaks of the “shah™.

We have now obtained the sampling theorem itself (Fig. 7.26¢). If we have a picture
of width D, its transform may be sampled to 0, + 1/D, + 2/D, ... and then reconstructed
exactly from these sampled values. To do so, one replaces each of the sampling peaks
by an.appropriatc sinc function, whose central maximum has the same height as the
§amplmg peak. Adding together all the different sinc functions gives the convolution.
i.e. reconstructs the transform.
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The sampling theorem defines in a precise way the intuitive idea that a transform is
“chunky”, being made of “blobs” of roughly uniform amplitude and phase, whose size
depends inversely on the size of the picture. On the other hand, its actual application
involves some approximation; for any picture of finite width will have a transform that
extends to infinity, so the sampling theorem reconstruction is—strictly—an infinite
series. But the transforms of finite pictures with limited resolution drop rapidly to very
low levels, so that the reconstruction converges quickly. Only a few terms are needed
to approximate the picture to within experimental error.

7.2.3 Fourier transforms of helices

To understand the methods used for analysing and reconstructing helical structures, we
need some background knowledge of helical Fourier transforms. The mathematical
equations—necessary for writing or using computer programs—are summarized in
Section 7.2.3(i). But, as with the Fourier transforms of linear and planar periodic
structures, a qualitative and intuitive understanding is the tool used most frequently.
Consequently, we here derive the essential features of helical Fourier transforms in a
non-mathematical fashion. First, however, we must explain the geometry of helical
structures.

(a) Helical symmetry

Helical structures are common among biological macromolecules for a very simple
geometrical reason. Suppose two identical molecules (subunits) bind to each other. The
nature of the binding defines the spatial relationship of the second subunit to the first.
If a third subunit binds to the second, and if the binding is the same as before, we should
expect this spatial relationship to be repeated. Suppose this is so, and that more and
more subunits are added, all with exactly the same spatial relationship to their neighbours.
What shape will the aggregate assume? In general, we shall have generated a helix. As
more and more subunits are added, the helix extends further and further in a certain
direction, the helix axis. (For convenience, we shall suppose that this always runs
vertically, i.e. along the z-axis.) The spatial relationship of neighbouring subunits can
be described as a screw operation, consisting of a rotation of the subunit about the helix
axis, coupled with a translation (uniform movement) along it. Any helical symmetry is
completely defined by two numbers, the rotation Q and the translation h (Fig. 7.27).
These parameters can be chosen in various ways, depending on which particular set of
helical lines is chosen (see below).

4

helix
axis

Fig. 7.27  Unit 1 of a helix is moved to the position of unit 2 by a rotation (the twist angle Q) and a
translation (the rise distance h).
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An isolated helix can also possess overall rotational symmetry. If. S0, th'ere.wﬂl be
some rotation axis about which the helix can be turned gn?il it coincides with ICSCU:. If
the angle through which it must be turned is 360°/N, this is c.alled. an N-fol_d rotau(.ml
axis. In general, of course, a rotation would also move the helix axis; but it is CESSCnllz.l
that this should always coincide with itself. This poses no problem 1!“ the rotation axis
is identical with the helix axis. Any other orientation of the rotatior.x axis causes proplems
(for N > 1), with one exception. It is possible for the rotatign axis to lie pe.rpendlculag
to the helix axis, bringing that axis into coincidence with itself by a rotation of 180
(N = 2). These conclusions can be summarized by saying that the helix can possess only
point-group rotational symmetry (cyclic Cy or dihedral Dy), with the N-fold axis along
the helix axis. (As examples, DNA has the point-group Dy, and the extended T4
bacteriophage sheath (Fig. 7.28) has the point-group Cs.) .

Because helical symmetry needs only two parameters, 1t can be represented as a
two-dimensional diagram on paper. This is done as follows. Suppose we hz}ve a
three-dimensional model of a helical structure such as a virus. Choose some point of
each subunit and mark it. We now have a set of points that lic on .the s_urface of a
cylinder. If we were to cut that cylinder along a line parallel to the ‘}‘lehx_ axis, 2.lnd. the;n
to open it flat, we should have a two-dimensional diagram (cal!ed the “radial projection™)
of the helical lattice. This diagram can also represent the point-group symmetry of the
helix. An N-fold axis along the helix axis causes each lattice poin.t to become conyertcd
into N such points, all with the same position along the helix axis (same z-coqrdlnat.e).
In the diagram, therefore, each lattice point becomes replaced by N such points with

T
o O
o [0

G
(o] o O

(o] o

Fig. 7.28 Positions of the 144 subunits in the extended sheath of baclen()phagg T4 (Moody, 1973).
Each of the 24 annuli contains six subunits. This gives the helix a six‘folq axis, synub()lued by the hexagon
at the top. The helices arrowed at the top are the same as those indicated in Fig. 7.29.
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;ST

Q° 180° 360°

Fig. 7.29 Radial projection for the helix of Fig. 7.28, showing its outside surface. The arrows at the top
indicate the helices arrowed in Fig. 7.28.

the same z-coordinate (Fig. 7.29). A two-fold axis perpendicular to the helix axis generates
no new lattice points, so this must be represented by two-fold crystallographic symbols
on the lattice points.

We shall refer to this two-dimensional diagram as the helical projection iattice. If we
choose any two points in this lattice and join them with a straight line, we can also join
the corresponding pairs of points so as to produce a set of parallel lines. These represent
helical lines (called simply helices) in the original three-dimensional helix (Fig. 7.28).
By this procedure, we could find an infinite number of sets of helical lines, so we need
some way of choosing the most useful set. The different sets of helices differ in their
number (n), and in their pitch (P, which is the vertical distance that must be travelled
along a helix before we are vertically above the starting point). n must be a multiple of
the rotation axis N, but sets of lines can always be chosen that contain the minimum
number, N, of helical lines. Of these, the lines with the largest pitch constitute the basic
helices. The choice of this set serves to fix the values of i and Q that we use to define
the helix. With the basic helices, h and Q will have their smallest possible (absolute)
value, which is why these helices are the most convenient choice. Instead of using Q, we
can use the pitch P = h(360°/Q), or the number of units/turn = P/h = 360°/Q, denoted
by 1/m.

{b) Fourier components of a helix

In considering the Fourier transforms of helical structures, we apply the same general
approach used earlier (Sections 7.2.2(a) and 7.2.2(b)) with linear and planar periodic
ones. We imagine the helical structure to be composed of a number of standard, simplified
density-waves, each of which gives a reasonably simple diffraction pattern. Three general
types of density-wave are required.
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(a) (b}

Fig. 7.30  (a) The simplest component of any helical structure which is confined to a thin cylinder. This
is a thin cylinder of uniform density (positive, indicated by the vertical shading). (b) The F.T. of (a)
(confined to the XY -plane) is sectioned in the XZ-plane. (Vertical shading indicates positive density,
horiz;)ntal)shading indicates negative density: the width of the shading indicates the amplitude of the
transform.

quform density wave. The first type of density-wave we need is a thin cylinder of
uniform density (Fig. 7.30a). Such a cylinder, coaxial with the z-axis, is unaffected by
any amount of stretching parallel to the z-axis, so its transform is unaffected by any
amount of compression parallel to the Z-axis. Therefore the transform can exist only
on the X.Y-plane. On this plane it has a large peak at the origin (since the cylinder has
no negative density regions), surrounded by concentric circular rings (since the transform,

lik.e the cylinder, must be circularly symmetric). These rings have alternating signs
(Fig. 7.30b).

Cyli.ndrical density-waves. Next we need a cylindrical Fourier component consisting
of ring-shaped sinusoidal density-waves of period h/m ( Fig. 7.31a). This component
could be obtained by multiplying a thin uniform cylinder (see above) with a set of
parallel planar sheets of sinusoidally varying density, parallel to the xy-plane and with

| F— —
(a) (b)

Fig._ 731 (a) Thg second type of helical Fourier component: circular bands of alternating sign and of
period h/m. (Vertical shading: pasitive; horizontal shading: negative.) (b) The F.T. of (a) (shown sectioned
in the XZ-plane) is confined to the two layer-planes Z = + m/h.
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a repeat distance h/m. The transform of the latter is two points at Z = +m/h (see
Section 7.2.2(b)). The transform of the former is shown in Fig. 7.30b. By the convolution
theorem, the transform of our set of ring-shaped density-waves is the convolution of
those two transforms, i.e. it is two identical copies of the cylinder transform (see above),
on the planes Z = +m/h (Fig. 7.31b).

Helical density-waves. The final type of cylindrical Fourier component (Fig. 7.32a)
consists of a set of helical density-waves, of alternating sign, on a thin cylindrical surface
of radius r. This can be regarded as a set of two-dimensional sinusoidal density-waves
(as used in Section 7.2.2(b)) on a flat surface which is then rolled up to form a cylinder.
There are n helices (i.c. n positive, and n negative, peaks of density on any equatorial
line), each of pitch P, so the repeat in the z direction is P/n.

Layer-planes. A section through the transform (amplitude only) of this set of helical
density-waves is shown in Fig. 7.32b. Most of the features can be deduced by intuitive
arguments. First, the set of density-waves in Fig. 7.32a is unaltered if it is convoluted
with a line of equidistant points, spaced P/n apart, and oriented parallel to the z-axis.
(It is unaltered, since the result of this convolution merely superposes the density-waves
successively on themselves, in perfect register.) By the convolution theorem, the transform
is therefore unaffected if multiplied by the transform of the line of points, i.e. by a set
of equidistant parallel planes perpendicular to the z-axis, and spaced n/P apart.
Consequently the transform cannot exist except on this set of “layer-planes” at
+n/P, +2n/P, +3n/P,....

If the set of convoluting points had been spaced apart by some fraction of P/n
(P/2n, P/3n,...), then the density-waves would have been superposed on themselves out
of register, and would have cancelled each other out. The convolution theorem therefore
implies that multiplication of the transform by planes spaced with any multiple of n/P
(2n/P,3n/P,...) destroys the transform—i.e. there is no transform to be sampled at
+2n/P, +3n/P,.... The transform is thus confined to Z = + n/P.(Fig. 7.32 shows the
case where n = 1.) : )
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Fig. 7.32 (a) The third type of helical Fourier component: n helical density waves of alternating sign
and of pitch P. (Vertical shading: positive; horizontal shading; negative.} (b) The F.T. of (a) (shown
sectioned in the XZ-plane) is confined to the two layer-planes Z = +n/P. (See Fig. 7.34 for a
three-dimensional representation of this.)
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What is the distribution of the transform’s amplitude on these layer-planes? First we
note that rotation of the transform about the Z-axis is equivalent to rotation of the
density-waves about the z-axis. Now this is equivalent to translating (shifting) the waves
along the z-axis, which merely changes the phase of the transform (see rule (d) in
Fig. 7.12). So the transform’s amplitude must be rotationally symmetric about the Z-axis
(Fig. 7.34). We therefore need consider only one section of this amplitude distribution,
as was shown in Fig. 7.32.

Amplitude on layer-planes. Some idea of the transform amplitude on this section can
be obtained by considering what would happen to the transform if the cylinder in
Fig. 7.32a had a very large diameter, and if the number of helices increased proportionately
to the diameter. In the limit, the cylinder’s curvature could be ignored, so it could be
represented approximately by a group of flat sheets joined together along lines parallel
to the z-axis—a sort of polygonal cylinder. On each sheet, the density-waves would be
flat and straight, but spaced as they were in the original cylinder. We can see their
appearance by cutting that cylinder (along a line parallel to its axis) and opening it out.
We should then see a pattern of which a small part is shown in Fig. 7.33a. As in’
Fig. 7.5g and h, its transform consists of a pair of spots, one of which is shown in
Fig. 7.33b. By the same argument used when discussing Fig. 7.32, the Z-coordinate of
this spot is n/P. This is the reciprocal of the spacing, in the z-direction, of the lines in
Fig. 7.33a. Those lines are straight, so the X-coordinate of the spot in Fig. 7.33a will be
given by the reciprocal of the lines’ spacing in the x-direction—i.e. by n/(2mnr). So, if
the X-coordinate (= R-coordinate) of the peak is denoted by R,,, we have 2nrRy =
2ar(n/2nr) = n when n is large.

When n is small, the curvature of the cylindrical surface can no longer be ignored,
so 2nR,, is not simply n. A better approximation is 2zRy = 0.9 + 1.1n, except for the
first few orders. (More accurate values are shown by the open circles in Fig. 7.43; the
amplitude distribution will be considered in more detail later (Section 7.2.3(g)) in
connection with the half-helix.)

X
/2T r—A (or R)

() )}

Fig. 7.33 (a) A thin cylinder with n helical density-waves, like that in Fig. 7.32a, has been cut parallel
to the z-axis and opened out flat. (b) The F.T. of this sheet (if n were large) would consist of just two
spots (of which only one is shown here). Because of the circular symmetry of the amplitude in a
layer-plane (Figs 7.34 and 7.36), the X-coordinate is equivalent to the radial R-coordinate (see Fig. 7.48).
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fa) (b)

ig. 734 (a) A set of n helical density-waves, as in Fig. 7.32a. {b) The two layer-planes in the F.T. of (a).

Before considering the phase of the transform, let us summarize our conclusions abogt
's amplitude. A set of cylindrical helical density-waves of pitch P/n is shown in
“ig. 7.34a. Its F.T. (Fig. 7.34b) exists only on the two planes Z = +n/P. On each' plane,
he transform amplitude consists of concentric circular rings, the innermost being the
trongest. . )

Phase on layer-planes. Now we consider the phase of these rings. Figures 7.30b and
.32b show sections of the transform in a vertical plane. Consider what happens if that
ection plane is rotated about the Z-axis. Each transform section corresponds to the
ransform of the projection of the helical density-waves onto a vertical plane that rotates
bout the z-axis (Fig. 7.35). Rotating this projection plane (Fig. 7.35) is equivalent to
otating the helix, which is equivalent to shifting the helix along the z-axis. Sh.iftin.g
translating) an object causes a phase shift in the transform (Section 7.2.2(d)), which is
onstant along lines perpendicular to the translation. Since the translation is along the
-axis, the phase shift is constant in directions perpendicular to the Z-axis, ie. on
tyer-lines. All parts of a layer-line therefore receive the same phase shift: this is a phase
otation proportional to the translation of the helix, and hence proportional to the

g 7.35 The cylinder in Fig. 7.34a is being projected onto a projection plane that rotates through a
wiable angle ¢. (The projection of the top half onto the xz-plane is shown in Fig. 7.32a.)
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rotation of the projection plane, and to the identical rotation of the transform section
plane. As this rotates, the transform phase also rotates. Since there are n helical
density-waves, the projection is exactly repeated every 360°/n, and so also is the phase
of the corresponding section of the transform. This is most easily seen by looking down
onto one of the layer-planes (Fig. 7.36). The phase will be zero along a radius line
corresponding to a real section of the transform, as in the X Z-plane of Fig. 7.32b. The
phase rotates uniformly with the radius line, and next becomes zero when the line has
rotated by 360°/n (360°/3 = 120° in Fig. 7.36). Furthermore, it can be shown (by
considering the effect of inverting the helical waves and their transform by 180° rotation
about the x- and X-axes) that the phases on the two layer-planes of Fig. 7.34b rotate
in opposite directions.

This n-fold rotational symmetry of the phase on a layer-plane has consequences
affecting the parity of n, the number of helices in any set. If n is even, the phase is the
same after a 180° rotation. For any section through the transform, the portion on the
left of the Z-axis is related to that on the right by a 180° rotation. So, if n is even, the
phases (as well as the amplitudes) on a layer-line have mirror symmetry. However, if n
is odd, a 180° rotation of the transform section plane rotates the phase also by 180°,
i.e. makes the phase vectors point in the opposite direction. This is shown on the left
side of the 0° line in Fig. 7.36.
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Fig. 7.36  The upper layer-plane from the F.T. of a set of three right-handed helical density-waves. Since
n =3, the circular rings of transform amplitude have phases that rotate three times in a complete
revolution. Rows B and C are the lines along which the layer-plane is intersected by tilted section-planes
(see Fig. 7.64).




178 M. F. Moody
{c) The (n, Z) plot

Now we have described the three basic types of helical component and their transforms.
By adding appropriate quantities of the density-waves in Figs 7.30a and 7.32a, we could
obtain a series of n helices with no negative density. If the correct amount of the
density-waves in Fig. 7.31a were then added as well, we should obtain a structure
composed of annuli, each containing n dark blobs, and with successive annuli related
by the screw in Fig. 7.32a. Therefore, by taking enough of these three types of component
(with all necessary values of the variable parameters, such as P, n, h and the cylinder
radius), and then adding them all together, any helical structure can be constructed.
Actually these components would suffice to construct any kind of structure whatever.
If the structure is to have strict helical symmetry, therefore, there must be restrictions
as to which components are allowed to contribute to it. These restrictions can be put into
a particularly clear form if we use a device called the (n, Z) plot.

Consider the transform of a density-wave when the thin cylinder to which it is confined
is cut parallel to the z-axis and opened out flat. When this is done with the sinusoidal
component in Fig. 7.32a or 7.34a, we obtain Fig. 7.33, whose transform (ignoring effects
due to the finite width of the sheet) is a pair of points in the XZ-plane. (One is shown
in Fig. 7.33.) When this operation is performed on any of the other density-waves, the
corresponding transform (again ignoring the effects of finite width) also consists of sharp
peaks. Note that the positions of the peaks from the flattened surfaces approximately
correspond to those from the unflattened, cylindrical density waves.

Now apply the same procedure to a complete helical lattice (still supposing, for
simplicity, that it is confined to a thin cylindrical surface). Open out the helix in Fig. 7.37a
(here we show its inside surface), and obtain the two-dimensional lattice (“radial
projection”) in Fig. 7.37b. Ignoring the effects of finite width, its transform will consist
of sharp peaks on a lattice (Fig. 7.37¢c). Next, divide the X-axis (lower scale) of this
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Fig.7.37 Relation between a helical lattice and its (n, Z) plot. (a) Helical lattice drawn on a thin cylinder.
(b) The cylinder has been cut paraliel to its axis and opened out so as to show its inside surface. (This
gives a radial projection, similar to that in Fig. 7.29, but showing the other surface.) (c) When the lattice
in (;)) isI rotated through 90°, and the axes have been scaled and relabelled (see text), we obtain the
(n, Z) plot. ¢
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transform into units of AX = 1/(2nr) and then relabel it as the n-axis (upper scale). The
transform lattice is thereby converted into an (n, Z) plot.

The (n, Z) plot corresponding to any helical lattice contains a list of all the helical
density-waves that are compatible with it. This list can be read off the (n, Z) plot as
follows. The point at the (n, Z) origin refers to a uniform density (Fig. 7.30a). All other
points occur as pairs, with the origin bisecting the line that joins them. Each pair refers
to a set of helical density-waves (Fig. 7.32b). From a pair of points, choose that with a
positive n-coordinate. Then the number n of helical density-waves in this set is simply
the n-coordinate of the point. The axial spacing P/n is given by the reciprocal of the
Z-coordinate of the point. (If this is negative, it means that the helices are left-handed.)
Ifn = 0, i.e. il the points are on the Z-axis, then they refer to a sct of annular density-waves
(Fig. 7.31a), with a spacing h = 1/Z.

The (n, Z) plot corresponding to any helical lattice is not only very useful, but also
easily found from the “radial projection”. Open this out so as to show the view from
inside the helix (i.e. not as in Figs 7.28 and 7.29). Rotate this view of the radial projection
lattice (Fig. 7.37b) through 90°, so that the z-axis is now horizontal. The z-coordinate
of each point will be found to be a multiple of some finite z-value. (This is because all
points in the original helical lattice had z-coordinates that were multiples of the rise
distance h.) Find this z-value (which will be called Az), and put marks where z is
0, Az, 2Az, etc. Relabel the z-axis as the n-axis, relabelling the marks asn =0,N,2N,...
(for a helical rotation axis of order N). Now we have marked the n-axis of our (n, Z) plot.
Next, relabel the vertical axis as Z, and find the appropriate scale. The easiest way to
do this is to find the rise distance h of the original helix, and to mark the first point
above the origin that lies on the Z-axis as 1/h. This completes our (1, Z) plot.

(d)  The helical “selection rule”

The helical lattice is defined by the three numbers N (the order of the rotation axis), b
(the rise distance) and P (the pitch of the basic helices). If we know their values, the
(n, Z) plot can be calculated without first plotting out the helical lattice. We look for
the minimal set of cylindrical density-waves which, when added together, will give 2
density blob at each lattice point (Fig. 7.38a). To begin with, we must represent the
basic helices. Their pitch is P and their number n is N, the order of the rotation axis
and the minimum possible number for any set of helices. To represent them, the set of
helical density-waves (like those in Fig. 7.32a or 7.34a) must run along these basic helices,
so they will need N positive (and N negative) helices of pitch P. They will give rise to
two points in the (n, Z) plot, with coordinates (N, N/P)and (— N, — N/P) (the first is
shown as point A in Fig. 7.38b). We shall also need a set of annular density-waves (like
those in Fig. 7.31a) with the positive peaks separated by h, so their Z-coordinate in the
(n, Z) plot is 1/h (or — 1/h). Since their n-coordinate is zero, we obtain the point B in
Fig. 7.38b. Finally, we add the point O at the origin of the (n, Z) plot (corresponding
to the uniform cylindrical density-wave in Fig. 7.30a).

We now have two shortest vectors 6A and 68 of the (n, Z) plot. We shall, of course.
need other helical Fourier components to represent all the detail of the helix. All these
components correspond to points in a lu_l'lice on the (n. Z) plot, and thall::tticc czm_’bc
generated from the two vectors OA and OB. So the general lattice point j(OA) + m(OB1
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(a) z

(t)

Be--l/h

Fig. 7.38  Diagram to illustrate how a helical lattice, as repr'esenled in its simplest form by the positiye
{vertically shaded) spots, can be used to construct the lattice of an (n,.Z) plot. {a} 1/Nth of thg radlgl
projection of the helical lattice, viewed from the inside of the helix. (N is the prder Aof the rotation axis
of the helix; in this diagram, N = 2.) A indicates density-waves along the basic helices (N in number),
and B indicates density-waves along the annuli. The intersection of tf\ese two sets of waves generates
the spots shown here. (b} Part of the corresponding (n, Z) diagram. Point A has derived from the helices
‘A’ in (a); point B is derived from the annuli ‘B’ in (a).

wili have (n, Z) coordinates given by n = jN and Z = jN/P + m/h, where j and m are
any integer (positive or negative). This gives

Z=n/P+m/h (N

(n is a multiple of N), called the helical selection rule. If, instead of using P, we define
the basic screw operation with the twist angle Q°, then the selection rule assumes the form

Z =n(Q/360°)+ m/h (2)

(e) Helix with an exact repeat

Let us suppose that the helix repeats exactly when translated a distance ¢ .along its axis
(the z-axis). Then it will not be changed if it is convoluted with a set of pomts.arranged
along the z-axis and separated by c. Consequently, its Fourier transform will not be
changed if multiplied by a set of planes, parallel to the X Y-plane, and separated by 1/c.
This means that the transform exists only on the planes Z =0,1/c,2/c,3/c,.... We
therefore put Z = L/c (L is any integer), and the helical selection rule becomes
L/c=n/P+ m/h, or L =(c/P)n+ (c/h)ym. Now (c/P) is the number of t}xrns f)f the
basic helix per repeat (=t), and (c/h) is the number of units on each basic helix per
repeat ( = u) (note that both u and ¢ are integers). The helical selection rule now becomes

L=tn+um 3)

(As before, L, n and m are any + integer, and n must be a multiple of N, the rotation
axis.) This equation defines a lattice of points on an (n, L) plot, the form taken by the
(n, Z) plot when Z = L/c.
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Certain differences follow when the helix repeats exactly, so that the transform is
confined to the layer-planes Z = L/c. First, we can use the integer L to denote the
layer-plane containing a particular reflection. Second, there must be points in the (n, Z)
plot with the same value of Z but different values of n. (If n,, m, satisfy the integral
helical selection rule, so also do (n; + u), (m, — t).) In the transform, the two or more
different patterns like those in Fig. 7.36 will be superposed in the same layer-plane and will
therefore interfere. The resultant amplitude, with contributions from two different
n-values, cannot have circular symmetry. This could greatly alter a diffraction pattern
and complicate interpretation.

The limited resolution of the transforms of most electron micrographs so restricts the
number of layer-lines that such interference is fairly rare. However, the possibility is
increased if the helical particle is short, since this increases the width of the layer-lines.
(Layer-line interference is not, strictly, an all-or-none affair; the layer-line profile is a
sinc function.)

The original papers on helical diffraction (Cochran et al., 1952; Klug et al, 1958)
used exclusively the notation appropriate for helices with an exact repeat. This usage,
which seems to have been a vestige of the crystallographic approach to helices*, is no
longer relevant when analysing the patterns of particles under no constraint to have an
exact repeat. Nevertheless, it is still often used, perhaps because it is enshrined in certain
computer programs. It can be made to work by choosing a repeat that is long enough
to fit the data to within the required accuracy. But there is always the temptation to
simplify the numbering of the layer-lines by approximating the structure to one with a
smaller repeat. Then accuracy is lost unnecessarily in stating the helical parameters.
Moreover, if any later improvement is made in measuring these parameters (or if the
helix should change its exact structure under certain conditions), a complete change is
necessary in the assignments of L to the layer-lines. So it is extremely difficult to calculate
the error in the twist angle when the approximation of a short repeat is used. All this
is quite unnecessary; the (n, Z) plot, which makes no assumptions about the repeat of
the helix, and which consequently allows all measurable quantities to be determined in
the usual ways (e.g. least-squares), is just as easy to use.

{f)  Structure not confined to a single radius

Now we drop the requirement that the helical structure should be confined to a thin
cylinder. Since the helical structure now has thickness, we represent it as the sum of a
series of concentric cylinders with successively incremented radii. On each cylinder there
is a density pattern. Although the patterns usually differ, each fits the same helical lattice.
Each cylinder is thus a thin helix of the type considered in Section 7.2.3(b), and its
transform will be confined to layer-planes defined by the selection rule. Since the selection

*If exact helical symmetry applies to an entire three-dimensional lattice, there must be an integral number
of units (actually 1, 2, 3, 4 or 6) in the repeat. This fact had been so thoroughiy taught to crystallographers
that there was a small revolution in structural thinking when it was pointed out (Crane, 1950; Pauling and
Corey, 1951) that it need not apply to single molecules. However, the number of units per repeat then moved
only to a (small) rational number, not to a real numbet. The mathematics of helical diffraction were recast
by Ramachandran (1960) in a form appropriate to a real number of units per repeat, but this involved a
substantial change in notation. Here we make the smallest possible change, so that papers using helical
diffraction can be followed easily.
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rule is independent of the cylinder radius, the layer-planes of each of the component
transforms (from different cylinders) will have identical Z-coordinates. Consequently
they can interfere. We now consider what effects this will produce.

From the transform of the thick helix, select one pair of layer-planes. Suppose that
n=n, and Z = Z, on them. What features of the thick helix do the planes relate to?
They relate to the sum, from ail the concentric cylinders, of sets of sinusoidal helical
density-waves. These waves will differ in size, corresponding to the different radii of the
corresponding cylinders. They also differ in amplitude and phase (corresponding to the
different density-patterns). However, all the waves will have the same number (n,) and
pitch (n,/Z,). (We are supposing that the helix has no exact repeat, so that layer-planes
with different n’s will have different Z’s.) Since n = n, for the waves on each cylinder, the
contributions of each cylinder to the transform will have an amplitude with circular
symmetry, and a phase that rotates n, times along a circular path with its centre on the
Z-axis. So their superposition will also have these two features.

Suppose that, for a helix with effectively no repeat, we knew all the values of the
transform along one radial line on a layer-plane. Then the circular symmetry of the
amplitude would mean that we knew the amplitude over the entire layer-plane. Also,
the n,-fold rotation of the phase would allow us to predict the phase over the entire
layer-plane. This applies to every layer-plane; even though n is usually different on
different planes, the phase can be predicted provided n is known. So an axial transform
section is all that we need before we can reconstruct the entire transform of any helix,
provided the repeat is sufficiently long. With this proviso, the three-dimensional transform
of a helix can be adequately represented by a two-dimensional one composed of
layer-lines. Such a two-dimensional transform is simply the transform of the projection
of the helix. This result is of obvious importance in the three-dimensional reconstruction
of helical structures from projection data (Section 7.5.4).

{g) Transforms of flattened or unequally contrasted helices

During specimen preparation, helices are often imperfectly preserved or stained. This
will change the transform, and it is important to recognize and, if possible, correct for
these changes. Exact correction may be difficult, since the distortions are not simple;
the most common distortion, flattening, produces neither a flat sheet, nor even an elliptical
cylinder, but a shape resembling an unrisen pastry (Seymour and DeRosier, 1987).
Moreover, the effects of distortion can be even more complicated unless they are uniform
along the length of the particle. To give some qualitative appreciation of these effects,
we therefore assume uniformity, and consider only a few simplified distortion shapes.

If distortion is uniform, the changes are independent of z. So they affect only the
distribution of amplitude and phase within each (X, Y) plane of reciprocal space. The
positions of the layer-planes (or -lines) are therefore unaffected, and the previous selection
rule will still apply. However, the connection between the order n of a layer-line, and
the distribution of amplitude on it, will alter.

Although this complicates interpretation of the transform, such interpretation is still
reasonably simple if the main structural features lic on a thin (although distorted)
cylinder. The easiest case is that where the thin cylinder (Fig. 7.39a) has been squashed
flat (Fig. 7.39b). (This is not the situation in Fig. 7.37b, since a flattened cylinder has
two surfaces.) So the transform contains two reciprocal lattices related by a mirror plane
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Fig.7.39  Comparison of the F.T. of a circular, and of a flattened, thin helix (Moody, 1967a). (a) Projection
of a continuous circular helix (radius r) onto the xz-plane. (b) F.T. of (a). (Amplitude is indicated by the
separation of the paired lines; negative regions of the transform are shown by broken lines.) The principal
maxima on each layer-line lie closest to the Z-axis. {c) The circular helix of (a) has been completely
flattened into the xz-plane. (d) F.T. of {c). This is quite similar to the F.T. in (b). The principal maxima
have been displaced and the subsidiary maxima diminished.

(Fig. 7.53c). Therefore each layer-line contains not just one peak (as in an (n, Z) plot),
but two. These will be broadened because of the finite width of the flattened cylinder,
so they will interfere. This displaces the peaks from their lattice positions, the displacement
being greatest for n = | and diminishing as n increases (elliptical points in Fig. 7.43).
The effect is to produce a pattern qualitatively similar to the transform of a helix.

Another case that can be treated exactly is the half-helix. Since this reveals the origin
of the peaks in the undistorted helix, we treat the two together. Figure 7.40 shows a
left-handed helical wire, with the upper part continuous and the lower part broken. If
both parts are diffracting, the diffraction pattern will be that shown in Fig. 7.41. These
curves represent the amplitude distributions in the F.T. of a helical structure. On a
layer-plane of order n, the distribution is a Bessel function J,(X). These are characterized
by a central gap, of width roughly proportional to n (see Section 7.2.3(b)), and flanked
by two broad peaks.

The origin of the peaks in the helix's F.T. (Fig. 7.41) is clearer if we consider the F.T.
of just half the helix (Fig. 7.42). This half-helix is shown as the continuous line in
Fig. 7.40 (i.e. the part represented by the broken line has been removed). It will be seen
that its F.T. (Fig. 7.42) preserves just the peaks on the right-hand side of the whole-helix’s
F.T. (Fig. 7.41). (When comparing these Figures, the Bessel functions Jo(X), J;(X), etc.
in Fig. 7.41 correspond with layer-planes, 0, I, etc. in Fig. 7.42.) So the peaks on the
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b1/m~|
fig. 7.40 The projection of a thin helix, as in Fig. 7.39a. It is left-handed, and its upper surface (whose

projection gives the F.T. shown in Fig. 7.42) is drawn as a continuous line. The diameter is 1/ so that
Fig. 7.41 shows, with the correct scale, the F.T. of both surfaces.
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Fig. 741 A plot of the Bessel functions of orders 0 to 7. These correspond to the F.T. of both the
continuous and broken lines of Fig. 7.40. The different curves corresponding to different layer-lines, the
zero-order layer-line (bottom curve) passing through the origin. If the radius of the original helix were
1, the abscissa scale shown here could be taken to measure 2nRr.

The even orders are symmetrical about the origin, but the odd orders are antisymmetrical, i.e. their
amplitudes are equal at X and — X, but their phases differ by 180°. Moreover, whereas the zero-order
Bessel function has a peak at the origin, the higher-order functions are zero there, and do not become
large until X reaches a value that is approximately proportional to the order.
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Fig. 742 F.T. of the continuous line of Fig. 7.40, i.e. of a half-helix (Moody, 1967a). Consequently only
half the peaks of Fig. 7.41 are present on each layer-line. (However, the peaks are double the height
of those in Fig. 7.41 since the vertical scale was chosen to make the zero-order layer-lines identical in
the two Figures.) All the highest peaks of the different layer-lines are positive, and they fall approximately
on a line through the origin.

right.-hand side of Fig. 7.41 derive from the top surface of the helix (i.e., from the
continuous line in Fig. 7.40). The bottom surface (broken line in Fig. 7.40) gives rise to
the peaks on the left-hand side of Fig. 7.41. Note also that the string of peaks in
Fig. 7.42 lies nearly along a straight line (unlike those in Fig. 7.41). Because the two peaks
on a layer-line can no longer interfere, their positions are not distorted, as in Fig. 7.39.

(h)  Representing calculated helical structures

Sl}ppose that we have calculated the three-dimensional structure of a helix, and now
wish to represent it on a sheet of paper. Like any other three-dimensional structure, it
can be represented as the image of a two-dimensional surface corresponding to some
chosen density level. Thus the original helical reconstructions were shown as photographs
of balsa models. Nowadays, these pictures can be generated in a computer. However,
such representations of a contour surface cannot show the density function. This can
be Rresented by a suitable two-dimensional section or projection. We start by considering
sections of helices.

Sectlops. lt.is easiest to calculate Fourier transforms on surfaces where one of the
coordfnates 1s constant. So, if the transform is stored as a function of the Cartesian
coordinates (X, Y, Z), the sections of the corresponding density distribution that are
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Fig. 743 Positions of the first maxima in the F.T. of helices whose supporting cylinders have various
shapes. The circular and semicircular helices correspond to the F.T.s in Figs 7.41 and 7.42, respectively.
(Adapted from Table 2 of Moody, 1967a.)

easiest to calculate lie on planes perpendicular to x, y or z. However, a helical transform
calculated by Equation (19) (see below) will be stored as a function of the cylindrical
coordinates (R, @, Z), so the most easily calculated sections will have r, ¢ or z constant.
(See Fig. 7.48 for the definition of these coordinates.) When z is constant, we have
sections perpendicular to the z-axis (Fig. 7.44), which are used for building a balsa model
of the helix. When ¢ is constant, we obtain sections on radial planes joined at the z-axis;
these are useful for displaying circularly symmetric features of the structure. When r is
a constant one calculates sections on concentric cylinders. Such sections can be plotted
on paper, as if the cylinder had been cut and opened out flat. They can conveniently
represent the structural features at the most important radii.

Radial projections. The calculation of any section of a particle requires the entire
transform, but projections can be calculated using only parts of it. We are familiar with
projections along parallel straight lines. But projections can also be made along lines
that are curved (though they must not intersect). The structure density is integrated
along each of the curved lines; then a surface is chosen that intersects the lines and, at

A
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Fig. 7.44 Three principal surfaces for representing sections of a helical structure.

each intersection point, the integrated density is marked. Such non-rectilinear projections
are often appropriate for a helical structure, and some of them can be calculated easily
by using the mathematics of helical transforms. The two most useful helical projections
are of this type. Their utility depends on the particle not having an exact repeat, so that
every layer-plane of its transform must have only one order n;.

Consider first the projection of the particle along the set of concentric circles centred
on the particle’s axis, and parallel to the xy-plane (Fig. 7.45). This projection couid be
obtained if the particle’s density were first averaged by rotation about its axis, and the
resulting rotationally symmetric structure were then represented by a section on the
xz-plane. Instead of calculating the complete density and then averaging it, we can obtain
the rotational average directly from the helix’s transform. We have just to calculate a
back-transform, from only those layer-planes that are rotationally symmetric. Where
shall we find such layer-planes? Since the particle is supposed to have no exact repeat,
no pairs of layer-planes can interfere; on each layer-plane, therefore, the amplitude is
rotationally symmetric. However, the phase rotates n times, and cannot be rotationally
symmetric unless n = 0. Consequently, the rotational average is found by taking the
transform only of those layer-planes for which n = 0. These occur at Z = m/h, where h
is the rise distance (Section 7.2.3(a) and Fig. 7.27).

Helical projections. Next we consider the helical projection. It has been pointed out
that, in a helical structure, there are many different sets of helices. In a helical projection
we choose some set (of pitch P, and number n,), and project the structure down them
(Fig. 7.46). There is another way to represent this projection. Suppose that the helix is
convoluted with a set of points lined up along the z-axis, and spaced (P,/n,) apart.
(P,/n,) equals the spacing between successive turns of our chosen helices. The convolution

\
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Fig. 7.45 Projection of a helical structure along circles, centred about the helix axis 7 (rotationally-
averaged projection).




188 M. F. Moody

z
\i

<

N
Fig. 7.46  Projection of a helical structure along a given set of helices (helical projection).

will thus superpose, on any given turn of these helices, subunits fr.om all the r'emaining
turns, preserving their angular orientation. If (as we are supposing) the helix ha‘s no
exact repeat, none of these subunits will superpose e)'(actl).l on each other;.each will be
displaced by short distances along the turn of the helix (Fig. 7.47). If the dxrsplacerflems
are short enough, the resulting distribution will approximate that of the particle helically
averaged—-that is, averaged by being continuously screwed along the chosen set of
helices. '

How can we calculate this projection directly from the transform of the helix? The
convolution described above is equivalent to multiplying the transf.orm b){ a se? of
parallel planes at Z = +(n,/P,), +2(n,/P,),.... Note the effect of this mu}tlphcahon.
Since the helix has no exact repeat, every layer-plane has a different Z-coordinate, equal
to n/P, and referring to n helical density-waves of pitch P. The layer-planes will be
grouped into sets, where the ith set has Z-coordinates n;/ P;, 2n,/P,, -T"?;/P.-, .... The lowest
member of each set refers to a series of density-waves whose positive crests run along
an actual set of helices in the structure. (The higher members contain 2, 3, etc. times as
many density-waves as there are corresponding helices in the structure; the layer-line
with n = 1 in Fig. 7.39 is in the first set, and the layer-lines with n = 2, 3, etc. belong to
higher sets.) Multiplying the transform by planes at Z = +(n,/P,), +2(n,/P.),...
therefore means sampling the transform at a particular set of layer-planes. If those planc§,
and no others, are back-transformed, the helically averaged density is calculated. This
may be adequately represented by a section in the axial (yz-) plane, or the basal

(xy-) plane.
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Fig. 747  The helical projection is equivalent to convolution of the helical structure \{vith a s_et of
equidistant points parallel to its axis, having a spacing equal to the pitch of the desired helices. This has
the effect of superposing the subunits from different turns of the helix.
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(i) Review of Fourier transforms in Cartesian coordinates

For reference, and as a basis for the corresponding formulae for helical or rotationally-
symmetric structures, we list the standard equations in Cartesian coordinates (see, for
example, Bracewell, 1986).

A density function f(x) = f(x,y,z) has the Fourier transform F(X)=F(X,Y,2),
where

F(X)= r r fm S{x)exp (2niX - x) d3x (4)
This has the inversion
f(x)=jw J.w fm F(X)exp(—2nix-X)d*X (5)
Two density functions f and g have a convolution (*) defined by the function

f(X)*g(X)=f j fw S(u)g(x — u)d3u (6)

The two functions f and g also have a cross-correlation function defined by

f(x)ffg(x)=J f J'\f(u)y(x+u)d’u (7

Whereas the convolution operation is independent of the order of f and ¢, the
cross-correlation operation is not. If f ‘and ¢ are the same function, then the
cross-correlation function is called an “auto-correlation function™. By substituting the
convolution of Equation (6) in place of f(x) in Equation (4), and changing the order
of integration, we obtain the convolution theorem:

F(X)G(X):jw jw r {f(u)% g(x)} exp (27X - x) d*x (8)

It can be similarly proved that:
F*(X)G(X):F(—X)G(X)=fm r r {/(x) % g(x)} exp(2niX -x)d3x (9)

If f and g are the same function, then Equation (9) gives the transform of the
auto-correlation function:

|F(X)|2=r r r {f(x)% f(x)} exp (27iX - x) d3x (10)

By taking the Fourier inversion of this equation, we express the auto-correlation function
as the transform of | F(X)|2. (Hence the auto-correlation function, like its transform,
must have a centre of symmetry.) We then equate to zero the variable common to both
sides, and obtain the three-dimensional Cartesian form of the Parseval relation:

fm jw fw f’(u)d’U=Jw fw fw IF(X)1?d*X (1)
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(“Parseval relations” show how the “length” of a “vector” changes after transformation
of the functional space; such equations are useful in relating the density scale factors of
a structure or picture and its transform.)

(j) Fourier transforms of helical structures

A helical structure has a unique axis (identified with z) along which the translational
component of the screw acts, and which is the axis of the rotational component. The
natural coordinate system for discussing the transforms of helices is therefore cylindrical
polar coordinates.

Fourier transform in cylindrical polar coordinates. Cylindrical polar coordinates
(Fig. 7.48) are defined by the following equations:

X =rcos¢ X =Rcos®
y=rsing Y=Rsin® (12)
z=7 Z=2Z

Making these substitutions in the Cartesian Fourier transform Equation (4), we obtain:

o 2r o
F(R,<D,Z)=J J f f(r.¢,z)exp {2ni[ Rrcos (& — ¢) + Zz]}rdr d¢ dz
—x J0 0
(13)

We wish to make the best use of the fact that the helix is periodic in both ¢ and z. We
note that a two-dimensional repeating structure which is periodic in x and y gives a
particularly simple transform—it exists only at the points of the reciprocal lattice in
the X Y-plane. Now the transform of that two-dimensional repeating structure contains
the term exp[2mi(Xx + Yy)]; so we expect a similar simplification if-a similar form in
® and Z could somehow be introduced into Equation (13). Z and z are already in the
correct combination, and we need only introduce the required change into ®. This is
possible through use of the gencrating function for Bessel functions (Watson, 1958):

expl{iu(t -t ")} = i t"J,(u) (14)

n=-a

from which the substitution t = iexp (iv) yields:

2

exp(iucosvy= Y exp{in(v+ n/2)} J,(u) (15)
In this last equation, v is no longer the argument of the cosine, but occurs as the
combination nv in the exponential. Setting u = 2nRr and v = (® — ¢) in Equation (15),
then Equation (13) gives us:

0

F(R,®,Z)= Y explin(® +n/2)}

n= -0

o l 2n Ed
J J,(2nRr)2nr [— f J f(r.¢,z)exp {i(2nZz — n¢)} dz d¢] dr
0 2n J, -
(16)
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Fig. 7.48  Cylindrical coordinate systems in (a) real and (b) reciprocal space, used for the equations of
helical diffraction theory.

In this equation we note that z and ¢ occur in the same sort of expressions as do x and
y in an ordinary Cartesian transform*. However, since n is not a continuous variable
but an integer, there is a summation over n instead of an integral. So Equation (16)
allows us to obtain simple expressions for the case where f{(r, ¢, z) is periodic in ¢
and z. However, r and its reciprocal coordinate R, though they occur in the combination
rR, are separated from Z and ¢ in a quite different part of the transform.

“p-Transforms”. Certain stages on the route to the complete helical transform have
been defined and given symbols. Reference to the Fourier transform formula in Equation
(16) shows that transformation proceeds by a differcnt route for each of the three
cylindrical polar coordinates.

The z and Z coordinates are not changed from their Cartesian definition, and
transformation uses the same expression exp (2riZz) that occurs in the Cartesian Fourier
transform, Equation (4).

The transformation with respect to r proceeds by a separate route. It is no longer
strictly a Fourier transform, for which the kernel is a complex exponential, but rather
a Hankel (or Fourier-Bessel) transform, for which the kernel is a Bessel function. (This
will become clearer later; see Equations (18) and (21).)

The transformation with respect to ¢ proceeds by a curious double route. First, the
density function f(r, ¢, z) is Fourier transformed, within the double integral at the right
of Equation (16), so that ¢ is replaced by the integer variable n. Finally, this
“n-coordinate” is transformed, by means of an infinite Fourier series, into the required
reciprocal coordinate ®. Thus, in between the original density function f(r, ¢,2) and
its Fourier transform F(R,®, Z), we have “transforms” in which ¢ is replaced by n.
Because of the simplicity of the z—Z transform, this is always performed first, so all the
useful “n-transforms™ are functions of Z. However, there are two states for the radial
variables (r or R), so there are two of these intermediate “n-transforms”. The first is the
expression in squarc brackets in Equation (16):

n w
g,,(r,Z)=%JV J f(r.¢,z)exp {i(2nZz — n¢) dz d¢ (n
[+] -

* We could exchange the order of @ and ¢, obtaining an alternative form of Equation (16) with the combination
2nZz + ne) inside the =, ¢ integral. Though more symmetrical, this requires a wholesale redefinition of many
quantities in the F.T.
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The complete r-integral of Equation (16) is our second “n-transform™:

G,(R,Z) = ng,(r,Z)J,(2nRr)2nr dr (18)
o .

Using G,(R, Z), the polar coordinate F.T. of Equation (16) may be written more simply
152

o

F(R,®,Z)= Y exp{in(® + n/2)}G,(R, Z) (19)

Using the orthogonality of complex exponentials, this equation may be solved for
G.(R, Z), giving:

2n
G,,(R,Z)=$J0 exp (—in®)F(R, ¥, Z) dO (20)

Equation (18) represents G,(R, Z) as a Hankel transfom of g.(r, Z). Using the inversion
heorem for these transforms (see the comments following Equation (27)), we also have

gu(r,Z) = f"’ G.(R,Z)J,(2nRr)2nR dR (21)
0

The connections between the density function, its transform, and the two “n-
ransforms™ are shown in the following table:

(¢.n]

f(rv d),Z)“-——P

[2.2)
9n(r.Z) 22)
][r,R]

G.(R, Z)&F(R,(D, Z)

'he inverse transform in polar coordinates. The inversion formula will be needed for
he three-dimensional reconstruction of helices (Section 7.6.3). We start with the inversion
f Equation (4) in Cartesian coordinates, i.e. Equation (5) above. Then we make the
ubstitutions from Equation (12), and obtain the analogue to Equation (13);

f(r,d,z)= fw fzn wa(R, ®,Z)exp { —2ni[ Rrcos (® — ¢) + Zz}RAR dD dZ
—w JO [}

(23)

he negative sign of the argument of the exponential function requires us to use the
omplex conjugate of Equation (15):

X

exp(—iucosv)= Y exp{—in(v+ n/2)}J,(u) (24)

n= - o0
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Using the previous substitutions u = 2nRr and p = (® — ¢), Equation (24) can be
substituted into Equation (23) to give us the inversion formula:

S(r,¢,z) = i exp {in(¢ — n/2)} fm J.(2nRr)22R

n=-wo 0

] 2z
X[—zl—j J‘ F(R,(D,Z)exp{—i(ZnZz+n¢)}d¢d2]dR (25)
T)-wdo

Note that Equation (5) can be obtained from Equation (4) by interchanging the lowercase
letters f, x, y, z with the corresponding capital ones, and by taking the complex conjugate
of the right-hand side. We might expect that the same operations on Equation (16)
would yield Equation (25), but that is not the case. Actually, the operations yield a
correct inversion formula, which differs from that in Equation (25) through choosing
the negative of the argument of the cosine in Equation (23), i.e. the negative of v in
Equation (24). This means that ng and n® should both have their signs changed. When
this is dong, Equation (25) is obtained.

The “n-transforms” are also useful in the inversion formula. If, in Equation (25), we
perform the ®-integration first, we can use the right-hand side of Equation (20) to replace
that ®-integral, and obtain

flr,¢,z) = i exp(indJ)J‘% exp(—ZniZz)[jmG,,(R,Z)J,,(27th)2nRdR]dZ
n= -0 - o 0

(26)

Equation (21) now gives us

=-w

S d,z) = i exp(inqb)J‘m gu(r,Z)exp(—2niZz)dZ (27)

(The Hankel transform inversion formulae can be obtained directly from the F.T.
inversion formulae, e.g. by substituting Equation (25) into Equation (16), though the
manipulations are less messy if the two-dimensional equations of Section 7.2.3(k) are
used.)

Effects of helical symmetry. If the helical symmetry is defined by a screw with a rise
distance h and a twist angle Q, then f(r,¢,2) = f(r.¢ + Q,z + h). Thus the transform
F(R,®, Z)isunchangedifz —» z + hand ¢ — ¢ + Q. This will be true if, in Equation (16),
the part following i in the exponential function is changed only by some multiple of 2z,
say 2nm. So 2nZh — nQ = 2nm, or

Zh = m + n(Q/2n) (28)

Thus the transform can exist only on layer-planes whose Z-coordinate satisfies
Equation (28), which is consequently called the “selection rule” (a term originally applied
to Equation (30) by Klug et al. (1958)—presumably by analogy with quantum
mechanics—but later extended more loosely to Equation (28), etc.) From this basic
form, other variants of the selection rule can be obtained. If, instead of the twist angle
Q, we use the pitch P, defined by P = h(2r/Q), then

Z=m/h+n/P (29)
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If there is an exact z-repeat of length ¢, i.e. if f(r, ¢,2) = f(r, ¢,z + c), then 2nZc must
be a multiple of 2n, or Zc = L (L = any integer). Substituting this in Equation (29), we

obtain
L/ic=m/h+n/P

SO
L = m(c/h) + n(c/P)

SO
L=um+tn (30)

where u ( = c/h) is the number of units per repeat, and ¢ (=¢/P) is the number of turns
per repeat. Equation (30) is a linear equation with integral coeflicients and two variables
(m,n). Given one solution (m,,n,), the next is (m, +j,n, — ju/t), where j is the
smallest integer that makes j{u/t) integral. Thus the separation between interfering orders
is proportional to the number of units per turn, ie. to the length of the repeat. The
bigger the difference between the interfering orders, the bigger will be the distance
between their peaks, provided the interfering orders are both positive. However, this
need not be the case, and the most confusing interferences involve orders of opposite sign.

Although infinitely many Bessel orders can interfere in theory, nevertheless there is,
in practice, an upper limit n,, to the orders that appear in the transform:

Ny < {2n(r/d) — 09}/1.1 (31)

where r is the particle radius and d is the resolution of the micrograph.

We have seen that the effect of helical symmetry is to confine the F.T. to “layer-planes”,
perpendicular to the Z-axis, whose Z-coordinate satisfies Equation (29). This converts
Z-integrals [ Equations (25)-(27)] into sums. However, the layer-planes arc not, of
course, delta-functions in the Z-direction. If the particie length is 1, the Z-dependence
of the transform of g or G is of the form sin {#A(Z — Z;)}/nA(Z — Z)). (This thickness
could be still further increased by some forms of disorder, ¢.g. periodic perturbations
along z.) It is this finite thickness of layer-plancs that prevents their interference being

an event of extreme rarity.

Effects of point-group symmetry. Helical symmetry is compatible with cyclic or dihedral
point-group symmetry, of which the former is a subgroup of the latter.

If the density function f(r, ¢, z) has cyclic symmetry Cy, with the N-fold axis along
z, then f(r, d,2) = f(r, ¢ + 2n/N, z). Applying the argument used in the case of helical
symmetry, 2nn/N must be a multiple of 2. Consequently, n/N must be an integer, i.e.
the orders of all Bessel functions must be multiples of the order of the rotation axis.

If the density function f(r,¢,z) has dihedral symmetry Dy, there are additional
two-fold axes perpendicular to the N-fold axis. If the x-axis is chosen to coincide with
one of these, f(r, §, z) = f(r, — ¢, — z). Then the sine integral of the complex exponential
vanishes, and we have:

0 2n
gn(r,2>~4-‘;j J f(r.$,2) cos (2nZz — ng) d¢ dz (32)
)
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(k) Transforms in planar polar coordinates

The plane polar coordinate system is the natural one for analysing pictures of particles
with rotational symmetry; see Sections 7.4.6 and 7.5.3(c). This coordinate system is
easily obtained by merely suppressing the z- (or Z-) coordinate of cylindrical polar
coordinates. We start with the n-transforms. Equation (17) gives

l 2x
g..(r)=5—J. J(r,d)exp(—ind)de (33)
T Jo
and Equation (20) gives
2x
Gu(R) =5 L F(R, ®) cxp (— in®) db (34)

These definitions have more symmetry now that the (z, Z) coordinates have been
suppressed. It can be seen that g,(r) has the same connection with the real distribution
[(r, ¢) that i"G,(R) does with its transform F(R, ®). Next we express the n-transforms
as a Hankel transform pair. Equation (21) gives

ga(r) = j G,(R)J,(2nRr)2nR dR (35)
°
and Equation (18) gives the symmetrically-related inversion formula
G,(R) = J gu(r)J.(2aRr)2nr dr (36)
)

We proceed to employ these in the F.T. and inversion formulae. The F.T. formula of
Equation (16) gives, in two dimensions,

’ o © 2n
F(R®)= Y exp{in(®+ n/Z)}I J,(ZnRr)an[% f S(r,d)exp(— in¢)d¢:|dr
n="w 0 0

(37)

Similarly the inversion formula of Equation (25) gives

o

flr,d)=3 explin(¢ —n/2)} JmJn(ZnRr)ZnR[:
. n © 0

1

2x
o f F(R,®)exp(— md))dd):ldR

0

(38)

Substituting g,(r) from Equation (33) for the integral within square brackets in
Equation (37), we obtain

F(R®)= Y exp{i;x(¢+n/2)}j g.(r}J(2nRr)2nr dr
0

= 5 oxplin(®+ n/2}G.(R) = }f exp (in®)i"G,(R) (39)

where the middle step used Equation (36). The overall Equation (39) expresses the
transform as a Fourier series in @ (in which every function is necessarily periodic). The
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coefficients are i"G,(R), and are given by the Fourier integral of Equation (34). We can
perform the same operations on Equation (38), using Equation (34) to express the
integral in square brackets. We obtain:

@

firné)= i eXP{in(¢—n/2)}j {i"G,(R)}J,(2nRr)2nR dR

== [

= 5 expl(ing)gn(r) (40)

n=~w

where the last step used Equation (35). We thereby express the density function as a
Fourier series in ¢, of which the Fourier coefficients are g,(r) and the appropriate Fourier
integral is Equation (33). .

These F.T. relations form the basis for analysing rotational symmetry by Fourier
.. methods. They can be connected with the corresponding correlation methods. To start
with, we note that Equation (40) expresses the “picture” density, at a given radius 7, as
a Fourier series in the angle ¢. Through this Fourier series, the angular convolution of
two pictures can be related to the product of the corresponding Fourier coefficients:

= J P O O — v = 5 gP(NgP(exping)  (41)
n Jo

n=-w
More useful than the convolution is the cross-correlation function. This can be obtained
similarly:

L J“f‘”(r,t//)f"’(r, VEd)db= 5 g(P[gP()I* exp(—ing)

2n 0 n=-mw

T [gi(r)]*g2(r) exp (ing) (42)

n=—a
(The two versions of the right-hand side are complex conjugates, equal since }he left-hand
side is real.) Both of the above equations apply only at a given rad,us, whereas
comparisons of particle symmetries must involve integration over r. Such integrals can
be converted into R-integrals involving the n-transforms G,(R). A simple form of this
conversion is seen in the Parseval relation

J |g,,(r)|22nrdr=J [G,(R)|?>2zR dR (43)
0 °

This is useful since the quantity on the left is the “power spectrum” of n-fold rotatiopal
components (Section 7.4.6(a)). When this approach is applied to the cross-correlation

function (Equation (42)), it gives:

0

Jm rdr rﬂ S P+ d)dY = Y exp(ing)

0 0 n=-wo
f " [GY(R)]*GP(R)2nR dR (44)
0

The corresponding auto-correlation function is

rrdrr"ﬂr.w)ﬂnww)dw= 5 exp(in¢>rlcn(m|22nR dR  (45)

o] o ¢}
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The point of these equations is that the significant information in a picture f(r, ¢) is
contained in a relatively small number of G,(R), which can be calculated from the F.T.
by Equation (34) or (39). From these few G,(R), the cross-correlation could be calculated
with a sum replacing the angular y-integral. (The same principle, applied to solid angles,
underlies the “fast rotation function” used in crystallography: Crowther, 1972; sec also
Dodson, 1985.)

7.24 Correlation methods
(a) Definition and utility of correlation functions

Linear or rotational periodicities in a picture imply that there are symmetry operations —
translations or rotations—that leave it unchanged. So, instead of looking for periodicities,
we could search for the symmetry operations. We would therefore translate or rotate
the picture relative to itself, and measure how well it matches. Or we may have obtained
(by averaging) a clear image of some substructure, and wish to determine the symmetry
operation by finding where all copies of the substructure are to be found. Again, we
need to translate or rotate the clear image and find where it gives a good match in a
more noisy picture. Translating or rotating images presents no problem. But how arc
we to measure—rapidly—how well they match?

For simplicity, the approach is described for the one-dimensional case. (Extension
to two dimensions is simple, involving little more than the replacement of scalars by
vectors.) Suppose that we have a substructure f(x), and that we are looking for its
matches in a picture g(x). We shift f(x) by a possible translation t; this changes it to
J(x —t). Now we need a criterion to measure how well it matches with the picture g(x).
A good criterion is the least-squares one: we take the mismatches at each point, square
them (to make them positive) and add them together. The resulting mean-square error
will reach its lowest value at the position of best match. So we adjust t to minimize the
positive integral:

r {fix =0 —g(x)} = Jm ([/(x = 0F + [9(x)]*} dx

—w

. ~2 f " flx - 0g(x) dx (46)

The first integral on the right-hand side is positive and independent of 1. (The integral
of the square of f(x — t) is independent of ¢ because of the infinite range of integration.)
To minimize the right-hand side, therefore, we must maximize the last integral. This
integral defines the cross-correlation function of f(x) and g(x). (It applies not only to
cases where x and ¢ are distances, but also when they are angles: rotational cross-
correlation).

A peak in the cross-correlation function (X.C.F.) of two pictures indicates a relative
position where they match well. The auto-correlation function (A.C.F) is simply the
X.C.F. of two identical pictures. Since a picture matches itself perfectly when there is no
displacement, the auto-correlation function (A.C.F.) has a high peak at the origin. From
this peak, the A.C.F. will (if the picture is finite) decrease in every direction. It becomes
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zero when the displacement equals the picture’s width, since the two copies of the picture
then no longer overlap. (The X.C.F. similarly vanishes when the displacement cquals
the sum of the pictures’ widths.) These limits will always apply in the case of translational
correlations, for every width must be finite. But they do not apply to rotational
correlations, as any angle—however large—is equivalent to one below 360°.

There are simple yet powerful rules for Fourier transforms (summarized in Fig. 7.12).
Unfortunately, this is not true for correlation functions, because they involve products
of functions (i.e. they are not linear like F.T.s). However, there is a useful convolution
rule for A.C.Fs.: the A.C.F. of the convolution of two pictures is the convolution of their

ACFs.
(b) A.C.F. of a periodic picture

What is the value of the A.C.F. for analysing micrographs? First consider the A.C.F. of
an infinite lattice of points. When displaced by a muitiple of the lattice vector, all the
lattice points coincide exactly, and the A.C.F. will have a peak. Any other displacement
will make all the lattice points coincide with blank spaces, and the A.C.F. will be zero.
So the A.C.F. of a lattice is the same lattice.

Next consider the A.C.F. of a picture with translational symmetry (like a wallpaper
pattern), cxtending infinitely in all directions. Such a picture can be represented as a
repeating motif, convoluted with a lattice (as in Fig. 7.25a). Therefore, by the convolution
rule at the end of the previous section, its A.C.F. is the A.C.F. of the lattice (= the same
fattice), convoluted with the A.C.F. of the motif. This last, like the A.C.F. of any finite
object, will have a peak at the origin, from which it will decrease to zero in any direction
at a distance equal to the object’s width. When convoluted with the lattice, the origin
peak will become repeated, generating a kind of blurred image of the lattice. Thus the
lattice of the picture will be easily recognizable in the A.C.F., more so than in the original
picture (unless the original motif had a single strong peak). This means that the A.C.F.
helps to reveal linear periodicities (= translational symmetries).

However, the clarity of the repeat in the A.C.F. will be diminished by the convolution.
For the motil’s A.C.F., being twice its width in each direction, occupies two lattice
repeats in each direction. The origin peak of the motif’s A.C.F. thereby becomes
superposed with two tails of the A.C.F. Thus the repeated A.C.F. peaks are less
recognizable than the sharp peaks in a Fourier transform. The visibility of the peaks is
further reduced when the repeating lattice is of finite extent (as in the case of translational,

but not rotational, repeats).

(¢) Connections with F.Ts.

There is a very closc conncction between thc X.C.F. of two functions and their
convolution. To obtain the convolution of f{x) and g(x), we would take cach point of
¢g(x) and convert the corresponding value into a copy of f{x). At the point x = x, g(x)
has the vatue g(x, ), so the copy of f(x) that we would place here is g(x,) f(x —x;)
Adding all these copies together, we obtain:

o

J g(x,)f(x _xl)dxl—’J‘ St = x)g(x)dx (47)

- ]
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fnaking the substitutions x — r and x, — x. Referring to Equation (46), we scc that this
is the X.C.F. of f(—) and g, where f(—) gives, for +x, the same value that f gives for
—x. Thus the X.C.F. of f and g in Equation (46) is the convolution of f(-) and ¢.
Suppose the F.T.s of f and g are F and G, respectively. Then, since F* is the F.T. of
f(—), it follows that the F.T. of the X.C.F. of f and g is F*G.

Thi§ close connection between the X.C.F. (or the A.C.F.) and the product of F.T.s is
us?ful in various ways. It provides a quick method for calculating correlation functions,
using the “fast F.T.” (see Section 7.4.2(b)). It also provides a simple connection between
the results of correlation analysis and those obtained from the picture’s F.T.

Summarizing the main formulae of this section,

XCF.(f.9)= f(x)¥*g(x) = J’w S{u— x)g{u) du

=J_ f(v)y(x+v)du=J {F(— X)G(X)} exp(—2niXx)dX (48)

-

7.3 IMAGE ANALYSIS BY INSPECTION
73.1 Introductory survey

In the following sections we shall be concerned with analysing images that show different
types of syrpmctry or quasi-symmetry. When the image detail is degraded by noisc, its
reconstruction requires additional, independent, copies of the same image. Symmetry
provides these, and is therefore usually an essential prerequisite for image enhancement.
Symmetry can also provide the different views required for three-dimensional reconstruction.
Fmally, symmetry can be of intrinsic interest by revealing the probabic paticrns of
interaction of macromolecular systems.

In images of biological structures we look for the common types of symmetry, which
were pricﬂy surveyed in Section 7.2.1. They involve translations and rotations, cither in
isolation or in combination. Translational symmetry produces aggregates with very
many repetitions of the “signal” in the translation direction(s). Where present, this is
the ﬁrs't symmetry to be exploited to give enhanced images which are then used to
fietermme any rotational symmetry that may also be present. This sequence is followed
in the image analysis of helical particles and of one- or two-dimensional crystals.

The earliest (and simplest) methods for determining symmetry involved examination
of the micrograph, either directly or alter transformation by some analogue procedurc
sus:h as optical diffraction. The first applications of numerical methods often fitted into
this general approach, e.g. by providing computed diffraction patterns with phases. Here
we refer to all such methods as “image analysis by inspection” since, after processing
(lg producc the F.T, ctc.), further analysis is transferrcd from the computer to the
mlcroscopist, who can contribute experience, judgment and understanding. In this
section, we discuss such methods in detail, postponing 1o the next scction any methods
which require a more continuous usc of the computer. )

For determining either translational or rotational symmetries, three general methods
have been used. We introduce them briefly here, and then proceed to discuss in detail
the two most important methods.
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{a) Superposition methods

The earliest method, requiring the least equipment, proceeded directly to the enhancement
stage. A composite image was formed by the superposition of many copies of the original
image, all related by the supposed symmetry (rotational or translational) (McLachlan,
1958: Markham et al., 1963). If the symmetry had been guessed correctly, the composite
image showed enhanced contrast and detail; an incorrect guess smeared the image. This
method is very slow when searching for a completely unknown symmetry. Its use has
been confined to symmetry refinement (i.c., finding exact translational parameters, or a
choice among a few possible orders of rotational symmetry). Even here, it has suffered
from the subjectivity of the criteria used to judge the correct solution.

(b) Fourier methods

Of the other two general methods, the most popular uses Fourier analysis. As explained
in Section 7.2.2, this views all pictures in terms of a large set of basic density distributions.
For images with translational symmetry, the appropriate shapes are straight bands of
alternating density (Fig. 7.5). For helical particles, they are helical density waves
(Figs 7.32 and 7.34). For images with only rotational symmetry, they are thin annuli
whose density alternates with a regular rotational periodicity; see Section 7.4.6.

The translational density distributions are revealed immediately by the Fourier
transform of the picture. A picture that shows symmetry does so by being formed from
some special subset of the possible density distributions. (Thus, for a one-dimensional
picture with translational symmetry, all the density distributions must have spatial
frequencics that are multiples of the picture’s.) The particular subset used is characteristic
of the symmetry, which is revealed by finding the subset.

(¢} Correlation methods

The third general method uses the correlation functions introduced in Section 7.2.4.
There it was explained how the Fourier and correlation methods, so apparently different,
turn out to be closely related. They measure symmetry fits in essentially similar ways,
but they differ in convenience. The Fourier method is quicker to apply, especially in its
analogue form (optical diffraction). So a preliminary search for picture symmetry is best
undertaken by this means. But the Fourier method is far less powerful when symmetry
is approximate, i.c. when the structure is distorted or disordered. Then it is necessary
to use correlation methods.

However, correlation methods are relatively new, and have not yet been applicd so
extensively that we can be sure about the set of problems for which they will be most
effective. At present they seem better adapted to refining symmetry, rather than to finding
it originally. Since they make extensive use of computer processing, they will be discussed

mostly in Section 7.4.4.

7.3.2 Analogue image processing methods

Each of the methods just described requires appropriate manipulations of the information
contained in a micrograph. These can be achieved cither by analogue or by digital

]
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methods. In either case, the micrograph is first illuminated, giving a brightness
distribution of the transmitted light. Analogue methods use optical techniques to
transform this directly into a pattern appropriate to Fourier or correlation analysis.
Though fast and cheap, such methods can achieve very few types of transformation in
a straightforward fashion.

Digital techniques use electronic sensors and circuitry to transform the brightness
distribution into numbers, which are then processed with a computer. Given sufficient
time and cost of processing, any method of analysis can be used. (Numerical methods
for finding symmetry will be described in Section 7.4.) The cost and slowness of digital
methods have fallen steadily with the development of computer hardware. When
image-processing was developed in the 1960s, digital methods were rarely used, but the
last 20 years have reversed the situation. However, analogue methods still have a great
advantage in speed, and therefore remain useful, even if only to select the best images
for digital processing.

(a) Visual analysis ol electron micrographs

Initial image processing is inevitably done with the eye, to assess spccimen preservation,
staining (etc.), and imaging conditions. Obvious periodicities should be noted, and less
obvious ones should be looked for by viewing the micrograph obliquely (such a view
approximates to a projection along that direction). It is important not to be content
with the two-dimensional appearance of the micrograph, but to try to interpret the
underlying three-dimensional structure of the specimen. Mcasurcments can be madec,
and compared with the predictions of different classes of model structurces. {Such
measurements can take account of unusual distortions, such as helical transitions:
Moody, 1973.) If the periodicities and other features are clearly distinguishable, visual
methods can be quite useful. (An example is given in Section 7.3.4(a).)

(b) Optical diffractomer

This was originally developed for use in X-ray crystallography (the history is described
by Taylor and Lipson, 1964). Its first application to electron micrographs by Klug and
Berger (1964) started the quantitative phase of micrograph image analysis, and it has
since remained the most important analogue device.

The underlying principle is simple. Any lens illuminated by a coherent beam of light,
parallel to the lens axis, gives a sharp focal spot on that axis. If a diffraction grating is
introduced into the parallel beam before the lens, the reinforcement of scattered waves
yields diffracted beams, each of parallel light. They diverge at angles that vary reciprocalty
with the spacing of the grating, i.e. the angles are proportional to its spatial frequency.
The lens focuses each scaitered beam to a point, displaced from the lens axis by a distance
proportional to its angle, if that is small. Consequently, the distribution of light intensity
at the focal plane is a plot of the spatial frequencics of the grating. Generalizing, itis a
plot of the spatial frequencies in any transparent object (cven if non-periodic) which is
inserted into the parallel beam of light.

This pattern (the optical diffraction pattern or optical transform of the transparent
object) gives the intensity of the diffracted light; the relative phases of the spots arc lost.
(It is possible to measure them by interference techniques, but the same effort would be
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Fig. 749 Essential elements of an optical diffractometer. Parallel coherent (usually red) light from a
laser is focused onto a pinhole which excludes non-coherent light. The diverging light is brought, by
the diffraction lens, to a focus on the right. Each diffracted beam is brought to a different focus at the
same plane.

better repaid by using numerical methods.) Essentially the same optical diffraction
pattern is obtained if the transparent object is illuminated by light that is slightly divergent
or convergent, instead of exactly parallel, or if the distance of the transparent object
from the lens is varied somewhat. (The main effect of any of the above changes is not
on the intensities, but on the relative phases, of the diffracted spots; see Goodman, 1968.)

For details of the construction and use of an optical diffractometer, see the book by
Taylor and Lipson (1964), or the reviews by Markham (1968), Johansen (1975), Gibbs
and Rowe (1977) and Erickson et al. (1978). The essentials (Fig. 7.49) are the laser light
source; the short focal lens and pinhole to remove non-coherent light; and the diffraction
lens. To obtain diffraction patterns of reasonable size from ordinary micrographs, it is
necessary to use a long path length (even when using the red light of a helium-neon
laser). But all the elements of the diffractometer can be made easily accessible by “folding”
the path with surface-coated mirrors.

Although electron micrographs on glass plates often give satisfactory diffraction
patterns in air, the patterns can sometimes be distorted or misleading. This is because
variations in the emulsion thickness, correlated with optical density, cause phase
differences in the transmitted ligi:t. These contribute at least as much as the amplitude
variations to the optical diffraction pattern;* they can be minimized by immersing the
electron micrograph in oil of refractive index about 1.53, contained in a cell bounded
by optical flats or by the two main diffraction lenses (Berger and Harker, 1967). But
such refinements compromise the diffractometer’s chief virtues, speed and simplicity.
When accuracy is more important, it is preferable to use numerical methods.

(c) Optical correlator

Correlation functions can be obtained by analogue devices, optical correlators. Much
of their development was also undertaken for X-ray crystallography (Buerger, 1959;
Hosemann and Bagchi, 1962). In its simplest form, the optical correlator consists of two
identical copies of the electron micrograph on photographic plates which are held
parallel, and in the same orientation (Fig. 7.50). Consider the light that follows a line
Joining some common feature (A and A’} in both plates. After passing through the first
plate, the light’s intensity becomes multiplied by the transmittance at that point. The
same happens when it passes through the second plate, so the final intensity is

* Another pcculiarity of optical diffraction is that the relevant optical transmission factor is not the optical
density (as it is for densitometry). For optical density aflects the intensity (Y *) of the transmitted llghl
whereas it is the wave function ¢ that is involved in interference phenomena.
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Fig.7.50 Principle of the optical correlator. Two parallel copies of the micrograph (A, A) are illuminated
from the left by incoherent light. (See text for the mechanism of its operation.}

proportional to the square of the transmittance, since it passes through the same feature
on each plate. Rays of light parallel to this also pass through identical features on both
plates. If we took all the parallel rays and added them together, the relative intensity
would measure the sum of all the squared transmittances.

Now consider a ray of light in some other direction. It “sees™ different features on
the two plates, the features being related by some translation t. Rays parallel to it also
see different features, which are related by the same translation t. So, if we add together
all these parallel rays, we get the sum over products of transmittances from points related
by the same translation t. |t| is proportional to the angle of the rays (for small angles).

We can sum together all the parallel rays in any direction by placing a lens after the
second plate. This focuses all parallel sets of rays to point images in the focal plane. The
position of each focal point depends on the angle of its parallel rays, and hence on the
translation t. (Thus the distribution of intensity around the focus is proportional to the
auto-correlation function (Equation (48)), where f(x) and g(x) are both equal to the
transmittance of the plate.) Since the lens sorts out all sets of parallel rays, we can now
illuminate the first plate with all possible sets, ie. by incoherent illumination such as
from a light-box. The two plates in Fig. 7.50 need not be the same; if they are different,
the optical correlator gives the cross-correlation function (Equation (48), where f(x)
and g(x) are the transmittances of the two plates). Finally, the lens is not needed if the
two plates have different magnifications, the larger being placed closer to the light source.

Although the analogue optical correlator is used occasionally (e.g. by Fiskin and
Beer, 1968), its popularity has never approached that of the optical diffractometer. Two
plates are needed for the correlator (but only one for the diffractometer), and the peaks
from optical correlation are less sharp than those from diffraction (Section 7.2.4(b)).
Correlation methods have recently become very popular (Sections 7.4.4, 7.4.6([)), but
they are usually applied by numerical methods. However, it is possible that the optical
correlator might be used (as is the optical diffractometer) to scan micrographs rapidly
in a search for areas suitable for numerical processing.

7.3.3 Applications to one- and two-dimensional lattices

Mast applications of the methods of image analysis by inspection have uscd the optical
diffractometer, followed by computed F.T.s with phases. (Their calculation is described
in Section 7.4.2(b).) These applications have exploited the suitability of F.T.s for studying
translational symmetry, and concentrated on appropriate specimens. Fortunately, these
are fairly common, since translations allow many small subunits to create a structure
sufficiently large to create a cellular component. Aggregates based on lattices are therefore
common. Usually they are two-dimensional (e.g. sheets of subunits, or cross-sections of
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ordered bundles of filaments), but sometimes one-dimensional images are also seen, e.g.
with fibrous proteins like collagen. (Such images are, however, projections of more
complex arrangements.)

There are several stages in the analysis of symmetry based on lattices (called
olane-groups). First we detect and measure the lattice. Next, we find the complete
slane-group, of which the lattice is only part. Knowing this, we can clarify the image
sy one of the techniques of image enhancement described in Section 7.5. In this section
ve are concerned only with symmetry determination.

a) Detecting the latlice in the presence of noise

T'he most difficult problem is often detecting the existence of a lattice. It is here that the
sptical diffractometer finds its principal use. Large areas of micrographs can be surveyed
-apidly, and those regions that contain two-dimensional crystals immediately reveal
hemselves by the presence of a lattice of sharp spots in the optical diffraction pattern.
This diffraction (reciprocal) lattice can be quite clear, even when no lattice whatever is
fisible in the micrograph. (This is the case, for example, with micrographs of unstained
pecimens obtained at very low electron doses: Unwin and Henderson, 1975.) How is
he optical diffractometer so effective?

The diffractometer, as explained above, gives the (squared amplitude of the) F.T. of
he transmittance of the micrograph. Our question is thus reformulated as, how can the
*T. of a very noisy crystal image contain clear sharp peaks? First, we note that such

crystal image is really the image of a unit cell, convoluted with a lattice of points. As
xplained in Section 7.2.2(g) (see especially Fig. 7.25), this gives the F.T. of the unit cell
ampled at the reciprocal lattice points. The sampling “points™ will be sharp peaks if
he picture’s lattice is undistorted and reasonably large.*

This explains how the diffraction pattern consists of a lattice of sharp peaks. But how
; it able to emerge from an extremely noisy image? To understand that, we must consider
he F.T. of noise. This may seem a hopeless task, since no two samples of noise are ever
xactly the same. However, we are interested only in the overall, statistical, features of
s F.T. The key to deriving these is to note that noise is equivalent to information
sithout any redundancies. If a message has had all repetitions and other predictable
:atures removed, then it will look exactly like noise to someone who is ignorant of the
inguage or code in which it is written. Image noise, in short, is an extremely complex
anction that can hold the maximum amount of information, given the resolution of the
nage. Consequently its F.T. must have a similar level of complexity, so it too will
ssemble noise.

It would therefore seem that the F.T. of noise is simply noise. However, there is one
nportant correction to this statement. Some forms of image noise are always dark;
iey never make the image brighter. In that case, their projection onto a straight line
ill be a nearly uniform density distribution, whose F.T. will have a peak at the origin.
o, unless the image noise is as often bright as dark, its F.T. will have a sharp peak at
1e origin, but be roughly uniformly noisy elscwhere.

A small crystal is just an iufinite crystal multiplied by a “mask ™ function. giving an F.T. in which the sharp
caks of the reciprocal lattice become convoluted with the FUT. of the mask, and are thereby broadened.

J——
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Armed with its F.T., we now consider exactly how noise wili degrade the image. There
are two common ways. First, noise may be added to an otherwise perfect image. For
example, the supporting film adds a background of irregular thickness; and, at low
exposures, photographic “fog” is serious. Such noise will modify the perfect F.T. by
adding the F.T. of noise, i.e. by adding noise to the “perfect” F.T. (A sharp peak is also
added at the origin.) The second way for noise to enter an image will be more prevalent
in grainy images. These can be crudely represented as perfect images multiplied by a
«grain function”* That function would be zero except at the (random) positions of
grain particles. This “grain function” is just “dark noise” (all grain is “dark™); its F.T.
will be uniform noise with a sharp peak at the origin. But that transform must now be
convoluted with the F.T. of the perfect image. Thus, every point of the perfect F.T. must
be replaced by a sharp peak (which produces no significant change), plus uniform noise.
That second feature adds uniform noise to the overall F.T.

We thus obtain essentially the same result, irrespective of how the noise was added:
we get the original F.T., plus uniform noise. But the effect of adding noise to the F.T.
is quite different from that of adding it to the original picture. For the F.T. of a crystal
has all the information concentrated into a few sharp peaks; so the addition of noise is
nothing like so serious as with the original image, where the structural information was
also spread uniformly.

{b) Detecting the lattice in the presence of other latlices

The F.T. can also be used to reveal the crystal’s symmetry even when other structures,
including other crystals, are superposed on it (Finch et al,, 1967). The most common
situation occurs when the structure of interest is a large sheet that has folded over,
superposing its two halves. Unfolded regions may be impossible to find (e.g. because
the structure is a wide, thin, hollow tube that has flattened) or undesirable (because the
staining or preservation in the folded region is interesting). Then we have to determine
separately the symmetries of the upper and lower sheets, as a preliminary to image
enhancement by filtering. How will this be easier when using the F.T.?

First consider the connection between the image of the superposed sheets, and the
images of each sheet in isolation. Ignoring structural or staining changes following
superposition, the transmittance of the pair of sheets will, to a reasonable approximation,
equal the product of their transmittances. However, if the scattering is very small, each
transmittance will be nearly 1. Representing the transmittance .of sheet number j,
then, as {1 — fi(x)}, the transmittance of the pair is {1 — f;(x)}{1 - f2(x)} =
1 — {fi(x) + f2(x)}}, as the last term in the expansion is negligible. When the transmittances
are very high, therefore, the combined image is approximately the sum of the individual
images (and, consequently, the combined F.T. is approximately the sum of the individual
F.T.s). The low contrast of micrographs, so often the subject of regret, has its
compensations.

Now return to the problem of disentangling the two lattices. Using F.T.s, this is quite
simple, provided the crease of the fold is not in an unlucky direction. The situation is
iltustrated in Fig. 7.51. The sheet in (a) has folded at a vertical crease, superposing the
two areas of hexagonal fattice. In (b), the F.T. of (a) has scparated the spots corresponding

*The irregular structure of negative stain can probably be considered a source of “multiplicative noise™.
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Fig. 7.51 (a) A thin sheet with a hexagonal lattice is folded at a crease. Filled circles: upper sheet;
open circles: lower sheet. {b) The diffraction pattern of the folded sheet separates the diffraction patterns
of its two parts.

to the F.T.s of the two surfaces, and there is no overlap. However, if the crease had lain
perpendicular to a prominent lattice direction (i.e. a short lattice vector), then spots
would have been superposed. The separability of the two surfaces by optical diffraction
(or filtering) is dependent on a “random” orientation of the crease.

(¢} Indexing the reciprocal lattice

Indexing means assigning to each reciprocal lattice point its coordinates in terms of two
basic vectors of the lattice (usually the two shortest vectors that are not parallel). If
these vectors are a and b, then each point in the lattice can be represented by ia + jb,
where (i, j) are its coordinates. The lattice vectors a and b must be chosen so that every
reciprocal lattice point can have integral coordinates assigned to it (see also Chapter 3,
Section 3.3.2).

With the diffraction pattern of a single sheet, the process is very simple, though care
should be taken to ensure that the chosen lattice really includes all the significant
diffraction spots. Sometimes there are weak spots in the centres of the parallelograms
formed by the strong spots. If they were ignored when choosing the basic vectors, these
spots would require fractional coordinates, showing that one or both of the basic vectors
should be changed for shorter ones.

The process is slightly more difficult when the lattice is part of a folded sheet, as in
Fig. 7.51. In this case, half the diffraction spots derive from the upper sheet, and half
from the lower. It is necessary to decide which spots are which, before indexing them.
(The difference is indicated by the empty and filled circles in Fig. 7.51; we shall now
denote the two surfaces by the subscripts | and 2.) We proceed as follows. We choose
one of the spots closest to the origin, and denote its vector a,. Then a, is the vector
from the origin to the corresponding spot, reflected in the Z-axis. (The vectors a, and
a, differ only in referring to surfaces 1 and 2.) Next, we find the shortest vector (or one
of the shortest vectors) that is not parallel to either a, or a,; call it b. The problem is
to find if it is b, or b,. This can be decided by trial: first we try b,, and generate the
inner part of the lattice from a, and b,. Next we try (in the same way) b,. One of the
lattices will fit the diffraction spots, and the other will not, showing which choice was
correct.
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(d) Finding the plane-group

Once the lattice peaks have been obtained in an optical diffraction pattern or a calculated
F.T., the complete space-group should be found.

The first step is simple: measuring the lattice parameters. In Section 7.1.2(f), it was
shown that the shape of the real lattice is the same as that of the reciprocal lattice (ie.
of the lattice on which the diffraction spots lie), but just rotated through 90°. So we
have only to measure accurately the shape of the diffraction lattice. This shape is
completely defined by the lengths of two lattice vectors, and the angle between them.
Thus only three parameters need to be extracted (by least-squares procedures) from a
considerable amount of data. (These data consist of two coordinates per transform peak,
but the relative accuracy of the three parameters depends on the distribution of these
peaks.)

Once the lattice is known, the next step is to find which of the 17 plane-groups
(Inernational Tables for Crystallography, 1983) applies to the image. Several techniques
are useful in finding this.

First, the lattice shape (from the shape of the reciprocal lattice) helps to limit the
choice. Five of the groups (p3, p31m, p3ml, p6, pm) have an exactly hexagonal lattice;
three (p4, p4m, and pdg) have an exactly square lattice; and seven other plane-groups
have exactly rectangular lattices.

Second, we look at the pattern of intensities of the diffraction spots. This has the
rotational symmetry of the plane-group, with the addition of a two-fold axis (because
of the Friedel symmetry of the F.T.). Thus, if the intensities have six-fold symmetry, this
shows that the plane-group has either three-fold or six-fold symmetry. Besides this, there
is significance in the pattern of intensities along the main lattice-lines that pass
through the origin. Three of the groups (pg, pgg and pdg) contain glide-lines (see
Section 7.2.1). Images containing these lines give, after projection perpendicular to them,
a density pattern in which the repeat is halved (Fig. 7.52). Consequently, the spacing of
spots along the parallel section through the F.T. must be doubled. This means that,
along this line, every second spot is missing. Such “systematic absences™ are listed in
the description of each plane group in International Tables for Crystallography (1983).

Finally, we look at the phases of the diffraction spots, obtained from a numerical
F.T. Whereas the diffraction intensities are constrained, by Friedel symmetry, to have
a two-fold axis, the phases are not. So a two-fold axis in the phases means that the
original lattice also has one. As a final check on the plane-group, a filtered image of the
crystal should be compared with the appearances expected [rom the different plane-
groups.
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‘Fig. 7.52 (a) Commas arranged in a two-dimensional pattern with a glide-line (g). The repeat distance
of the pattern is a. (b} Its projection, perpendicular to the glide-line. The repeat distance of the projection
isa/2.
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In determining the plane-group, there are two problems peculiar to electron
micrographs. First, distortions may be present (Section 7.4.4), so that (for example) a
truly hexagonal crystal may have its lattice angle a few degrees away from 60°. Moreover,
phases that should be the same can often differ significantly. Thus the apparent symmetry
may be lower than the real symmetry. The other problem is that electron micrographs
usually have a very limited resolution, so that subunits that really differ may appear
indistinguishable. This problem has the opposite effect: the apparent symmetry may be
higher than the real one. For these reasons, determining the symmetry of structures from
micrographs requires more judgement, and is less certain, than when using X-ray
crystallography.

(e) Using the plane-group

Knowledge of the plane-group is useful in several ways. First, it will be needed when
preparing enhanced images (e.g. by Fourier filtering). Symmetry elements, such as a
rotation axis, additional to the lattice symmetry can be exploited to give an even better
image.

The second use is in revealing the pattern of interactions of the molecules in the
picture. If the specimen is a section of a much thicker structure, then attention should
be directed to the possible three-dimensional space-group (these are also listed in
International Tables for Crystallography, 1983). However, if the specimen is a sheet of
monomolecular thickness, and if the plane-group is found to be pl, p2, p3, p4 or p6,
then it is likely that the image can be interpreted directly in terms of single molecules.
(But the exact boundaries of the molecule are uncertain; the plane-group determines
only their repeating pattern, and their projected area.) If the picture’s symmetry should
correspond to one of the other 12 plane-groups, then the picture’s plane-group probably
represents a projection, in which a mirror-line derives from a two-fold axis in the
specimen, and a glide-line from a two-fold screw axis. Thus the true symmetry of the
sheet would be one of the two-sided plane groups listed by Holser (1958).

7.34 Applications to helical particles

Symmetry determination is not quite so straightforward with helical particles as with
two-dimensional crystals. We should first recall exactly what parameters need to be
found in the case of strict helical symmetry. First, every helical particle has a screw
displacement, consisting of a translation (h, the rise distance) parallel to the helix axis,
combined with a rotation (€2, the twist angle) about the axis (Fig. 7.27). (A single screw
displacement generates all the different sets of helices that can be seen in the micrograph.)
In addition to the screw displacement, the particle may have rotational symmetry: it
could have one of the point-groups Cy or Dy {Section 7.2.1), in which the N-fold axis
is parallel to the helix axis. (No other point-group is consistent with a screw displacement.)
To find the point-group, we need to determine the rotational symmetry about the
particle’s axis (i.e. the N-fold axis), and also whether or not it is polar (i.e. whether there
is a perpendicular two-fold axis, as in Dy).
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(a) Finding the structure of helical particles by direct examination

Although the structural analysis of helices usually requires Fourier methods, it is
occasionally possible to carry it out by visual methods alone. The extended T4 phage
sheath (Figs. 7.28, 7.29 and Section 7.3.4(f)) shows clear annuli, which simplify the direct
analysis of its images (Moody, 1967b). First, the spacing of the annuli gives the rise
distance h. Second, the helical lattice is completely determined by the intersection of the
annuli with any set of helices whose number is the minimum (= N, the order of the
rotation axis). Such helices are clearly visible, allowing the analysis to be completed.

If no annuli are visible, the analysis is more difficult. It is then necessary to see clearly
at least two different sets of helices which intersect only at lattice points (which they
are likely to do, given the poor resolution of micrographs). For each set, two parameters
are needed: the axial repeat (z), which is the distance, measured parallel to the helix
axis, between successive helices of the set; and the number (1) of helices in the set. n is
positive for right-handed helices, and negative for left-handed ones, whereas z is always
positive.

The two sets of helices give us four numbers (z,, z,, 1, n,). We first calculate N, the
order of the rotation axis, which is the highest common factor (H.C.F.) of n; and n,.
Then the minimum rise distance h is given by

h=|Nz,z,/(n,z, — n,z,)| (49)
Also, the pitch P of the basic helices is given by
P =|Nz,z,/(k;z, — kyz,)| (50)
where k, and k, satisfly the equation
kyn, —kyn, =N (51)

(k, and k, will be obtained when using Euclid’s algorithm to find the H.C.F. of n, and
n,.) From P and h, the twist angle Q of the basic helices can be found from

Q = 360°(h/P) (52)
(b)  Analysis of helical F.T.s: introduction

Unless the helical structure is exceptionally clear, serious structural analysis will need
some form of image processing. Apparently all such analyses have employed Fourier
(rather than correlation) methods (see Stewart, 1988, for a review of them). The helical
F.T. will probably be seen first by optical diffraction, as part of a rapid survey of the
micrographs. This shows only the F.T. amplitudes; but the initial stages of analysis are
concerned only with these. Some examples of optical diffraction patterns are presented
in Figs 7.58, 7.59 and 7.60. Note that these are relatively sharp in the Z-direction, but
spread out in the perpendicular X-direction. (This is becausc helices are longer in the
z-direction, which also contains the translational repeat.) So measurements of Z-
coordinates are precise, and those conclusions that can be drawn from them are relatively
certain. The X-coordinates, that relate to the angular parts of the symmetry, are much
more difficult to interpret.
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Fig. 7.53  The separation of upper and lower surfaces by optical diffraction, illustrated for a plane sheet
in Fig. 7.51, applies also to helices. (a) A helical pattern attached to a thin cylinder. (b) The cylinder
has been flattened (filled circles: upper sheet; open circles: lower sheet). (¢) (n, Z) plot of the diffraction
pattern (this is closely related to the pattern itself; see Fig. 7.37). Each surface contributes its own
reciprocal lattice in this plot.

The Z-axis is a line of approximate mirror symmetry. As explained in Section 7.2.3(g),
a helical lattice (Fig. 7.53a) is not very different after flattening (Fig. 7.53b). We then
obtain a folded sheet with two creases. We have already seen how optical diffraction
allows us to disentangle the two parts of a folded sheet (Fig. 7.51). In the same way,
the flattened helix would give a diffraction pattern resembling Fig. 7.53¢, where the filled
circles would derive from the upper surface in Fig. 7.53b. This diffraction pattern, though
only a rough representation of the original helical lattice, can be made into a more exact
one by converting Fig. 7.53c into an (n, Z) plot. This we do by rescaling the X-axis to
give an n-axis (as explained in Section 7.2.3(c)). (However, because of the “dextrist”
convention that right-handed helices have a positive n, the open circles must now refer
to the upper surface.)

Most of the analysis of the F.T. of a helix is concerned with obtaining this (n, Z) plot.
The first step is to disentangle the two lattices (represented by open and filled circles).
(The problem is that each layer-line gives us |n| and | Z|, from which we get the alternative
pairs of lattice points +(|n), [Z|) and + (|n|, —|Z]); these differ if |n| is not zero.) The
second, and much bigger, step is to extract exact n-coordinates from the observed
X-dependence of the transform amplifudes (and other data).

We shall soon look at these steps in more detail. However, it might be useful to clarify
first our use of (n, Z) plots, rather than the more common (n, L) plots. As explained in
Section 7.2.3(c), the (n, Z) plot is more appropriate when there is no exact repeat.
However, it is quite valid to use the (n, Z) plot even when there is a short, exact repeat,
just as the (n, L) plot can be used (to within experimental error) for indexing patterns
that lack a repeat, provided the “repeat” is made sufficiently large. The existence, or
non-existence, of a “repeat” really refers to the existence, or non-existence, of interference
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between layer-lines. That is an experimental fact, whereas the use of (n, Z) or (n, L) plots
is only a question of convenience and choice.

(c) The preliminary (n, Z) plot

The first stage in analysing a single particle’s transform is indexing, i.e. relating all the
significant reflections to two vectors. This is best illpstr?ted b.y a concrete example;' we
shall use a hypothetical structure, and suppose that its dlﬂracnoq pattern has layer-lines
from which we obtain the Z-coordinates of the rows of circles in the unindexed (n, Z)

plot of Fig. 7.54.

Approximate n-coordinates. Before we can plot these rows, however, we need at least
some estimate of their n-coordinates. Each of these is calculated from two measuFemcnts.
First we estimate, from the diffraction pattern, the X-coordinate (= R-coordinate) of
the principal maximum for each layer-line (see Figs 7.58, 7.59 an.d 7.60, for examples).
Denote it by R,(n), where n is the (unknown) order of the layer-lme. (We shall assume
that there is only one clear principal maximum on each layer-line, and that the:re is no
interference between the layer-lines; this is usually the case, but some exceptions are
discussed in Section 7.3.4(j).) '

Next, we obtain estimates for the particle radius. Different features of a parncle‘are
often present at slightly different radii. 1deally, we want the radius ol'.the he!ical lines
that give rise to the particular layer-line whose n-value we are calculatmg. Th}S may be
different for different helical lines, and anyway it is difficult to determine directly. So
we choose the radius where most of the helical structure seems to lie, but make allowance
for the range of radii present in the particle. Thus we have a minimum, a most probable,
and a maximum radius. For each, we calculate the quantities 2nrRy(n) for every
layer-line. Then we use Fig. 7.43 to estimate the n-coordinate frorq each of these quantities.
This gives us a range of possible n-coordinates for each layer line.
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Fig.7.54 The first of a series of Figures to iflustrate the analysis of helical diffraction patterns (described
in the text). The {hypothetical) diffraction pattern has undergone a prdimlnéry analysis to measure the
precise Z-coordinates, and to estimate the range of the {unsigned) n-coordinates.



212 M. F. Moody

We use this range to construct an unindexed (n, Z) plot like that of Fig. 7.54. There
the range of n is fairly generous, so the outlying values are much less likely than the
middle ones. Also, the range has one clear boundary, since there are no circles placed
on the Z-axis (i.e. with n = 0). This is because there is a qualitative difference when
n = 0: there is only one (central) principal maximum on the layer-line, instead of two,

Initial indexing. Given the unindexed (n, Z) plot of Fig. 7.54, we now seek to index it,
i.e. reduce it to a combination of two vectors. Call these a = (n,,Z,)and b = (n,, Z,).
Then every row of circles must be expressible as ia + jb, so that its n-coordinate = in, + jn,,
and its Z-coordinate = iZ, + jZ,. We need to find a and b from the data in Fig. 7.54,

Because of the greater accuracy of the Z-coordinates, we start with them. Let us take
layer-line A as defining vector a; the right side of A gives us a = ([2 - 8],0.005). (If we
chose the left side, we should generate the mirror image of the (n, Z) plot, implying a
helix of opposite hand. But determination of the hand is a difficult matter best postponed
until later.) Next, we choose layer-line C (instead of B) to define b. (This is reasonable
since, although C has a larger Z-coordinate than B, it has a smaller n-coordinate.) But
we can choose either the left or right side of layer-line C; so we have two possibilities,
b, =([1-6},002)orb_ =([-6—-—1],0.02).

Which of the two is correct? We try each possibility, and see which best fits the data
in Fig. 7.54. Since the difference lies in vector b, the best test involves the highest multiple
of b. Consider, therefore, a + 2b. The first possibility is a + 2b, = ([2 — 8],0.005) +
2([1 - 6],0.02) = ([4 — 20],0.045). The second possibility is a + 2b_ = ([2 - 8],0.005) +
2A[—6— —11,002) = ([ — 10 > 6],0.045). At Z = 0.045 we have the layer-line G, with
n=—4—- —1or1-4 b, gave us n =4 — 20, which overlaps with line G at only
n=4. b_, on the other hand, gave us n = — 10 — 6, which overlaps with line G over
its entire range. Therefore b _ is clearly preferred, since the edges of the n-ranges are the
least likely values.

(d) Improving the n-coordinate estimates

Parity. We now have two vectors, a and b, with which to index Fig. 7.54. Each vector
has a precise Z-coordinate, but a wide range of n-coordinates. The next task is to restrict
this range—to a single value, if possible. We have already exploited all the information
in the F.T. amplitudes, so we should next make use of the phases. Comparison of the
phases at 4+ Z and — Z provides information about the parity of n: if n is even, the
phases are equal; if n is odd, the phases differ by 180° (Section 7.2.3(b)). (With an
undistorted perfectly aligned particle, the phase difference can be only 0° or 180°; any
other value implies experimental error, distortion, tilt, etc., which must be quite large
to make the true phase difference uncertain. However, the particle position and
orientation may need to be corrected, as described in Section 7.4.5.)

Let us suppose that this analysis has given us the parity of n for each layer-line of
Fig. 7.54. We incorporate this information into the provisional (n, Z) plot of Fig. 7.55.
1-Values with the correct parity are indicated by circles, and the excluded ones by dots.
Note that these new data confirm our choice of b, since b would have used the excluded
1 = 4.) We have also removed the less likely half of each layer-line (ie. the part with
sither positive or negative n), to take account of our exclusion of b, .
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Fig. 7.55 Thg second stage in the analysis. The layer-lines have been analysed to give two vectors,
and the parities of the n-coordinates have been determined. This excludes many otherwise possible
(n, Z) lattices, like the one shown.

We now use Fig. 7.55 to refine our estimates of a and b. So we try to draw (n, Z)
lattices that employ only permitted n-values (open circles). This attempt will exclude
many of the alternatives. (For example, the lattice indicated by broken lines in Fig. 7.55
passes through many excluded n-values, indicated by dots.) It will be found that only
one lattice fits the data in Fig. 7.55, and this employs the vectors a = (5,0.005) and
b = (—3,0.02), as marked on Fig. 7.55.

Helix counting. This example has shown how knowledge of the parity of n, combined
with the need to construct an (n, Z) lattice, can yield a unique solution (Fig. 7.56) from
a very unpromising beginning (Fig. 7.54). However, there are cases where a unique
§olution is not obtainable in this way. Then it is necessary to look for other sources of
information: we should need to count the helices in some set. This could be done, for
example, if it were possible to find a view of the particle nearly down its long axis; that
might allow us to count (i.e. assign n to) some set of helices. If we could do this and
(which is not too difficult) find which set of helices we are counting, we should know »
for some specific layer-line. This would fix one vector of the (n, Z) lattice.

Suppose, however, that it proves impossible to obtain any different views of the
particle. Then there are other ways of improving our estimates of the numbers of helices.
Prominent helices can be optically filtered (Section 7.5.2), yielding clearer images that
may give unambiguous counts. If the particles are undistorted, a more quantitative
me:thod is to obtain images of them tilted through different angles about the particle
axis. In the F.T., the phase of a prominent layer-plane can be plotted so as to reveal
how rapidly it changes with angle (Finch, 1972b). This is connected with n, since the
phase rotates n times in one complete revolution around the layer-plane. (Before this is
possible, however, the F.T. must be corrected for the position and orientation of the
helix axis; see Section 7.4.5.)
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Fig. 7.56 Final (n, Z) plot of the helix. Each open circle represents a layer-line of Fig. 7.54, with an
acceptable n-coordinate (Fig. 7.55). In the upper part of the plot, unobserved layer-lines have been
added to allow the rise distance h to be measured.

(e) The final (n, Z) plot and the helix structure

Using the vectors a and b from Fig. 7.55, we can draw the final (n, Z) plot of Fig. 7.56.
This has just one lattice point (open circle) corresponding to each layer-line of Fig. 7.54.
We can use the lattice in Fig. 7.56 to find the rise distance h, even though this was too
small to give a layer-line in the original F.T. If we need accurate values of the helical
parameters, then the Z-coordinates of a and b can be refined by a least-squares fit to
all the layer-line data (Smith and Aebi, 1976).

We can also use the (n, Z) lattice to generate a picture of the original helical structure.
To do this, we first re-draw the lattice after reflection in the Z-axis, and then rotate it
through 90°. This gives us the lattice in Fig. 7.57, representing the outside of the helix.
Besides the lattice, however, Fig. 7.57 includes scales on the ¢- and z-axes. How did we
get these?

The ¢-axis scale was obtained in the following way. Figure 7.56 shows lattice points
with n=1,2,...; that is, their H.C.F. is 1, which is the order of the rotation axis. So
the helix has no rotational symmetry, and there can be only one lattice point with a
given z-coordinate. Therefore, in Fig. 7.57, the distance between the two closest lattice
points on the ¢-axis is marked as 360°.
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Fig. 7.57  Helical fattice corresponding to the (n, Z) plot of Fig. 7.56. The ‘a’ and ‘b’ helices correspond
to the basic vectors a, b.

The z-axis scale would usually be based on the rise distance h. Figure 7.56 shows
how h was found from the (n, Z) plot. In Fig. 7.57, h is the distance of the lowest lattice
point above the ¢-axis (i.e. above the line where z = 0; it is marked in Fig. 7.57). However,
the particular (n, Z) plot in Fig. 7.56 allows an even simpler method to be used. The
vector b in that figure has Z = 0.02A~'. This Z-coordinate is the reciprocal of the
z-spacing between any two adjacent helices of a set. In Fig. 7.57, therefore, 1/0.02 = 50 A
is the z-coordinate at which the first b-helix meets the z-axis above the origin.

Notice how other features of the helical lattice of Fig. 7.57 relate to the (n, Z) plot

of Fig. 7.56. Vector b has n-coordinate — 3, and there are three left-handed b-helices.
Vector a has n-coordinate + 5,and there are five right-handed a-helices. All the layer-lines
of Fig. 7.57 have Z-coordinates that are multiples of 0.005 A ~!. Therefore the helical
lattice will have a repeat at 1/0.005 = 200 A. This corresponds to the fact that all the
layer-lines in Fig. 7.54 have Z-coordinates at multiples of 0.005 A.
) The hand of the helix has not yet been determined; Fig. 7.57 might represent the
inside, rather than the outside. In determining the hand (to which we turn in
Section 7.3.4(h)), it is useful to have a model of the helix, represented by Fig. 7.57 folded
Into a cylinder. This allows us to predict the appearance of, for example, shadowed
Micrographs for each of the two possible hands, and thus to interpret experimental
results immediately.

Lo d i L . : < “
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() Some examples ol helix structure determination

The previous sections showed most of the general features of a helical lattice determination.
However, every particle poses its own special problems. To gain a w1de'r appreciation
of these, we now summarize the main features of three structure determinations.

Extended T-even bacteriophage sheath. The optical diffraction pattern of the (negatively-
stained) extended sheath was first analysed by Krimm and Anderson (1967). Figure 7.58b
shows the diffraction pattern from an extended T4 sheath (Fig. 7.58a) empedded in ice
(Lepault and Leonard, 1985). The analysis of this pattern is much facxhtated. by the
clear meridional spots (at the top or bottom) that derive from the annuli. Their
n-coordinate is clearly zero, and their Z-coordinate can be measured; so we have
established one of the two necessary vectors for the (n, Z) lattice. This is shown on the
Z-axis of Fig. 7.58¢c.

The next clearest layer-line lies close to the equator. Its Z-coordinate can also be
measured, but it is not easy to establish its n-coordinate. The problem arises from the
fact that the corresponding helices are relatively deep, so that there are contributions
from a range of different radii. Instead of calculations based on peak positions in the

(c)
Fig. 7.58 (a) Frozen-hydrated tails of bacteriophage T4 with extended sheaths (Lepault and Leonard,
1985). (b} Optical diffraction patterns from tails like those in (a) (Lepault and Leonard, 1985). {c) The
{n, Z) plot of the extended sheath, based on negatively-stained specimens (Krimm and Anderson, 1967),
but the same as that found in frozen-hydrated specimens.
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diffraction pattern, it is easier to count the helices in micrographs, where it is clear that
there are either four or six. Various pieces of evidence show that there are six, so we
now have the two vectors defining the (n, Z)-lattice (Fig. 7.58c). Note that our two
defining vectors have n = 0 or 6, and both are multiples of 6. This must consequently
be true for all points on the (n, Z) lattice. Thus the extended sheath has a six-fold axis
(Fig. 7.28).

T-even bacteriophage polysheath. Polysheath (Fig. 7.59a) is an aberrant structure with
apparently the same helical lattice as the contracted sheath. Presumably because of its
length and straightness, polysheath gives beautifully clear optical diffraction patterns
(Fig. 7.59b). However, the meridional layer-line is missing; sheath contraction reduces

-10
(c)

Fig.7.59 (a) Negatively-stained polysheath of bacteriophage T4 (Moody, 1967a). (b) Optical diffraction
pattern from (a) (Moody, 1967a). (c) (n, Z) plot for polysheath (virtually the same as for contracted sheath).
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its spacing to beyond the resolution of the micrograph. Analysis of lhf: optigal diffraction
pattern (Moody, 1967a, 1971) gives three points in the (n, Z) la.mce (Fig. 7.59c). As
always, their Z-coordinates can be measured, but their n-coordinates pose a greater
problem. The diffraction pattern merely shows the range of n, and establishes that the
n-coordinates of point S and T are equal. From this, it follows that n(S) = n(T) = n(L)/2.
Thus the (n, Z) plot can be completed if one set of helices can be counted. Fo.rtunately,
this can be done in contracted sheath. These particles often attach to the grid by onc
end, allowing us to count the set of helices that give rise to point L (Moody,.l967a).
There are 12 helices, i.e. n(L) = 12, so a(S) = 6. Thus all points in the (n, Z).lattlce have
n’s which are multiples of 6, as in the extended sheath; rotational symmetry is conserved

during contraction process.

Microtubules. Electron micrographs of microtubules (Fig. 7.60a) show prominer?t axifxl
striations (protofilaments). Actually, these are often not quite pgrallcl to the helix axis,
but form right-handed helices of very long pitch (“superthst'“: Manqelko»y and
Mandelkow, 1985). However, analysis of the microtubule lattice is easier if we ignore

SR - N s W

-10

Fig. 7.60 (a) Microtubules from a Trichonympha flagellum (Grimstone and Klug, 1966). (b) Computed
F.T. of (a) (Amos and Klug, 1974). (c) (n, Z) plot of the microtubule helix. The lattice represe.nted by the
open circles is that of the tubulin subunits, ignoring the difference between @ and fi-tubulin. The dots
indicate the superlattice found in flagellar A-microtubules, reflecting the dlff'erence bAet\‘Neen o- and
B-tubulin. (Figures (a) and (b) are reprinted from Amos and Klug (1974), with permission from the

Company of Biologists, Ltd.)
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this minor complication, and take the protofilaments as exactly parallel to the helix axis.
Then the subunits along a protofilament are related by a short translation parallel to
the helix axis, i.e. there is a short repeat, which can cause interference between layer-lines.

The structure of microtubules (singlet A-tubules from cilia) was analysed by Amos
and Klug (1974). (See also Amos’s (1979), (1982) reviews.) The computed diffraction
pattern (Fig. 7.60b) shows reflections on the equator and on two layer-lines, at 1/80A
and 1/40A. However, the layer-lines at 1/80 A arisc through the difference between
a-tubulin and f-tubulin, which shows up to varying extents in different specimens. The
equatorial spots relate to the protofilaments, whose number is the n-coordinate of the
spots. The peak positions indicated n = 11-14, but the phases differ by about 180°,
restricting the alternatives to 11 or 13. Direct counting of the protofilaments showed
the number to be 13. This gives one vector in the (n, Z) plot: see the circles at the left
and right ends of the n-axis in Fig. 7.60c. From the other spots’ peak positions and
phases (implying parities), only one lattice was possible (Fig. 7.60c), though the
determination of hand proved surprisingly troublesome.

A consequence of this (n, Z) lattice is that there is interference between two sets of
peaks (with n =8 and n = —5) on the 1/80 A layer-line (filled circles in Fig. 7.60c).
Since these are of opposite parity, they reinforce on one side and interfere on the other.
(This sort of effect is shown more graphically in a view of a layer-plane: sce Fig, 7.61.)
The interference is less striking with microtubules (where the orders differ by 3) than
with bacterial flagella (where they are — 5 and 6; Finch and Klug, 1972). In cither casc,
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Fig. 761 Two superposed (interfering) layer-planes, one with n = 3 and the other with n = 4. Since
these numbers have opposite parities, interference is constructive on une side { + X), and destructive
on the other (— X).
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the effect is to reinforce strongly the spot on one side of the Z-axis, at the expense of
the other side. This has the effect of generating seemingly “one-sided” images, with a
set of oblique striations resembling the truly one-sided images in shadowed preparations.
However, the striations in microtubules or bacterial flagella are merely superposition
cffects, and tilt sometimes one way, sometimes the other. It may not be a coincidence
that this effect is seen in helical structures used for swimming. The need for mechanical
strength may be the reason, in each case, for the subunits forming long chains nearly
paraliel to the helix axis (e.g. the protofilaments of microtubules). As we have seen, this
causes interference between layer-lines, so that two peaks of similar order and opposite
parity will be sure to generate the “one-sided” effect.

(g) Checking that the (n, 7) lattice is not a superlattice

It is possible that the particle’s helical lattice may actually be larger than the lattice
found by the procedure just outlined. This could be because the subunits belong to two
classes with slightly different structures (like the a- and p-tubulin monomers), or because
other macromolecules attach to the helix, but with several helical subunits per
macromolecule. In either casc, the larger lattice would have to include several lattice
points of the smaller lattice in a regular fashion. Consequently, there would have to be
additional lattice points in the (n, Z) piot. When that plot was originally constructed,
however, this was not noticed: the corresponding layer-lines were invisible through being
lost in the noise. But they might be revealed by averaging the transforms of enough
particles.

For example, the particles might form parallel aggregates. Although unsuitable for
many purposes (because of sampling of the transform by the aggregate’s lattice), these
often give strong transforms. They would be likely to reveal any faint spots indicating
that the true (s, Z) lattice is smaller than the onc we have determined. If this were the
case, exact determination of the new Jattice would be facilitated by the stringent condition
that it must include all the points of the old one. (The layer-lines at +1 /80 A in
Fig. 7.60(b), (c), being of variable intensity, can be regarded as a superlattice of the main

tubulin lattice, shown as open circles.)

(h} Hand of the helical lattice

‘We must now consider the hand or chirality of the helical lattice. This is connected with
our (previously arbitrary) choice of the sign of n associated with a particular sign of Z.
Finding chirality in the microscope is quite straightforward in principle. One must
remember that most optical systems (electron microscopes, photographic enlargers, or
slide- (not overhead-) projectors), having no mirror, cannot yield a mirror image of the
object. The image will have the same chirality as a shadow of the object projected by
the light (or electron) source. However, care must be taken to note the surface facing
illumination, both in the casc of the grid in the microscope, and of films or plates in the
enlarger. If the emulsion surface always faces the light source, the chirality is unchanged
from that of the electron microscope image. Numerical densitometry and display might
introduce problems, however, depending on the programs.

There are several reliable electron microscopic methods for determining helix chirality.
Perhaps the simplest uses a metal-shadowed preparation of the particle. If this shows
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any regogmzable helices (and perhaps optical difiraction might be needed to reveal
them), it reveals their direction on the top of the particle, and hence their hand. Then
we use the mo'dcl (Section 7.3.4(e)) of the helical structure to identify these helic;es

Apother rella‘ble methed tilts the grid to give a series of micrographs. In principle
Fhe tilt or rotation can be about any axis in the plane of the grid, and still give thc’
ln[orm.atlon necessary to decide the hand of the helix. In practice, the best direction of
this axis d?pends on the pitch of the most prominent set of helical grooves. If these have
a short pmfh (as with tobacco mosaic virus), the biggest change in the particle’s
appearance is produced when the tilt axis is perpendicular to the helix axis. Then a helix
develops cusps on one side of the particle while, on the other sidc, the {urns become
even smoother. If the helices are very clear, a single image (with all orientations and
an;lgtl_etsh cz:’relltu]ly noted) could suffice to establish the hand.

¢ helices are not very clear, image-processing may be needed ich si

has lhe_ cusps. Finch (1972a) used separate optical giﬂ'ra{:tion of the lt:ft“;;ccla:'i::tlc:a?:/ig
of the image of the t_ilted particle. When the tilt has made the cusps sharpest, the side
ol" the ;?artlcle containing them gives the appearance of stacks of annuli. The,refore its
d]ﬂ'r‘actl'on pattern shows meridional spots, in contrast to that of the other side; this
dlSthtlon can reveal which side has the cusps. (Finch also applied a uantit‘ativ
technique of DeRosier and Moore, 1970; see Section 7.4.5(b).) 8 )
" Orln the other han.d, if the most prominent set of helices have a very long pitch, then
losgcae)::ezgh?::gtg:t égtggrk)grance “(/iotlx‘ld be p{od\.lced by tilting the particle about its
o seeul::i;,ce;]n( 1t9 7¢=.2|l';'.)s.ultmg images are best analysed by reference

Less reliable indications of the hand of a helix might be extracted from the tendenc
o“f th_e expos_ed end of a lightly-stained particle to contract relative to the embedded eng
( atx)l;sotroplc contr?cuon”; M.oody,.l967a). However, ordinary unequal staining seems
to be of no help,‘ since there is no invariable rule as to which surface will be stained
more‘stror}gly. Finally, great caution should be used when interpreting the apparentl
one-sided images given by particles with a very short repeat (Section 7.3.4(f )).p ’

(i) Polarity of the helix

Suppose we have now determined the screw and the rotation axis of the helical particle
Its symmetry determination will be complete when we have answered onc remainin :
questlo.n:. is it ;_)olar (i.e. is its point-group dihedral) or not? ’

Sometupes it is obvious that the particle is polar, as (for example) from the
strongly-directional arrow-head shapes of “decorated” actin (Huxley, 1963). Most often
however, the ;?article image looks non-polar, and—if it is really pola,r—thi;is a arcn;
:):3'1 z)(') ll;urt)lcuonalftests 'S‘;]Ch as whether subunits polymerize equally onto bolfl? ends

- or preferentia i ier i i

(nor ol detec[gd 5 imageypc:g‘t::s;:eg .(polar). But it would be much easier if polarity
Thll; etl:; :d'”suls pon-polar, it must have two-fold axes perpendicular to the particle.
o es will give the F.T. a two-fold symmetry, but no change will be apparent in
Ft? zmphtudes, which ?lreac'!y have two-fold symmetry as a conscquence of the F.T.’s
l_rle el. symmeu:y. Optical dlffracti_on, which gives only amplitudcs, is thereflore useless
or testing polarity. The phases, which are not necessarily two-fold symmetrical, provide
a much better test; we obtain them from numerical F.T.s. It would seem possib,léJ to test
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the particle’s F.T. phases directly for the presencc of two-fold. axes. Unfortunately,
however, it will often be impossible to decide whether the deviations from w_/o-fold
symmetry are caused by non-polarity or by noise. It is better to compare dllﬂ'crex.]t
particles. This was done by Amos and Klug (1975), whose approach is outlined in

Section 7.4.5(c).
(j) Deviations from strict helical symmetry

The methods described above assume that the particle has strict hglical symmetry. In
practice, particles show various distortions, even befgre thej artlfaf:t§ of specimen
preparation have occurred. Probably the most common IS bending. ThlS.lS f)ften caused
and staining, but several helical structures have a built-in curvature.

. dhesi
B el choe s f which, see Trachtenberg

The classical case is the bacterial flagellum (for a recent study o
and DeRosier, 1987). ' . '

However, even if the helix axis is straight, other distortions are possnble.:. The twist
angle is fixed by interaction of each subunit with other pairs of subunits. If these
interactions are not sufficiently strong, the twist angle can drift, as has been found for
actin filaments (Egelman et al., 1983) and microtubules (Mandclko“.r and Mandelkow,
1985). In extreme cases, the helical parameters may change progress.xvcly frgm one end
to the other (Moody, 1973). It cannot even be assumed thgt the hehca! latt‘lce must bt-t
completely consistent, since a discontinuity or scam may exist (as in brain microtubules:
Mandelkow and Mandelkow, 1985).

Most sensitive to distortion are the outer parts of helices. These may have been
attached with a different symmetry, as in flagellar microtubules (SFC Wan'\er, 1979). But
even if the basic symmetry is that of the underlying helix, interactions with the

surroundings may disturb it (e.g. Crowther et al., 1985). Perturbations are possible even
in of tobacco mosaic

without such interactions. The classic case, the Dahlemense strain of :

virus, was found by X-ray diffraction (Caspar and Holmes, .1969). But similar perturbations

in bacterial flagella are clearly visible with negative staining (Trac.htenbcrg et al., 1987).
The correction of helical distortions will be considered in Section 7.4.5(d).

7.4 IMAGE ANALYSIS BY NUMERICAL OPTIMIZATION

7.4.1 Introduction
(a) Development of techniques for matching particle images

As computers have improved, their applications to image analysis have extend'ed beym‘ld
the simple calculation of functions (like the F.T.) that arc analyscd by l.hc microscopist
to deduce particle symmetries. This fails if the image cannot.be made interpretable b.y
periodic translational averaging {which is effectively what is done “‘/hcn the F.T. is
calculated, and analysis focuses on reciprocal-lattice peaks or |aycr-l|ncs)'. When this
fails, we can pursue onc of two general approaches. First, we can try to improve the
signal-to-noise ratio by rotational averaging. However, parucles' with ?he _wrong
oricntation, or several different rotation axcs, can give rather confusing projections. In
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that case we can adopt the sccond general approach: o invert our usual procedure.
Instead of starting with the image, we can start with a possible symmetry of the modcl.
We use it to predict significant features of the image; the symmetry that gives the best
prediction is judged to be correct. The earliest applications of this approach followed
after the quasi-equivalence theory of viral capsids (Caspar and Klug, 1962). To test that
theory, it became necessary to predict the rather complex appearances of icosahedral
viral capsids with large numbers of subunits. First shadowgraphs (Finch and Klug,
1965), and iater computer graphics (Finch and Klug, 1967), were used to demonstratce
a general agreement between the symmetry model and the images. But this model-
building technique was limited by the subjective method used to judge the agreement.
To make it objective, the predicted and experimental images should be compared by
guantitative statistical tests.

Although that approach has not yet been fully implemented, recent progress has been
made mostly in this general direction. Testing a symmetry prediction involves matching
the predicted particle image (or some feature of this, or its F.T.) with actual micrographs.
The matching is done numerically, either by maximizing a function which is big for
good matches (e.g. the correlation function), or by minimizing a function which is big
for bad matches (ie. an “error-function™). Numerical optimization techniques are
therefore used. These are also needed if the first approach (i.c. improving the signal-to-
noise ratio by averaging images) is followed. For, to average the images, we must first
determine their relative positions and orientations. These are found by matching the
particle images or their F.T.s—again, using numcrical optimization tcchniques.

(b) Organization of this section

All calculations require some essential numerical pre-processing, which is described in
Section 7.4.2. Then attention turns (Section 7.4.3) to the question of comparing particlc
images, and considers general numerical methods for finding their relative positions and
orientations. After this, we descend from the general to the particular. The simplest casc
(i.e. that requiring the least positional information) involves the averaging of a latticc
which has been distorted. Conventional F.T. methods must be supplemented, or replaced.
by the newer correlation methods (Section 7.4.4).

More positional information is needed to average images when the particles’ positions
are uncorrelated. Leaving aside the rather elementary problem of averaging different
copies of the same two-dimensional lattice, the simplest of these cases involves the
averaging of different images of helical particles (where there is one-dimensional
translational symmetry). After considering these (Section 7.4.5), we look at the morc
difficult problem of comparing particles whose symmetry lacks any translation: they
have only rotational symmetry. The simplest of these cases yield images with rotational
symmetry. Here there are two problems: to find their centres, and to determine their
rotational symmetrics. Thesc matters are considered in Section 7.4.6. A more diflicult
situation ariscs when a rotationally symmetric particlc has scveral different rotation
axes, of which an image can reveal no more than one. Then different projections can
show different rotational symmetrics, and we have the problem of combining these to
give the particle’s point-group (Scction 7.4.7(a)). Even if the image lacks all rotational
symmetry, it will preserve the imprint of the point-group. Specialized methods have becn
developed for revealing this {Sections 7.4.7(b) and (c)).
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7.4.2 Numerical densitometry and processing

Densitometry is necessary for any numerical method of image analysis. Since it most
commonly precedes one of the Fourier numerical methods (of image analysis, filtering
or three-dimensional reconstruction), we shall describe densitometry from the Fourier
viewpoint.

(a) Input

Densitometers. All densitometers scan light across a selected region, measure its
intensity and convert it into a number, which is then sent to a computer (or direct to
tape). Some densitometers accomplish the scanning movement with a rotating drum,
around which the film must be bent. Others use a moveable flat stage, so that glass plates
may be densitometered directly. If photographic copying of plates is to be avoided,
another relevant factor is the size of the scanning raster (see below). Accuracy is important
in measuring both the intensities and (even more) the positions. (Distortion of the
scanning raster can cause complex artifacts in the Fourier transform, for example.)

Various satisfactory commercial microdensitometers exist; suitable ones are used

by protein crystallographers, and crystailographic densitometry services would also be
useful for electron microscopists. Microdensitometers with a particularly fine scanning
raster are used by astronomers.
Densitometry.  The raster size (which is partly fixed by the microdensitometer, but also
partly adjustable) affects the sampling of the picture. Two factors set an upper limit to
the permissible raster size. The first is the Wooster effect: the average transmittance of
a large area cannot be converted into an average optical density.

The second factor is the need to preserve all the information in the image. The optical
density array is like a half-tone picture, and too coarse a sampling array degrades its
quality. This degradation can be expressed more quantitatively. The one-dimensional
case is shown in Fig. 7.62. The sampled picture is equivalent to a continuous picture
multiplied by a lattice of points (the raster). It follows that the sampled picture’s transform
equals the desired transform, convoluted with the transform of the raster lattice. This
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Fig. 762 (a) A one-dimensional density function (the same as in Fig. 7.26) is sampled coarsely. The
F.T. (on the right) consists of many copies of the F.T. of the density function. These copies are placed
so close together (on the reciprocal of the sampling lattice), that they overlap and interfere. (b) The
density-function is sampled on a finer grid, so that the F.T. (right) consists of well-separated copies of
the F.T. of the density-function itself.
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convolution gives many copies of the continuous picture’s transform, each copy centred
on a point of the reciprocal lattice of the raster. If the picture’s transform is too spread
out, then overlap between the different picture transforms will introduce artifacts
(“aliasing”). To avoid this overlap, the raster size should be smaller than the resolution
of the picture. This resolution is most easily found from an optical diffraction pattern
of the image, where it corresponds to the outermost diffraction spots (from a lattice) or
layer-lines (from a helix). If the specimen lacks the translational order that would give
such spots, then it is necessary to assume the best resolution found with similar specimens.
In practice, a spacing corresponding to 6-8 A is common for negatively-stained or
frozen-hydrated specimens photographed at moderate electron doses. (A densitometer
raster of 25 um, and a micrograph magnification of 40000, would be typical.)

Densitometry yields a computer file containing the array of optical densities measured
at each pixel (element of picture area). The size of this file is of course the area scanned,
divided by the area of the unit cell of the raster. Fourier transformation (see below) uscs
arrays in which the number of pixels in each dimension is composed only of very small
factors. Usually it is a power of 2: 256 x 256 or 512 x 512 were typical in the early days
of computer processing, though modern computers allow the unit cell length to be
increased by an order of magnitude. Storage of such arrays is a less serious limitation
than processing time; perhaps the complete displacement of analogue by numerical
techniques must await the common use of highly-parallel computers (and densitometers).
Meanwhile, the area to be densitometered should be chosen carefully, usually through
the quality of its optical diffraction pattern.

(b)  Preliminary calculations

Numerical pre-processing. The first stage of processing is to attempt to make each
density number a linear function of the number of electrons reaching that pixel of the
film. The optical density can be transformed by a suitable function, making usc of the
calibration of the electron microscope plate.

Next we shall need to examine the densitometered data and select the image of a
particle for image processing. Failing a convenient electronic display, this has been done
using line-printer output, with characters whose blackness (sometimes enhanced by
overprinting) very roughtly matches the optical density (MacLeod, 1970). Whatever
display is used, the particle’s boundaries must be determined and communicated to the
program. A polygonal (usually four-sided) boundary (the “box™) is drawn to contain
the particle’s segment of data. The program copies this, omitting (or setting to zcro) ail
numbers that lie outside the box (“boxing”: DeRosier and Moore, 1970).

“Boxing” can lead to artifacts when the Fourier transform is calculated. Viewed from
a distance where the individual points are invisible, our boxed pixel array will resemblc
a parallelogram with sharp edges. The inner part of its transform will thus be dominated
by the long “spikes” seen in the transform of a parallelogram (Fig. 7.23). Thesec would
be bad enough in themselves, but “aliasing™ (sce above) causes them to spread into
neighbouring copies of the transform. They must be prevented by reducing the visibility
of the edge of the pixel array (*floating”): from each of the optical densitics within the
box, we subtract the average optical density at its perimeter. This process is equivalent
to surrounding the box with a unilorm density (like uniform stain around the particle).
and then subtracting that uniform density from both the particle and its surroundings.



226 M. F. Moody
So the particle, instead of having a weak positive density surrounded by more positive
(denser) surroundings, now has negative density surrounded by virtually nothing.

The density array is now ready for Fourier or correlation analysis.

Fourier transformation. For many purposes, we necd to calculate the pixel array’s
Fourier transform. This is an integral which must be computed as a sum, called the
Discrete Fourier Transform (D.F.T.). Consider what determines the length of this
calculation. To calculate any point in the transform, every pixel must be multiplied by
both cosine and sine functions, specific for that pixel, and the terms for cosinc and sine
arc summed separately to give the real and imaginary parts of the transform. (The real
part is the horizontal component of the vector in Fig. 7.3, and thc imaginary part is its
vertical component.) The larger the picture, the more detailed is its transform; so the
number of transform points we nced (the output) should roughly equal the number of
pixels in the picture (the input). Thus the total number of calculations is proportional
to the square of the number of pixels. This means that a naive method of calculation,
sufficing for small arrays, can take prohibitively long with pictures that are not apparently
very much larger. Thus, if a 64 x 64 pixel array took 1-2 min to process, 512 x 512
pixel array (only 64 times bigger) would take days. Without a faster method of calculation,
image processing could never have become widely used.

The faster method, the “Fast Fourier Transform” (F.F.T.), makes use of the
representation of trigonometric functions as complex exponentials. Their simple properties
allow the transform to be built up recursively from smaller transforms (see Brigham,
1974; or Elliott and Rao, 1982, for details). The method requires the number of pixels
(N) to be composed of small factors; in the best case, it is simply a power of 2. In that
case, the calculation time no longer increases as N2, but as N log,(N), which increases
only slightly more rapidly than N. To take the example in the previous paragraph, the
64 x 64 pixel array would (using the same computer) take less than a second with the
F.F.T., and the 512 x 512 array would take less than a minute. Because of its importance
and speed, the F.F.T. is generally considered the central workhorse of a numerical
image-processing system. However, it imposes a restriction on the calculation. The
number of input and output densities must usually be a power of 2. (The additional
densities beyond the boxed array are set’to zero: “zero-filling”.) Being restricted to
powers of 2, the (previously roughly equal) numbers of input and output points must
be exactly equal. This implies that the reciprocal space coordinates represent a regular
sampling of a single repeat of the computed transform.

The transform has Friedel symmetry, so only half of it need be calculated. Display
of the transform (using the device that displays the picture) will usually show amplitudes,
the phases being displayed only for selected spots or layer-lines. Interesting transform
peaks will not usually fall exactly on points on the transform raster, so interpolation is
needed to find the peak values.

The discrete transform ( D.F.T.) we have calculated differs from the integral considered
in Section 7.2.3(i). As pointed out earlier, it is periodic, so that it has “wrap-around™
in both dimensions, like the screen of a computer game (i.e. it is mapped onto a torus).
Aliasing artifacts occur if this “wraps” distant parts of the transform onto the central
parts in which we are interested. Though very difficult to avoid this entirely, it should
be minimized, and its effects not ignored. The D.F.T. has an exact inverse, which is also
toroidal. It is this inverse, rather than the original picture, of which the D.F.T. gives us

the transform.
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74.3 Finding the orientation of particles: the general problem

(a) Comparing pairs of particles

The.ll).F.T. is usqally the starting point for comparisons of the images of different
parltllc es, or .of dlﬂ't?rent parts of an image with itsell. The details of calculating
gzc(_ con;;;a;xsc;r; 7v;'111 depend on the particular symmetry being investigated (sec
ctions 7.4.4-7.4.7). First we examinc the general question of h i
ow 4 ;
Sections 7.4 q such comparisons
In general, images from SCVCI.'al particles need to be combined together, and thereforc
comparcd together. Howe\fer, it is simplest to begin with the comparison of pairs of
parthlcs, so that the cssent.lal geometrical problem can be viewed in isolation from the
question f)l’ how.lo combine several images. In any case, that combination usually
proceeds in practice through many pairwise combinations.

The trgnsfor'mation parameters. We consider first how many parameters need to be
determme‘d in order to specify the relative position and orientation of two particles
(For t?revny, we shall refer to these as “transformation parameters”.) Note that this is.
essentially l!xe same as specifying the orientation and position of one particle. relative
to an established coordinate system. For that system could be set up in particie 1, and
we should then search for the transformation parameters needed to move this , t
into the corresponding parts of particle 2. P
Frequently the particle has symmetry elements that define a standard position. For
f:x:'lm.ple, the axis of a helical particle would be made to coincide with the z-axis iand
if !t is non-polar, a two-fold axis would coincide with the y-axis). Particles witl{
point-group symmetry would have similar “standard™ oricntations to fit them to the
symmetry of the (unsigned) coordinate axes. (For an irrcgular particle, however; the
standard position is necessarily arbitrary.) ‘ T
Any particle can be brought to the standard position by a combination of two kinds
of movement. Thc first is a translation, specified by the three numbers (Ax, Ay, Az) thal
brings .the particle “centre” to the origin. The second kind of movemcm’ is d rc.)l;nion
lhfll brmgs the particle to the standard orientation. Three angles are needed to specify
this rotation. These could be successive rotations about different coordinate axes Euler‘)s
angles; for which various conventions exist: Goldstein, 1980). Alternatively, we can us;:
the fact that any rotation is equivalent to turning the particle, by an appro,priate angle
As at?out some axis. Specilying the orientation of that axis requires two more an Igcs
making three angles altogether. Although the two angles specifying the rotation ixi;
::::ld b7e6(30, '[(?h)’ as in conventional polar coordinates, a more convenient set is shown
o ;ff.ec.t ly.ali;‘); (l;.ave the advantage that all three angles become zero when the particle
These six lrans(o.rmation parameters specify how to bring an arbitrary particle into
‘t.he standa;lrd position and orientation. The inverse lLransformation wili move the
standarq > pflrtlclc $0 that it corresponds to some observed particle in the micrograph
lT;ll?e particle’s position along the prpjcclion dircction is probably irrclevant, sc;
Is parameter (say, Ay) can be omitted, leaving five transformation parameters
(Ax, Az, ¥, o, ?() to be found. They specify the movement of the standard particle S(‘\
that its projection coincides with the observed image. ( ’
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Fig. 7.63  Definition of the misorientation parameters Ax, Az,‘ ¥, w and x. The xz-plan'ells the plax;‘of
the grid, and PC is the projection (or image) of the particle axis PD, \A./here P is the particl elcen;re. " eler
correcting for the displacements Ax, Az of this centre from the.ongln., we have the transfat; part!cle
axis OB and its projection OA. ¢ defines the orientation of this projection, the tllfﬁo the par |7e
axis relative to the grid plane, and g is used to measure the relative orientations of different particles

about their axes.

These five parameters can be further reduced if the particle has a preferen?ial
orientation. This usually originates in some internal symmetry. For ex.amplc, the particle
is likely to be very extended in the direction of any internal translauoq symn}et.ry, apd
this direction is therefore likely to lie parallel to the surface of' the gnfj. This is quite
accurately true for two-dimensional sheets, and nearly true for h.ehcal particles. A rotatlf)n
axis of fairly high order (perhaps 6 or more) can produc; a rmg-s.haped structure vsfnh
the same preferential attachment to the grid. Thus,. for helices (Sect{on 7.4:5), the particle
axis (PD of Fig. 7.63) would lie (approximately). in the xz.-plane, ie wF 0 For s?heetos
or ring-shaped structures, however, PD would lie approximately along y, ic. w = 90°,
so that ¢ and x measure virtually the same movement. '

A different kind of reduction in the parameter space occurs wl}en the particles form
part of a lattice with disorder (Section 7.4.4). First,' the disorder is lfsually confined to
certain parameters. A distorted lattice commonly.mvolves translat!onal chaqges, but
only very small rotations (and these may be exclusively about an axis perpendicular to
the grid). Second, the disordering movements are often‘correlatc.ed, and !herefore very
similar for adjacent particles; this effectively reduces the information required to specify

them.

Finding the transformation parameters: the general problem. The prob}em qf finding
the transformation parameters is conceptually simple when' all tl)e particles _lnfz flat on
the grid. Their projected images are identical, apart from orientation anq position. One
jmage can be chosen as the standard, and we nfaed to find th? transformation parameters
(Ax, Az, ¢) that will bring it into coincidence with any other image. To do this, a criterion
of image matching is first set up in the form of an error-function. The data from t;:e
two particle images are processed in a way that depends on the assun?ed values of the
transformation parameters, and the result (the error) measures the mismatch between
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the transformed images. The value of this error will be a function of the three
transformation parameters, which have to be adjusted until the error is minimized.

The problem is a little more complicated when the particles can assume any position
on the grid. The standard particle image, defined by the orientation of the symmetry
axes, must now be rotated in three dimensions to give the observed projection image.
Again we need a criterion, in the form of an error-function, to discover how well the
predicted and observed images match. This is often possible, even in the cases where
our only information about the standard particle is its symmetry (Section 7.4.7(b)). In
such a case, however, the error-function will depend on the assumed particle symmetry.
Given a satisfactory error-function, we minimize it to find the transformation parameters.
But now we can repeat the process, using a different assumed symmetry in the
error-function. When the correct symmetry is used, the fit will be best. In this way,
optimization of the particle match can provide an objective test of particle symmetry.

In either case, however, we have two different problems: defining (and calculating) the
error-function; and adjusting the transformation parameters to minimize it. We now
consider separately these two aspects of optimizing the particle position.

The error-function.  All sensible error-functions reach a minimum when the transformation
parameters are correctly chosen. However, that does not mean that there can be no
significant differences between error-functions. They should satisfy two principal criteria.
First, around the minimum, dependence on the transformation parameters should be
as little as possible affected by image noise. Second, an error-function should be rapidly
computed. Here the critical factor is not only the time taken for a given computation,
but also how that time depends on the number of data valucs that enter the calculation.
(For it is only too easy to devise algorithms that work well enough with a few
values—image pixel densitiecs—but become hopelessly slow when 10 or 100 times as
many are used.)

Many different types of error-function have been used, but almost all can be
classified into one of two groups: Fourier error-functions, and the correlation function
(Equation (48)). (The latter must be maximized, so it behaves like the negative of an
error-function.) Fourier methods use a variety of different error-functions, often called
“residuals” (Amos, 1975). If the two transforms F, and F, are to be compared, onc
possibility is to use a difference function like Z|F, — F,| or Z|F, — F,|%. However, the
correction for transformation parameters may mostly affect the phase, in which case a
better error-function would be

{=(amplitude)|phase difference|}/{Z(amplitude)}

called a “phase residual”. Variants of this could be devised, e.g. where the phase difference
is squared.

As indicated in Section 7.2.4(c), there are close connections between F.T.s and
correlation functions. Whereas F.T.s can be calculated by the clficicnt mcthod of the
F.F.T,, there is no rapid direct route for finding correlation functions. Conscquently,
many correlation function calculations proceed via a double F.T., especially when there
are many data points.

Minimizing the error-function. When minimizing any error-function, it is a great
advantage if that function is linear in the unknown parameters. (This is the case, for
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example, with conventional least-squarcs optimization, and contributes much to its
utility.) Such linearity ensures that there is only one minimum, and provides a direct
means of finding it. Unfortunately, we are often forced to try to minimize error-functions
that are not linear in the parameters. Such functions usually have several minima. Since
the minima can fill the space of the non-linear parameters, their number can often
increase exponentially with the number of these parameters. (When finding transformation
parameters, this is still not prohibitive, though the computation time is not negligible.)

Surveying all the minima in parameter space is only the first part of a non-linear
optimization. Having found the approximate position of the deepest minimum, we must
next find its exact position. Indeed, in many cases this is the only real problem. For the
rough position of the global minimum can often be estimated by matching the two
pictures visually, or by matching by computer at progressively increasing resolutions.
Fortunately, there exist several established techniques for finding “local” minima (Jacobs,
1977; Fletcher, 1980; Press et al., 1987).

However, methods for speeding the global search are also useful. Unfortunately, it
seems impossible to introduce any of the transformation parameters in a linear fashion
(unless the particle is almost perfectly positioned), so we have up to five non-linear
parameters to find. The problem of multiple minima would be simpler if, instead of
having to search five-dimensional space, we could start by searching (say) a three-
dimensional subspace in which the minimum fixes three of the parameters. Keeping
these at their optimum values, we would then search the remaining two-dimensional
space to optimize the remaining parameters. Such a decomposition is possible with
rotational correlation functions (Section 7.4.6(f)).

This decomposition of the multidimensional search should be distinguished from the
practice of finding the optimum for each parameter in turn. Here the adjustment of any
parameter alters the optimum for all the others, so there is no reduction in the number
of minima that must be checked to find the lowest. Indeed, this method is not even a
good way to find the nearest (“local”) minimum: the search moves through parameter
space along a zig-zag path that can be very much longer than that necessary with better
methods (Fletcher, 1980).

(b) Comparing many particles

Hitherto we have been concerned only with matching pairs of particles. However, we
need an overall average from many particies. If there are s particles, (s — 1) sets of
transformation parameters are needed. So should we optimize these (s — 1) sets using
the micrograph data? Some overall error-function might be set up, to which each particle
picture would contribute, with a weight dependent on its quality. The function would
depend on all the parameters, and a search would be made through parameter space
to find the global minimum.

Unfortunately, the very high dimensionality of that space would make this approach
prohibitively stow. Instead. the problem is solved by the pairwise matching of particles.
Each pairwise match will give a slightly different set of optimum transformation
parameters, and the overall optimum could be calculated from all the matches. But even
this is too large a task to perform thoroughly, since s particles have s(s — 1)/2 pairwise
matches. So an even shorter cut is taken. The “best” two particles are matched, and
their average is calculated. Then the “best” remaining particle is matched with this

g
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average, giving a new average. The overall average “snowballs™ in this way until it has
incorporated the last particle.

This method is quick, and it seems to work quite well in practice. But, while it may
be satisfactory when there is no doubt about the approximate match position of each
particle, serious uncertainty on this point could render the method dangerously
subjective. Consider the following case. From a random set of shapes, two “faces™ could
be chosen and averaged. Proceeding in this way, a meaningless “average face” could be
produced, entirely by “objective”™ computer methods. This difficulty has been overcome,
in the case of helix polarity tests, by using a scatter diagram (Fig. 7.65 and
Section 7.4.5(c)). A similar statistical problem arises whenever the essential correctness
of any match is open to doubt. Even when there is no such doubt, the “snowballing”
method places undue reliance on the first particles, which can bias the final average. It
might be instructive to repeat it, taking the particles in reverse order.

Clearly the accuracy of each pairwise match depends on the signal-to-noise ratio of
the particles, which is increased if those particles are themselves symmetrical. Unfortunately,
the molecular structure is preserved only at extremely low clectron doses (Chapter 8),
which greatly reduces the signal-to-noise ratio. Under these conditions, the particles or
aggregates must be highly symmetrical to give sufficiently accurate data for pairwise
matching. However, it is often difficult to persuade interesting cellular structures to form
such aggregates. The question therefore arises as to whether, by some technique, the
transformation parameters could be extracted from the extremely noisy low-dose images
of particles with low {or no) symmetry. This is the subject of much current investigation
(sce especially the journal Ultramicroscopy), but it is not possible to pursue it further here.

7.4.4 Refining the parameters of distorted lattices
(a) Classification of distortions

The simplest type of distortion (uniform distortion) yields an cxact lattice, but with
changed lattice parameters. Usually this is detected by comparing the lattices of different
samples of the same biological specimen. Sometimes, however, it reveals itself as
departures from an underlying symmetry. For example, a pattern that apparently has
the piane-group p6, and that gives diffraction spots with six-fold symmetry in thew
intensitics, may nevertheless have a lattice that is not exactly hexagonal. This situation
is often found when the lattice is curved to form part of a cylinder (e.g. bacteriophage
“polyheads” or the cell walls of cylindrical bacilli).

The more common type of distortion is non-uniform, i.e. a spatial variation in the
lattice parameters in a single shect. This variation can be random (perhaps because the
positions of the subunits are poorly fixed by the lattice forces), or it can vary smoothiy.
The latter variety, associated with elastic deformation, is particularly common, perhaps
because of the strains experienced by specimens during preparation and irradiation. A
smoothly varying distortion will cause points that were originally close together to
remain so; we shall therefore refer to it as a continuous distortion. {Of course, this cannot
apply exactly down to atomic dimensions, but it is often an adequate approximation at
the resolutions achieved in practice. ) )
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From the point of view of image analysis, all these distortions can be classified by
the amount of information needed to specify them. This is least for uniform distortion
(we need only the coordinates of two lattice vectors). It is also small for a continuouyg
distortion, if that is negligible over the dimensions of a unit cell. For, though the lattice
vectors are then functions of position, their slow variation would allow them to be
approximated satisfactorily by a simple function with few arbitrary constants. Random
fluctuations in the subunit positions, however, require the greatest detail to describe
completely, and therefore make the greatest demands on the meagre information available
from each unit cell. Continuous distortion is therefore easier to monitor (and correct)
than random distortion. There is another reason for this. Continuous distortion can
combine a substantial overall distortion (requiring correction) with a very small change
in each unit cell. However, random distortions (if they are substantial enough to require
correction) must produce a substantial movement in each unit cell, shifting the unit cell
contents within it. This is hard to monitor unless we have independent evidence for the
appearance of the contents, in isolation from the surrounding unit cells. Practical methods
for monitoring distortion generally need to follow a combination of unit cells and their
contents, and such methods are unlikely to prove satisfactory with random distortions.

(b) Methods lor determining distortion

Uniform distortion, besides requiring the least information, has the further advantage of
preserving exact translational symmetry. Therefore it can be satisfactorily analysed by
Fourier methods (Aebi et al., 1973). However, to obtain accurate values of the F.T. peaks
from the F.F.T,, it is necessary to re-sample (e.g. by bilinear interpolation) the optical
density array at a regular sublattice of the crystal.

Non-uniform distortion cannot be handled satisfactorily within the framework of
straightforward Fourier analysis. In the first attempt to meet this challenge (Crowther
and Sleytr, 1977), the positions of the (distorted) lattice points were found by (computer)
filtering with a mask that passed only the innermost diffraction peaks, so that the filtered
image consisted of blurred peaks. To avoid averaging over many unit cells, however,
the mask “holes” were made quite large. The centres of mass of the filtered image peaks
were then calculated. Thus much of the analysis was concerned with the image, rather
than with its F.T. ’

The logical conclusion of this approach was to apply correlation methods (developed
in the early 1980s by the groups of Frank and Saxton). If a distorted lattice is to be
scanned by a “reference patch”, then that patch must be small to accommodate the
distortions. However, it must be large enough to contain the information for specifying
the unit cell. Its size (a compromise between these two factors) can vary from five unit
cells (negatively-stained bacterial cell wall images of high contrast: Saxton and
Baumeister, 1982) to 50 unit celis (unstained bacteriorhodopsin crystals of low contrast:
Henderson et al., 1986). To keep the “patch™ as small as possible, it can first be averaged,
over a fairly small area, by (computer) optical filtering.

To make the correlation methed practical, the X.C.F. must be caiculated rapidly.
This is done using the F.F.T. (inversion of Equation (9)). For this purpose, the “reference
patch” must be embedded in an area as large as the image. All its surrounding pixels
are “floated” (Section 7.4.2(b)), i.e. set to the average of the “patch™ boundary. Both
this area, and the image, are Fourier-transformed, and one of the F.T.s is converted into
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the complex conjugate (as required by Equation (9)), before they are multiplied and
inverse-transformed. This yields the correlation coefficient as a function of displacements
in two dimensions. Every broad correlation peak outlines a local minimum. From each
of these, the exact coordinates of the minimum must be extracted, e.g. by averaging
(Saxton and Baumeister, 1982) or by profile fitting (Henderson et al., 1986). If the
distortion is continuous, all the minima should lie approximately on a regular lattice
(i.e. it should be clear which minimum derives from any given point in the undistorted
lattice). For each minimum, therefore, we can calculate a distortion vector.

If we can assume the continuous nature of the distortion, then the distortion vectors
can be expressed in terms of a relatively small number of parameters. This has been
done (Henderson et al., 1986) by fitting their coordinates to bicubic splines. (Obviously,
some decision must be made as to the rapidity with which the distortion vectors can
vary with position—ie. as to the highest spatial frequency of the function they fit.)
Given such a fit, the distortion vector can be calculated for any point, which facilitates
resampling of the optical density array by bilincar interpolation.

74.5 Refining the orientation and symmetry of helical particles
(a) Positioning the helix axis

The position and orientation of the helix axis must be known accurately for determining
helix polarity, for three-dimensional reconstruction (Section 7.6.4), or even for finding
the parity of the layer-tine order (Section 7.3.4(d)).

How many parameters shall we need to fix? A helical particle has a unique axis,
which is coincident with the z-axis in the standard position. If the xz-plane is the plane
of the micrograph, the xz-projection of the particle axis (PC in Fig. 7.63) is the “particle
axis” seen in the micrograph. Unless the particle has obvious dihedral symmetry, there
will be nothing to define Az or y for an isolated particle, though these will still be
meaningful when comparing two different images of the same particle type.

We consider first the alignment of an isolated particle, for which the three
transformation parameters that are needed are ¥, w and Ax (Az being put =0).

The position and orientation of the projected particle axis is guessed when the image
is densitometered; that guess is the z-axis. Even this will probably need to be refined
by correcting y and Ax. In the F.T, the y-correction is the angle between the layer-lines
and the X-axis. It is probably satisfactory to make these coincide by referring to a
print-out of the F.T., and the only remaining problem is to interpolate the F.T. along
these sloping tayer-lines. This can be achieved by one of the interpolation techniques
described in Section 7.6.4(d). After this, only two transformation parameters remain to
be determined.

Phase asymmetry: Ax. The other two corrections do not affect the F.T. amplitudes:
the layer-line phases must be used instcad. These phascs should cither be cqual at F(X)
and F(— X), or differ by 180°.* If this situation does not hold, it must be brought about

* We are here assuming that the layer-line is not subject to interference from any other laver-line; if it is, we
use the inner parts of the layer-line, where one order of Bessel function predominates: Crowther et al. {1985},
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(as nearly as possible) by using the shifts Ax and w. Ax causes the F.T. to be multiplied
by a “complex wave” as shown in rule (d) of Fig. 7.12. Since the translation is along x,
the lines of constant phase-shift lie perpendicular to X, i along Z.So F(X)and F(— X)
reccive equal and opposite phase shifts.

Similar phase shifts are generated by w on higher layer-lines, but not when Z = 0
(cquator). Only Ax produces a (usually small) linear phase-shift there. It is therefore
possible to estimate the translation Ax from a plot of the phase of the equatorial layer-line

{(Finch and Klug, 1971).

Phase asymmetry: . The phase correction resulting from particle tilt (w) is slightly
more complicated (DeRosier and Moore, 1970).* Tilting the particle gives its projection
from a different dircction. By the projection rule (Fig. 7.12(f)), this gives a different
central section of its F.T. It is simplest to consider the particle F.T. as fixed in a
(X, Y, Z)-coordinate frame, and to consider its values on the different (tilted) section-
planes. Figure 7.64 shows three such section-planes (A, B, C) intersecting a layer-plane.
Scction-plane A is actually untilted, and corresponds to the X Z-plane. It intersects the
principal maximum of the layer-plane at two points (arrowed at the ends of line A). As
we have scen, the phases at thesc points will either be the same (n even) or will differ
by 180° (n odd). The section-planes B and C are tilted with progressively larger values
of w. They intersect the principal maximum at different points (arrowed at the ends of
lines B and C). Because these points are displaced from the diameter of the principal
maximum, the simple phase relations no longer hold.

It is easy to estimate the phase differences, if there is no layer-line interference. The
new phase relations can be seen in Fig. 7.36. The intersection of plane A is along the
X-axis, and the phase diflerence appropriate to a layer-plane with n =3 (as shown in
Fig. 7.36) is 180°. Tilting the helix gives us F.T. sections on planes B and C, which
intersect the layer-plane along the rows indicated. Here, the phase difference is rather
smaller, since the vectors on the right have rotated clockwise, while those on the left
have rotated anticlockwise. The change can be related quantitatively to the tilt angle
{together with Z and n); see Equation (53) below.

The overall correction (DeR osier and Moore, 1970) will now be given. If the particle
has been displaced by Ax and tilted by w from its “perfect” position (Fig. 7.63), then,
on a layer-line with the coordinate Z,

True phase (F(X)) = calculated phase (F(X)) + narctan (Zsinw)/X) (53)

The application of this equation is connected with determining the helix hand, to which
we now turn.

(b) Finding the helix hand, and confirming the helical lattice

Equation (53) can be used to correct the F.T. phases, provided we know Ax, w and n.
As explained, a very good estimate for Ax can be found from a plot of the phascs on
the equator. However, we do not know w, and shall use the equation to find it. And,
although we may know |n} for each layer-line, from the (n, Z) plot, some ambiguity may
remain. In any case, we shall not know its sign unless we have determined the hand

*« Note that these authors define o as a tilt towards — x, rather than as shown in Fig. 7.63.
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on both sides of the layer-line. (These are shown in Fig. 7.36.) o

of the helix. These uncertainties can be removed with i i
and Moore, 1970; Finch, 1972a), in the following wtah;. help of Bquation (33)(DeRosier
Flrst,.we choose one of the possible helical lattices and chiralities. We calculate the
appropnate (1, Z) plot, which fixes the values and signs of n on all laycr-lines. For any
given va!ue of w, we can now use Equation (53) to correct the phases at X and — X on
a layer-line. After correction, the phases at X and — X should differ by n(180°). So we
calculate the coqtribution of all pairs of points (X and — X} to an overall crror-ﬁ'mction
of the Phase-rgmdual type (Section 7.4.3(a)). This function (E) will be determined by
the helical lattice, of which the most important quantity is the twist angle Q (to which
we shou}d perhaps add the order, N, of the rotation axis). It will also depend on the
onentat'xon parameters w and Ax, which are used to find the corrected F.T. [rom the
value given by the F.F.T. (The correction, using Equation (53), affects only ;ls phase.)
We now use E to refine the helical and orientation parameters. .
Consider first the helical parameters ©Q and N. Analysis of the helical diflraction
pattv::m (Section 7.3.4) should give a sufficiently accurate estimate for ||, leaving only
its sign to be determined. Thus refinement of the parameters Q and N in‘volvcs only a
C'hOlCC between alternatives. For each choice, E is a function of only w and Ax: ﬂ{)c;
since Ax can be found quite accurately by the method described in Scction 7.4..5ia) u;
is the only really uncertainty quantity. w| can be found by plotting E as a function‘ of
o, for each symmetry choice. The minimum indicates the value of (o] = |w,}. However
llandf:dness cannot be determined from a single projection: the same fit will be given if
the signs 0:f w and Q arc both reversed. To fix the hand, we need a second micrbgra h
oflhc.puruclc, obtained alter slight tilting of the grid by a known angle Aw ina knoxn
direction. We repeat the amflysis on this second micrograph, and obtain a new pair of
:):t):z (fir +Q and — Q), with a new value |w| = |w,|. Of the four possible quantities
L Sizgnsz; )(,l)(lz[(i)(; a_):);;zl’é —];ea;f:e-‘-ﬂ(f)l )( — w, — w, ), only one will cqual Aw. This fixes



236 M. F. Moody

(c) Finding the polarity of the helix

As explained in Section 7.3.4(i), the noise level of individual helical F.T.s usually makes
the detection of polarity dependent on a comparison of the F.T.s of different particles.
It is first necessary to correct each F.T. for the particle’s position and orientation, as
described in the previous section. A further positional correction is needed, in the direction
of cach particle’s axis. Moving any particle by Az multiplies its F.T. by exp (2niZAz);
after this correction, its F.T. can be compared with that of the other particle. An
crror-function is used, similar to that employed in finding the particle orientation.

Before comparing the F.T.s, however, we need to decide whether the two particles
are parallel or antiparallel {Amos and Klug, 1975). Lacking grounds {or choice, it is
best to try cach orientation in turn. Thus, when optimizing the orientation, we obtain
4 minimum error-function (E.(parallel)) calculated for the parallel orientation, and
another minimum (E,,(antiparallel)) for the antiparallel orientation. The difference
between them relates to the polarity of the particles. For, if they are non-polar, it cannot
matter whether they arc compared parallel or antiparallel, and any difference must be
ascribed to noise. We therefore need to decide whether the different between E,,(parallel)
and E_(antiparallel) is above this threshold value.

Our strategy will depend on whether the particles have any structures that distinguish
their ends. Bacteriophage tails, for example, have heads at one end; and helices associated
with cellular organelles may often be seen growing out from some root or origin structure.
If the ends are distinguished in this way, then every comparison of two particles employs
the same definition of “parallel”. The data may be good enough to allow one particle
{o be taken as a comparison standard, as with the T4 extended sheath: Fig. 7.65a, b.
Otherwise, it is necessary to get a better “standard™ by averaging all F.T.s from particles
in the best parallel orientation. This average F.T. can be compared with each individual
FT. to give E_(parallel) and E,(antiparallel). A convenient way to represent the
comparison is to plot, for each particle, a point with coordinates [E,(parallel),
E,,(antiparallel)]. For a non-polar particle, the points shouid cluster around the 45°
line, as E,  parallel) and E,, (antiparallel) should be equal. For a polar particie, the points

should lie above it, as E(antiparallel) > E(parallel).
If, however, there is no visible distinction between the particle ends, then the polarity

test is more difficult (as well as perhaps more relevant). Pairwise matching is done by
the “snowballing” mcthod described in Section 7.4.3(b). The apparent success of this
procedure is not, of course, a guarantee of particle polarity; images might have been
selected showing the same, random, deviations from two-fold symmetry, and their average
will enhance thesc arbitrary deviations. So the final “averaged” F.T. must be compared
with all particles in a plot like Fig. 7.65c. As before, polarity will be revealed by a
clustering of points above the 45° line. This procedure, critically applied, can demonstrate
that the particles are polar. Because of the limited resolution and high noise of electron
micrographs, however, it cannot demonstrate non-polarity.

() Correcting distortions of the helix

Some of the possible distortions of helices were mentioned in Section 7.3.4(j). Distortions
that affect only the surface structures of helices frequently lead to a superlattice, which
can be determined as outlined in Section 7.3.4(g). Distostions of the helical geometry
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Fig. 7.65 Polarity plots {Amos and Kiug, 1975); see text for explanation.

pose a more common problem. Usually they are simply avoided by finding conditions
under which they are minimized (e.g. by selecting the few straight particles for analysis).
But, as with distorted plane lattices (Section 7.4.4), methods are being developed to
correct them.

Of all the distortions of helix geometry, the easiest to correct is helix bending (Fraser
et al, 1976; Egelman, 1986; Egelman and Stasiak, 1986). If the curvature is small, it
causes few distortions in the local helical packing. The bend can be determined and us:ed
to.deﬁne (orthogonal) curvilinear coordinates in which one of the axes follows the helix
axis. A conformal mapping of the micrograph, from these coordinates to Cartesian
coordinates, will straighten the helix.

It is rather more difficult to correct distortions of the twist angle. Bluemke er al.
(1988) have developed a method in which the twist angles are adjusted by model-fitting.
Modf:ls are constructed, in which the subunit structure derives from X-ray crystallography.
the rise-distance is fixed, and the twist-angle of every subunit is adjustable. The modei
that correlates best with the micrograph will be accepted. To find it, a scrics of improved
qucls is constructed by an iterative process. At cach stage, the current estimates of the
lwnst-angles are used to make a three-dimensional reconstruction of the micrograph.
From this, new estimates arc made of the subunit positions lcading 1o new twist-angles
and an improved model.

By allowing all the twist-angles to float independently, this method cncounters a
problem common to all attempts at correcting deviations from strict symmetry. Their
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specification requires extra information, which must come from the micrograph, thereby
reducing the amount of useful information it can yield. This problem was encountered
when correcting distorted plane lattices (Section 7.4.4). We saw that, whereas the
correction is difficult il the distortions are random, it becomes feasible if they are
continuous; for, in the latter case, only a few parameters suffice to define the distorted
coordinate system. It is because curvature of the helix axis is a continuous distortion
that its correction is feasible. Similarly, the correct of twist-angle distortions will
be most successful when they, too, are continuous. Indeed, when Bluemke et al. applied

their method (Carragher et al., 1988), they found that the twist-angle variations were
continuous (sce Fig. 4(a) of their paper) and could be interpolated from the values of
4 canonical sct. These considerations suggest that, instcad of devising ad hoc methods

i tions, the entire helical lattice (including the risc-distancc)

for correcting particular distor
should be allowed continuous distortions specified by a few parametcrs which could be

determined by (non-linear) least-squares.

746 Rotational symmetry

(a) Rotational periodicities

As explained in the general introduction, all Fourier methods are essentially similar, in
that they analyse a picture into a standard set of shapes or density-waves. For pictures
showing rotational symmetry, we therefore need waves with rotational symmetry (as
the density-waves considered in Section 7.2 have translational symmetry). But certain
differences now arise. First, the centre of rotation must be specificd. Second, there is the
difference that translational waves are essentially similar in all directions, whereas there
is a radical difference between rotational waves in the radial and tangential directions.
the rotational symmetry of particles, there is no absolute

Since we are interested only in
therefore, we divide

need to use waves that vary in the radial direction at all. As a start,
up the micrograph into concentric narrow annuli (Fig. 7.66a), and analyse each annulus
separately to determine its rotational symmetry.

As usual with the Fourier method, this is done by representing the density around
each annulus as the sum of several different sinusoidal density-waves. That is, each
annulus is the sum of annuli of the same radius (Fig. 7.66b, ¢, d) and having densities
that vary sinusoidally with all necessary rotational periodicities. {An annulus with
uniform density —zero-fold periodicity —is included to make the final density entirely
positive.) As a result of this rotational Fourier analysis, one can find the contribution
of each sinusoidal density-wave in terms of its amplitude (the “strength™ of its
contribution) and phase (the correct orientation of its positive peak). For an annulus
of radius r, the contribution of the n-fold density-wave is denoted by g.(r) (sec
Section 7.2.3(k)). The total “power” of n-fold density-waves (Crowther and Amos, 1971)
is found by squaring the amplitude of each g,(r), summing over all the annuli and (since
the amount of information in an annulus is proportional to its radius) weighting each

annulus according to its radius:

P, = j‘mlg"(r)\Zan dr (54)
0

e
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(e) ")

Fig. 7.66 i i i
g The Fourier method for finding rotational symmetry. The image (a) is divided into annuli, ol

which one (b) is expressed as th i i i
hich one (b) s b e sum of its rotational Fourier components ((c) and (d)). Their F.T.s are

N o . .
gs 3)(: ::fats'lmll?nty yvuh Equatlon. (43), Section 7.2.3(k). This power (denoted by P,)
i equwa;:::xo;:?}tluvg!;m of the intensity of a spot in an optical diffraction pat);cn"]
¢ diffraction pattern itsell is a plot of i i .
o 1 [ Tractio : plot of P, against n (Fig. 7.67), ¢
mic‘:: r[;earl;s 1]1n rthxshplot W}]] mdxcau? the principal rotational symmelries( piscnt7i);|dlrtl1(cl
graph, for the particular choice of rotation centre used in the calculation

{(b) Finding the rotation centre

To apply th
e R A T s s
e \ L. _  values). These tasks are interrelated.
p:nicle i ::t;(;timczzg:ire}}we n:]ean the point about \Yhich the rotational symmetry of the
o sam(; autt }: e centre that‘ maximizes a particle's four-fold symmetry
wech promient candid sl rat whl? maximizes its five-fold symmetry. Consequently
cach prominent cae ate or the t:ue rgtatlonal symmetry has its own “correct”
rotaion con prominemownd.com’.cl rota?:onal power spectrum. We estimate which
roparent, we calculate f:ligl :-((i)at\;? by llookmg at the micrggraph or, if no symmetry is
cotion ional power spectrum using a centre located by visual
To deci candi
S tc(c):n:iocc::;;wcf: l'hc_ uurldldalc‘s, we m}lsl locate the best particle ceatre. This is
similar to toca ofgth ee td)us ;) a helical pa.lrtlcle (Scction 7.4.5(a)), except that we now
ot the transform :ns orn? per]{endlcular to its rotation axis. We can thereforc
A 5, asis at all points that shguld be equivalent through the assumed
oldrotationa . ¢ eca cu!ate an error-function, which measures the mean deviation
8 at all these points. We calculate it for different positions of the rotation
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Fig,7.67 Logarithmic plot of the rotational power spectrum of a T4 bacteriophage base-plate (Crowther
and Amos, 1971).

centre. (The corresponding transforms required for this calcgl?uon can be o?talne:ngz
application of the appropriate phase factor.) 'I"he correct position of the rotation ¢ e
(for an n-fold axis) minimizes this error-function. It could be fqund by somelnumefﬁ

method; but, since only two variables are involved, a two-dimensional plot suffices

(Crowther and Amos, 1971).
(c) Finding the power spectrum

Different trial rotation axes (ie. the trial valu.es of n) are chosen in succeismn. Fo;
each, the particle centre is found by the method just described. Then t'he comp et;. Ezv:)
spectrum Py(n) is calculated by one of the three methqu outlined in iecn:;‘n . t.a t(1 On.
P,{n)is the power of the k-fold contribution to the particle s?ructure, when ) 3 ::;va]em
centre appropriate to n-fold symmetry has been usefi. P.(n) is the rotatlo'nalzqﬂraction
of an optical diffraction pattern. Just as, fora translat.lonal repeat a, the Opth: i action
pattern has peaks at multiples of 1/a, so the rotational power spectrum has pe
n. .

mu’:‘tll\?:e;gcedure gives a different rotational power spectrum P, for. each candlc:_alt:
(n-fold) rotational symmetry. Naturally, the power spectrum appropn.ate tohanrnt-hose
axis will enhance the n-fold contribution as much as possible. But if, in eac 0 1 1‘:
spectra, the dominant rotational contributipn is always the same, tl)er} t(;le parglct: as
a unique rotation axis. Otherwise, its rotational symmetry (if any) is indeterminate.
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(d) Details of calculating the power spectrum

For a given particle centre, there are three methods for calculating the power spectrum
P,. The first would divide the optical density of the micrograph into rings as in
Fig. 7.66; the rotational Fourier component of each ring, g,(r), would be found by
Equation (33), and from these quantities the power P, would be found by Equation (54).

The other two methods would use the particle’s F.T. (which was already calculated
to locate the rotation centre). By either of these methods, we should calculate G,(R).
One way to calculate it would be through an angular transform, as in Equation (34).
However, this would require us to interpolate the F.T. at points required by the
quadrature formula. So the third method would use Equation (39) (the first and last
terms), that expresses the F.T. as a linear combination of G,(R)s, with known coefficients.
These linear equations might be solved by the methods outlined in Section 7.6.4(d). By
either of the two methods, we should have G,(R), from which P, can be calculated by
Equations (43) and (54).

{e) Effects of distortion and resolution

As with optical diffraction patterns, the information in a rotational power spectrum is
restricted both by distortion and by limited resolution. Distortion broadens peaks so
that they extend to other harmonics. Similar effects are seen in the optical diffraction
patterns of distorted translational periodicities; but the effccts of distortion would be
expected to be particularly prominent in the case of rotational symmetry. There are two
reasons for this. First, the effects of uniform stretching of the particle are far more serious
than in the case of translational periodicities. Instcad of mercly producing a reciprocal
stretching of the optical diffraction pattern, stretching presumably enhances even-fold
rotational symmetries. The second reason derives from the particle shape. Whereas
two-dimensional crystals are typically wide and thin, particles showing rotational
symmetry are much more nearly isometric. In negatively stained preparations, such
particles will be particularly liabie to tilt or to the effects of anisotropic contraction
(Section 7.3.4(h)). Tilting is also probably the most serious “distortion™ artifact in
sectioned or freeze-etched preparations.

The effect of resolution is essentially the same as in optical diffraction patterns, when
due allowance is made for geometric factors. (Any given order of rotational harmonic
requires less spatial resolution at large radii than at small ones. ) In practice, the resolution
found from rotational symmetry has been somewhat worse than that found from
translational symmetry. Perhaps this is owing to astigmatism, or to the ease with which
small isolated particles become distorted.

() Analysing rotational symmetry by correlation coefficients

The rotational symmetry of a particle’s image can be found by comparing it with a
similar image (or with itsell), after rotation by different angles. If the images malch, they
should match again when the angle is increased by 360°/N (N being the order of the
rotation axis). As explained in Section 7.2.4, the best match can be taken to maximize
their X.C.F., defined by Equation (48). The match will be a function of the two coordinates
of the particle centre, as well as of the rotation angle y. However, when comparing two
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images, the X.C.F. is a function of two additional transformation parameters (Ax, Az).
When comparing different particles, then, we have a five-parameter search. This can be
facilitated (Frank et al, 1978) by the subspace technique outlined in Section 7.4.3(a).
First, the image’s A.C.F. is calculated. This automatically has an exact two-fold axis,
but every rotational symmetry of the image will also be present in the A.C.F., and with
the same centre of rotation. Thus (with the exception of two-fold symmetry) the A.C.F.
gives us an estimate of the rotation symmetry of the image. However, the A.C.F. has
the additional uscful property of possessing a unique centre. Consequently, the A.C.Fs
of different particles can be compared (e.g. through a rotational X.C.F.) before the
positions of the particles are known. This gives us the angular part (y) of the
transformation relating two different images. Having corrected for i, the remaining
transformation parameters (Ax, Az) can be found by a two-dimensional translational
X.C.F. The best rotation centre, for any rotation angle 360°/n, can be found from the
X.C.F. of the rotated and unrotated images.

Both the rotational and translational X.C.F.s are more rapidly calculated by means of
F.T.s (Frank et al., 1988b), allowing use of the rapid F.F.T. algorithm {Section 7.4.2(b)).
The rotational X.C.F. can be calculated from Equation (42) or, better, Equation (44);
and the translational X.C.F. from the Fourier inversion of Equation (9).

7.4.7 Point-group symmetry
(a) Deductions from projection symmetiies

If a particle has exact rotational symmetry, it must fit one of the point-groups mentioned
in Section 7.2.1. The cyclic (Cy) and dihedral (Dy) groups constitute infinite series of
similar point-groups, with N =1,2,.... Unless N is small, these groups generate
ring-shaped structures. There are only three other point-groups, and these generate
compact particles. Now it should be evident from micrographs whether a particle is
compact or ring-shaped. So the determination of point-group symmetry is really only
a choice between rather few {reasonable) alternatives. Biochemical evidence bears on
this choice, since the number of subunits in the particle is the order of its point-group,
if all the subunits are identical and equivalent. Knowing this number narrows the possible
point-group symmetries of the particle; see Table 7.1.

Rotational analysis, by the methods discussed in the previous section, can reveal the
rotational symmetry of a picture. But we are interested in this only as a means of finding
the symmetry of the original particle. Since the picture probably represents a projection
of the particle, what is the connection between the symmetries of a particle and of its
projections?

By the projection rule (Section 7.2.2(d)), the symmetry of a projection must be the
same as that of the corresponding central section of the F.T. Moreover (by the rotation
rule of Section 7.2.2(d)), the point-group symmetry of the F.T. must be the same as that
of the particle. So it might seem that the projection symmetry would be simply the same
as the particle symmetry about an axis coinciding with the projection direction. However,
there are two complications.

First, the shape and size of individual subunits may be such as to appear spherically
symmetric at low resolution. Thus the subunits of oligomers may generate the appearance
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Table 7.1 Point-groups, their orders and principal subgroups.

Group Order Axes Principal subgroups

Cyclic (Cy) N N Cp (M) [M divides NI

Dihedral (Dy) N N, 2 Cy (N), G, (2)

Tetrahedral 12 2,3 D, (4

Octahedral 24 2,34 Tetrahedral (12), D; (6), D, (8)
jcosahedral 60 2,35 Tetrahedral (12), D5 (10), D, (6}

Order equals the number of subunits in an aggregate with this point-group; axes are the rotational symmetry axes;
and only the more interesting subgroups are listed. The numbers in brackets are the orders of the subgroups (which,
by Lagrange’s theorem, must be a factor of the order of the group), and subgroups of subgroups have been omitted.

of more symmetrical poiyhedra. (For example, four subunits related by D, symmetry
might assume the appearance of a regular tetrahedron.) In the most likely case, just one
“spherical” subunit would generate, through the operations of the true point-group (G ),
a polyhedron with the pseudo-symmetry corresponding to a higher point-group G,
(where G, is a subgroup of G,). Each “spherical” subunit thereby becomes a vertex of
the polyhedron, so the number of vertices is the number of subunits, ie. the order of
the true point-group G,. This gives us a criterion for pseudo-symmetry generation. The
order of the subgroup (G, ) must equal the number of vertices in a polyhedron with the
point-group symmetry G,. And this number equals G, divided by the order of one of
its rotation axes (e.g. by 5, 3 or 2 if G, is the icosahedral point-group). Applying this
criterion to the sub-groups of Table 7.1, we have only the cases list in Table 7.2.
Second, the projecting parts of the subunits (where the contrast is highest) may be
clustered about symmetry axes. I the clusters are blurred into indistinguishable blobs,
the appearance of a regular polyhedron can result. Such hypersymmetrical clusters are
important only for the tetrahedral, octahedral and icosahedral point groups. They are

listed in Table 7.3.

If an oligomer approximates one of the regular polyhedra in the third column
of Table 7.2 or of Table 7.3, there will be some inevitable uncertainty about its
true symmetry. (For example, an apparently octahedral aggregate could have D,
symmetry, from Table 7.2, or else tetrahedral or octahedral symmetry, from Table 7.3.)
This problem could exist even if the particle’s three-dimensional structure had been
determined by some reconstruction technique (because the resolution was inadequate);

so there is even more uncertainty if one has to interpret only a few (or one) symmetrical

Table 7.2 Generation of polyhedra with pseudo-symmetries.

Pseudo-symmetry group Axis Polyhedron Subgroup Projection symmetry
Tetrahedral 2-fold Octahedron D, 2,4, 6
. 3-fold Tetrahedron D, 2,34
Octahedral 3-fold Cube Dy 2,4,6
4-fold Octahedron D, 2,46

The polyhedron has the symmetry of the pseudo-symmetry group, and is formed by joining points placed on the
axis of given order. The subgroup is a point-group that can generate the polyhedron from a single point placed at
some suitable position. {Only those cases are listed for which the subgroup differs from the pseudo-symmetry group.)
An cligomer approximating ane of the polyhedra in the third column could have, not the symmetry in the first
column, but that in the last. The projection symmetry shows the possible symmetry of its mic rographs.

e
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Table 7.3 Regular polyhedra that can be generated from oligomers at low resolution.

Group Cluster axis Possible polyhedron Projection symmetry
Tetrahedral 2-fold Octahedron 2,46

Tetrahedral 3-fold Tetrahedron 2,34

Octahedral 2-fold Cuboctahedron 2,4,6

Octahedral 3-fold Cube 2,46

Octahedral 4-fold Octahedron 2, 4,6

icosahedral 2-fold icosidodecahedron 2,610

Icosahedral 3-fold Dodecahedron 2,610

icosahedral 5-fold Icosahedron 2,6, 10

The cluster axis is a rotation axis of the polyhedron about which the subunits are supposed to cluster. If the clusters
are seen only as spheres, these spheres are arranged at the vertices of a polyhedron, the possible polyhedron in the
third column. (Good descriptions and ifiustrations of the polyhedra are provided in Cundy and Rollett (1961).) An
olignmer approximating one of the polyhedra in the third column could have the symmetry listed in the first column,
The projection symmetry shows the possible symmetry of its micrographs

projections. This is because the regular polyhedra of Table 7.3 show only a few types
of rotational symmetry in projection (listed in the last columns of Tables 7.2 and 7.3).
To illustrate these difficulties, suppose that a projection shows six-fold symmetry. It
could derive from polyhedra which imply any of the following symmetry groups: Dy, D,
(from Table 7.2); or tetrahedral, octahedral or icosahedral (from Table 7.3); as well as
its apparent symmetry, cyclic Cg.

Nevertheless, if these problems of interpretation are borne in mind, the determination
of point-group symmetry by clectron microscopy can be very useful, especially if it is
combined with other evidence (e.g. from molecular weights). The first stage must be the
estimation of rotational symmetry from projections (Section 7.4.6). If the overall
rotational symmetry cannot then be deduced, it might be found by a three-dimensional
reconstruction, or by one of the methods used for icosahedral virus particles (next two
sections).

(b} Highly symmetrical particles: the “common lines” method

Common lines. The “common lines” method (Crowther et al., 1970a, b; Crowther,
1971) was the first, and has been the most widely used, Fourier method for finding the
orientation of an isolated, highly symmetrical particle. In principle, the method could
determine the particle’s symmetry, but it was designed (and has been exclusively used)
for finding the orientation of a particle of known symmetry (ie. for finding the
transformation parameters (., w, x)).

We assume, as usual, that the image of a particle is approximately a two-dimensional
projection of its structure. From this projection, we can calculate a section of its
three-dimensional F.T.; the section plane (ABCD in Fig. 7.68) is oriented perpendicular
to the direction of projection. Suppose that the particie has a three-fold rotation axis
along the z-axis. The F.T. must possess the same rotational symmetry as the original
particle, with the same orientation of the symmetry axes. The transform in Fig. 7.68 will
consequently have a three-fold axis along its Z-axis (this is the direction along which
the reader views Fig. 7.68). Since all points related by 120° rotation about this axis have
identical values of the transform, the plane section A’B'C’D’ (Fig. 7.68), derived from
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Fig. 768 The “common-lines” method for determining the orientation of a particie’s rotation axes.
ABCD is a section of the F.T., calculated from one image. The three-fold axis (along the Z-axis, pointing
at the reader) generates from this two symmetry-related planes, of which only one (A’B°C’'D’) is shown.
Both planes have common values along the line (1, 2, 3) of their intersection.

ABCD by 120° rotation about Z, must contain an identical copy of that part of the
transform on ABCD. The planes ABCD and A’B’C’D’ intersect at the line marked 123.
Figure 7.69a shows the position of this line in the former plane, and Fig. 7.69b shows
its position in the latter. Since A’'B’C'D’ is a copy of ABCD, each plane must contain
the line 123 twice, i.e. once as in Fig. 7.692 and once as in Fig. 7.69b. Thus each plane
contains two copies of the line (Fig. 7.69c). Along these two copies of the line, the
transform has identical values on moving from points 1 to 2 to 3. These two copies of
the line are called “common lines” in the original transform section.

Calculating the common lines’ positions. The common lines must all pass through the
centre of the transform, since all are generated by the intersection of planes that pass
through that centre (Fig. 7.68). Moreover, it is clear from Figs 7.68 and 7.69 that, when
there is a single rotation axis, the system of common lines on a transform plane is related
by mirror symmetry about a line which is the projection of the rotation axis. When
there are several rotation axes, the projection of each rotation axis on the transform
plane will constitute a line of mirror symmetry for the system of common lines. Finally,
the lines can be calculated conveniently in the following way. Represent the first transform
plane by its normal n, passing through the centre of the transform. From this normal,
all the operations of the point-group generate new normals n,,...,ny, where N is the
order of the point-group. Now we calculate all the vector (cross) products

pj=n, Xn; (j=2,...,N) (55)
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Fig. 769 The planes ABCD (a) and A'B°C'D’ (b) of Fig. 7.67 laid flat. The common values lie along
two lines, shown in (c).

Each p; is perpendicular to n,, and therefore lies in the first transform plane; similarly,
it also lics in the jth transform plane. The only line common to both plancs is their
intersection, which is a common line. The vectors p; therefore define the directions of
the common lines in the first transform plane.*

Using common lines to find the particle orientation. The orientation of the common
lines depends on the mutual orientation of the intersecting planes ABCD and A'B'C'D’,
which depends on the orientation of the original plane ABCD with respect to the

*This method fails if the normal perpendicular or parallel to a rotation axis; the symmetry-related normals
generated by this axis will then yield vector cross-products that are either coincident or null. The former
situation corresponds to finding the rotation axis of a helix (Section 7.4.5(b)), and the latter to determining
the rotational symmetry of an image (Section 7.4.6).
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three-fold axis (Z-axis). Thus the orientation of the common lines depends on the
direction of projection with respect to the three-fold axis. (For example, the closer tha!
direction lies to the xy-plane, the more will the planes ABCD and A'B'C'D’ be paralle!
to the Z-axis, and the closer together will be the points marked 1 in Fig. 7.69c¢.) Therefore.
if the positions of the common lines were located in the transform section, one could
deduce the orientation of the particle with respect to its three-fold axis.

This fact can be used to find the particle orientation (relative to the viewing direction}
by the following search procedure. To begin with, we must choose (or guess) the particle’s
point-group symmetry. Then, for any trial viewing direction, the positions of the common
lines can be calculated, and the values of the observed transform compared at '
corresponding points along them. From this comparison, we calculate an error-function
that has a minimum when the trial viewing direction coincides with the one actually
used. The error-function used is of the “phase residual” type (Section 7.4.3(a)).

Two angles (w and y of Fig. 7.63) completely determine the mutual orientations of
the common lines. Having found them, a third angle () rotates the calculated particle
transform with respect to the common lines. Although many different combinations of
these three angies must be searched, the extent of the search can be reduced in two ways.
First, the two angles (w, x) specifying the viewing direction need be searched only over
an asymmetric unit of rotation space. Outside this region, the orientation of the
intersections of the planes defining the common lines (i.e. the system of planes similar
to those in Fig. 7.68) will be repeated again, and no new system of common lines will
be derived. The symmetry of rotation space is thus the same as the symmetry of the
particle, with the addition of a centre of symmetry (since the system of intersecting
planes has a centre of symmetry). Second, the extent of the search can be reduced still
further if the approximate orientation of the particle is clear {from the micrograph. This
situation usually applies in the case of negatively stained particles with icosahedral
symmetry.

However, while determining the particle’s orientation, it is also necessary to find its
centre (ie. Ax and Az). (The situation is much the same as in the case of rotationai
symmetry (Section 7.4.6).) Two coordinates are needed to specify this centre, so the
search must in principle be carried out over a total of five parameters. But the centre
of a highly symmetrical particle can usually be chosen by eye with sufficient accuracy
for preliminary analysis of the particle orientation. Alfter finding this (from a search over
the three angular parameters), the position of the centre can be refined by small
adjustments of its two coordinates, using as a criterion the same error-function that
determines the orientation. Thus, though the crror-function is strictly a function of five
parameters, the search can be started in a three-dimensional subspace (p. 230).

As we have seen, the error-function is calculated from transform values at corresponding
points along the common lines. Before starting this calculation, it is useful to divide the
transform into spherical shells. Then the error-function is found for each shell separately.

~ and becomes a function of transform radius. This is useful for the following reason. It

the resolution of the particle image is d A, the particle transform beyond 1/d Al
essentially noise, devoid of any precise symmetry. At such radii, the error-function mus:
be relatively large. So a plot of the error-function against transform radius (ie. particle
resolution) shows the degree of particle preservation at various resolutions (Fig. 7.70).
From this plot one can determine the resolution of the specimen. The best resolution
so far obtained is 25 A, for bushy stunt virus (Crowther et al., 1970a; Crowther, 1971}
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Fig. 7.70  The common-lines residual, for tomato bushy stunt virus, plotted as a function of resolution,
to show how well the particle’s symmetry is preserved {Crowther, 1971; reprinted with permission from
the Royal Society). B, F and H refer to different particles; H, with a high residual {90° indicates no
icosahedral correlation), is poorly preserved.

After the particle’s orientation and position have been refined, we have the lowest
value of the error-function. This value measures how well the particle fits the symmetry
originally assigned to it. If the error-function were normalized to take account of the
fact that the number of common lines depends on the order of the assumed symmetry
group, then the error-function could in principle be used to determine the rotational
symmetry of the particle.

(¢) Highly symmetrical particles: the method of functional expansions

The common lines method uses the F.T. values only at corresponding points along the
common lines. Determination of the particle orientation (or, perhaps, symmetry} thus
ignores other parts of the F.T., which may also contain relevant information. So perhaps
more reliable determinations may be possible by a method that makes use of the entire
F.T.

Such a method has been developed (Provencher and Vogel, 1983, 1988). Since it was
designed for the three-dimensional reconstruction of particles (not necessarily symmetrical)
from projection data, more details are given under Section 7.6.5.

7.5 IMAGE ENHANCEMENT

7.5.1  General principles

Image enhancement techniques generate, from the micrograph, an improved two-
dimensional picture. This can be of value in itself, but it is often just a stage in generating
a three-dimensional picture of the specimen (Section 7.6). Image enhancement is needed
in order to reverse, as far as possible, deficiencies arising from two causes: noise and

imaging defects.

(a) Noise

The most serious problem derives from the very high noise level in electron micrographs.
Before the fine structure of a particle can be revealed, we must first improve the

. L '
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signal-to-noise ratio in its neighbourhood. Such an increase in information content can
come only by taking information from other pictures of the same particle. Many different
(noisy) copies of the image, usually in the same micrograph, are thus averaged to yield
a single, less noisy, one.

First we must find the positions of the different copies; and methods have been
described, in the previous two sections, for doing this. Then simple averaging can give
us an unbiased estimate of the noise-free image. However, that might not be the most
efficient procedure. Averaging corresponds to repeating an experiment many times (i.e.
the many-image copies), and plotting all the results in a scatter diagram (i.e. the averaged
image). If there are enough points, this diagram will show both the average trend, and
also the average deviations from that trend. With fewer points, however, it is more
efficient to fit theoretical models to the data (e.g. by least-squares). In the case of
images, we have no “theory™, so the “models” must be quite general. Nevertheless their
number need not be very large. For it is limited by the resolution of the micrographs:
we use only those density-waves (Sections 7.2.2 and 7.2.3) whose spatial frequencies are
so low that they can be reliably determined. This approach leads to the important
Fourier filtering techniques (optical or computer). An alternative approach, that is likely
to find application, is based on the concept of maximum entropy (Section 7.5.3(d)).

(b) Imaging defects

In other fields of photography, where noise is a less serious problem, more complicated
ways are used to rearrange the information in a picture, in order to correct for imaging
errors. Blurring, for example, is equivalent to convolution with some simple function,
such as a line of density. In theory, de-blurring can be achieved by deconvolution, a
procedure (for which there are many algorithms) that processes the data from many
adjacent pixels. In practice, the improvement is limited by the picture noise. For blurring
redistributes the density information in ways that require very high accuracy to correct.
Noise, which limits this accuracy, prevents blurring from being completely reversible.
Thus blurring, like many physical processes, brings about some increase of entropy
(equivalent to a loss of information).

Since specimen drift can usually be avoided,* **blurring” in the case of electron
micrographs mostly takes the form of image aberrations, especially defocus. But
projection along the direction of view also has some of the formal properties of “blurring”.
Neither defect can be corrected satisfactorily from the data in one micrograph. This
irreversibility can be understood through the concept of “invisible functions”. Suppose
that we change the structure of the specimen by adding some density function to it.
Usually the addition will also change the recorded image, but this will not always be
the case. If, for example, the added function were such as to give a uniform projection
in the direction of view, then (whatever its three-dimensional distribution might be) it
would have no significant effect on the image. Let us call such a function an “invisible
function™.t After deducing the structure of the specimen, we could add to it any amount

* A possible exception is the situation with some low-temperature stages. Techniques for filtering micrographs
with translational or rotational blurring have been developed by Carragher et al. (1986).

tSee Rust and Burrus (1972). This concept is applicable to electron micrographs because the imaging process
is nearly linear.
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of any “invisible function”, without changing the experimental data on which our
deduction rests.

If we are ever to have an unambiguous specimen structure, we must somehow avoid
these invisible functions. There are three ways to do this. Some invisible functions can
be simply ignored. Thus functions with very high spatial frequencies are invisible because
of the limited resolution of the imaging process, but they are ignored since (by a familiar
convention) we represent the specimen as a smooth density distribution. Other invisible
functions can be eliminated because of extraneous information (e.g. they may lack the
assumed symmetry of the specimen, or they may extend outside its boundaries). Finally,
any remaining invisible functions must be eliminated experimentally. So we need new
micrographs, taken under new conditions for which the invisible functions are different.
And we need sufficient micrographs, so that no significant invisible functions are common
to them all. For example, to avoid the invisible functions that give uniform projections,
we record images of tilted specimens (DeRosier and Klug, 1968). Another class of invisible
functions is associated with defocus. At any given state of focus and astigmatism, there
will be a class of functions yielding an image that—though not exactly zero—is weaker
than the noise level of the micrograph. Such functions are, in practice, invisible. (Clearly,
the higher the noise level, the larger is this class.) Again, we need additional micrographs,
this time with different defocus (Schiske, 1968).

In general, therefore, “irreversible”™ blurrings of the image result from the existence
of significant invisible functions; but they can be eliminated by additional micrographs
with blurrings that are of a similar type, though different in detail. We discuss the
example of defocus in Section 7.5.3(b), and that of projection in Section 7.6.

7.5.2 Optical filtering
(a)  Principles

Fourier filtering has long been used in various ways to enhance ordinary photographs
(see, for example, the review by Birch, 1972). Successful applications to electron
microscopy (which are much more recent) have been restricted to structures with linear
periodicity (one- or two-dimensional). They have the effect of fitting to the (approximately
periodic) image a set of sine/cosine functions with the same periodicity. This fit is an
approximation since, to make it reliable, functions with too high a spatial frequency (i.e.
those beyond the “resolution” of the image) are omitted. This is accomplished by finding
the image’s F.T., and selecting only those parts that lie both on the reciprocal lattice
of the image’s periodic lattice, and within the circle defining the effective resolution of
the image. Then the best estimates for the amplitudes and phases of the corresponding
Fourier components are used to reconstruct a best-fit (“filtered™) image. (It is important
that the Fourier components should be chosen objectively from the F.T., and not varied
arbitrarily until the best-looking filtered image is obtained.)

This approach is implemented by two general methods. Optical filtering accomplishes
the Fourier transformation in an analogue fashion, with a lens. Only the reciprocal
lattice points are allowed to pass through a selective mask, and the filtered image is
obtained by a second Fourier transformation with another lens. However, it is not easy
to modify the phase of a Fourier component, nor to extract its amplitude at the exact
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Fig. 771 The right half of an optical diffractometer (Fig. 7.49), adapted for optical filtering. Selected
parts of the diffraction pattern are passed to the synthesis lens, which is positioned so that it could
form a real image of the micrograph. At the position where that image would be formed, we have the
filtered image.

position of the peak. Instead, portions of the transform around each reciprocal lattice
point are passed to the second lens; so the fillered image is not exactly periodic.
The second method, numerical Fourier filtering, is described in the next section (7.5.3).

(b} Apparatus for optical analogue filtering

Early micrograph enhancement techniques, before computers became powerful and
convenient, were almost exclusively analogue, and mostly based on the optical
diffractometer (Section 7.3.2(b)), following Klug and DeRosier (1966). The optical
diffractometer illustrated in Fig. 7.49 is easily adapted for filtering. The right hail of
the diffractometer, including the diffraction pattern, is shown in Fig. 7.71. We add a new
lens (the “synthesis” lens) just after the diffraction pattern. The focal length of this lens
is such that, if the micrograph on the left were illuminated with diffuse light, a real
(inverted) image would be formed (using rays such as those indicated by the broken
lines) on the extreme right of Fig. 7.71. This “filtered” image is made exclusively from
light that had previously formed the optical diffraction pattern. It is the F.T. of the
image’s F.T. If the optical diffraction pattern is modified or trimmed, the filtered image
will register the changes.

The arrangement shown in Fig. 7.7t is the simplest possible one (using just one lens
to make the diffraction pattern, and another to re-form the image). More complicated
arrangements are possible, and they can be “folded™ with mirrors (though it should be
noted that each reflection reverses the hand of the image).

The practice of optical filtering consists in constructing the correct mask, positioning
it accurately at the diffraction pattern, and recording the filtered image. If the mask is
transparent, the phases of the pattern will usually be changed. This is difficult to
accomplish in a reliable way, and yet any change in these phases profoundly affects the
filtered image. So it is easier to avoid phase artefacts by using an opaque mask containing
holes which pass selected parts of the optical diffraction pattern. Such a mask is an
amplitude filter in which the amount of light transmitted is not continuously variable,
but must be cither 0% or 100%.* (Since therc arc only two possible values for the
transmittance, it is known as a binary filter.) Despite their obvious limitations, binary
amplitude filters have proved very useful for processing electron micrographs. Technical
details are described in reviews (Markham, 1968; Johansen, 1975; Erickson et al., 1978}

* \_/ariable transmittance filters, suitable for broader diffraction spots, are fine gauzes (e.g. clectron microscop
grids); Klug and DeRosier (1966).



252 M. F. Moody

(c) Enhancing periodic features in the micrograph

General. The binary amplitude filter is useful for clarifying electron microscope images
if the structure of interest gives rise, in the optical diffraction p'fltte{n, to shar.p spots or
lines. A binary filter that transmits only those spots or lines will virtually ehml.nate, in
the filtered image, irrelevant structures from the original micrograph. .The e_tﬁcncncy of
this filtering process will be greatest when as much as possible of t.he dlffragtlon pattern
is removed, without touching the part that conveys the picture information. (h? that
case the averaging will cover the largest number of unit cells.). Now. all the picture
information is in the diffraction spots or lines, so the filtering efficiency is greatest when
these spots or lines have the smallest possible total area. They should therefc.)re b<.3 as
small and as few as possible. They will be small if the lattice is large and free of distortion;
they will be few if the unit cell is small. Thus efficient filtering is promoted by a large,
undistorted lattice with small unit cells. This implies that the number of unit cells in
the lattice is a maximum (which also gives the maximum redundancy). Obviously this
number is likely to be much greater with a two-dimensional repeat (as in a cell wall),
than with a one-dimensional one (as in a helix).

Superposed periodic structures. Image imperfectioqs are usually noise, but images of
superposed structures can also be removed by ﬁlterm.g‘ The superposgd structures can
even be periodic. However, filtering is interfered with if some of the diffraction spots of
the two periodic structures coincide. Such pairs of “common spots™ carlmot be separated
by optical filtering. They can be omitted only be restricting the resolutlo.n of the filtered
image. (Transmitting them with diminished strength is usually not satisfactory as the
phases will probably be wrong.)

Diffraction spots are unlikely to coincide exactly unless the superposed sheets have
the same structure. This occurs when a flat periodic sheet (e.g. a cell wall) is folded over
(Section 7.3.3(b)), and the diffraction pattern is approximately the superpositi(?n of two
mirror-related copies of the diffraction pattern of one sheet (Fig. 7.51 )- !f any diffraction
spots from the two copies coincide, the “upper” and “lowcr." d.xﬁ”ractlon. spots can ’be
regarded as belonging to a single, new lattice. This (fine) lattice is the remprocz'il lattice
of a large real lattice, the moiré pattern formed by the two sheets. If each umt.cell of
the moiré lattice contains u unit cells of the sheet, then there a.re'only u different
superpositions of unit cells with each other. When u is small, it is clea.r that the
superposition pattern does not contain enough data to calculate the gorFect image of a
unit cell, either by optical filtering or by any other technique. The coincidence of'spots
in the diffraction pattern is simply the way in which this limitation reveals itself in the
Fourier transform.

This problem arises particularly when the two sheets form the two surfaces of a
flattened cylinder, in which the subunits were originally arranged with helical symmetry.
That symmetry determines the mutual orientation of the lattice directions in the two
surfaces. In all flattened helices there must be a repeat vector along the equator (the
“circumferential vector™), otherwise the helix will have a scam. Remembering that the
reciprocal lattice has the shape of the real lattice rotated lhrough a righl-;ngle
(Fig. 7.21), this means that there will be two superposed spots on the mt?rldlan (Z-axis) of
the diffraction pattern (see, for example, Figs 7.53b, c). But optical filtering is nevertheless
possible. The two diffraction spots on the Z-axis are really the same spot, deriving from
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different sheets. (The Z-axis is the mirror-line relating the “upper” and “lower ™ diffraction
patterns.) In this case, therefore, it is satisfactory to halve the amplitude of the superposed
spots. Furthermore, the subunits sometimes aggregate to form different helices (as in
the case of polyheads of phage T4: Yanagida et al., 1970), which provide further data
for disentangling the contributions of the two surfaces.

A more serious problem arises if the flattened helix has an exact repeat. This causes '
coincidence of lattice points in the direction of the helix axis (just as the circumferential
vector causes their superposition in the perpendicular direction). These two independent
superpositions define the moiré lattice of the helix, and hence the resolution of the
filtered image. This restriction again expresses the fact that there is only a limited number
of different superpositions of the subunits of the two sheets. The larger the repeat distance
of the helix, the more different superposition patterns are available, and the higher the
resolution to which the image can be filtered. (We shall encounter a very similar situation
when we consider the problem of reconstructing the three-dimensional density distribution
of a helical particle; Section 7.6.3(c).

A further problem in filtering a flattened cylindrical (helical) particie arises from its
restricted width. This causes the spots to broaden in the equatorial direction, so that
they cannot always be separated cleanly from each other by optical filtering. Even when
they can, the filtering is still less efficient than in the case of large flat sheets, since it is
necessary to use larger mask apertures (slits instead of holes).

Despite the development of computer methods, analogue optical filtering can still be
a most uselul technique. However, the lattice should not be too distorted, so that the
variations in different parts of the filtered image do not obscure the average picture.
{Otherwise, numerical correlation methods will be needed to give a reliable average; see
Section 7.4.4 and p. 254.)

7.5.3 Numerical filtering

The numerical F.T. gives us, at each reciprocal lattice point, not only the amplitude but
also the phase. So we now have the possibility of modifying the phase. This permits new
kinds of filtering, e.g. to correct for imaging defects (Section 7.5.3(b)).

After correction, we have an amplitude and phase at every observed reciprocal lattice
point. These data are coefficients in a Fourier series, from which a periodic filtered image
is calculated. By sampling the F.T. at precise reciprocal lattice points, this “crystallographic”
method causes the filtered image to be the convolution of the original picture with its
periodic lattice. That convolution superposes infinitely many different copies of the
original picture, each copy being positioned at one of the points of the picture’'s lattice.
Such a superposition can be approximated by multiple photographic copying (Markham
et al., 1964; Horne and Markham, 1972). Analogue optical filtering, in which the mask
apertures arc of finite size, is equivalent to multiple photographic copying with variable
exposure times (Smith and Aebi, 1973).

(a)  Two-dimensional lattices

Averaging: perfect lattices. The basic principles of Fourier filtering are much the same,
whether it is done by numerical or by optical techniques. There are, however, certain
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differences, conditioned partly by the needs, and partly by the opportunities, of numerical
image processing.

We start by considering those differences imposed by its needs. The microdensitometer
(Section 7.4.2(a)) measures the transmittance (transmitted intensity/incident intensity)
at sampling points that are arranged on a regular lattice (the sampling lattice). This
causes two differences with optical filtering (Aebi et al,, 1973). First, computer filtering
can pre-process the transmittances to obtain numbers that are proportional to the
intensity of electrons at that point of the image. This is not possible with optical filtering,
in which non-linear effects can give rise to extra diffraction spots (which fit the reciprocal
moiré lattice, if two sheets are superposed.

The second difference is much more important. The F.F.T. is nccessarily calculated
on a lattice that fits the reciprocal of the densitometer’s sampling lattice. But that lattice
will generally bear no simple relationship to the lattice of the periodic structure in the
picture. Yet the F.T. values are required at the reciprocal lattice of the periodic structure.
Because these reciprocal lattices are usually incommensurate, we shall not have exactly
the values required for filtering. There are several ways to solve this problem. The filtering
mask can, as with analogue (optical) filtering, be large enough to enclose all the relevant
F.T. points. Alternatively, the original density data can be interpolated onto a new
sampling lattice that is commensurate with the lattice of the periodic structure.
{Interpolation methods are discussed in Section 7.6.4.) However, before any of these
methods are applied, the lattice parameters should be refined by a least-squares method.

For further technical details associated with calculating the F.T.s of “perfect” lattices,
see the detailed review by Amos et al. (1982).

Even though filtering is often merely an intermediate stage in three-dimensional
reconstruction, it can be useful by itself, provided there is significant information in a
two-dimensional image of the specimen. This holds, for example, for extremely thin
sections of complex lattice structures such as muscle (Reedy and Reedy, 1985). It also
holds for the details of subunit clustering in flattened helices, e.g. of “giant” bacteriophage
heads (Yanagida, 1977). But it even holds for some undistorted helices that might seem
to need three-dimensional reconstruction. In the tubular variants of papilloma-polyoma
viruses, optical filtering revealed that the unit is a pentamer, both in the more obvious
“pentamer” tubes (Kiselev and Klug, 1969) and (more surprisingly) in the “hexamer”
tubes (Baker et al., 1983). Filtering has also proved particularly useful for identifying
different structures through their capacity to bind specific macromolecules such as Fab
fragments. Since identification depends on the difference between iwo images, it is best
accomplished by numerical methods. Moreover, it is necessary to use statistical
techniques (Section 7.5.3(d)) to check the significance of the results.

Averaging: distorted lattices. Straightforward numerical Fourier filtering works
satisfactorily only if the periodic lattice is relatively undistorted. Otherwise, a correfation
method (Section 7.4.4) is more appropriate. If the distortion is continuous, the distortion
vector can be determined for each point. Next, using bilinear interpolation, the density
can be calculated at each point on an undistorted lattice. We then have a choice of
filtering method. We can simply average the densities of the different (corrected) unit
cells. Alternatively, we can use Fourier filtering, in which case we should calculate the
F.T. of the corrected (interpolated) density distribution, and then proceed as for perfect
lattices.
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In some cases, however, the lattice distortions may be accompanied by systematic
changes in the structure (ie. in the unit cell contents). Suppose, for example, that the
distortion is actually three-dimensional. The two components in the micrograph plane
give the two-dimensional distortion discussed in Section 7.4.4; but the third component
tilts the molecules and alters its projection. If such a micrograph is corrected for
two-dimensional distortion and then averaged, the average will have degraded resolution
through the incorporation of many slightly different projections. We need a way to
distinguish the different projections, so that only those of the same type are averaged
together.

A suitable technique has been developed by Frank et al. (1988a). The lattice is first
corrected for distortion by the method of Henderson et al. (1986) (see Section 7.4.4(b)).
Then small patches (20 x 20 unit cells) are averaged, and the resulting “ patch averages”
are subjected to correspondence analysis (Section 7.6.6{a)). This reveals the characteristic
image types present, indicates whether they are interconvertible by continuous movements,
and gives their locations in the corrected lattice. Such an approach is quite general but
(as we have seen in other cases) generality must be paid for by a reduced signal-to-noise
ratio. Perhaps, if the changes in appearance are caused by distortion-induced tilts, it
might be more efficient to express the two tilt angles as a simple function of the lattice
coordinates, and to determine that function by some minimization procedure.

{(b) Correcting for defocus and astigmatism

The aberration phase shift. . Numerical filtering makes it possible to correct for the state
of focus and astigmatism in the image (Chapter 4). If the specimen is of low contrast,
correction for imaging delects is simple enough to be performed by filtering (Erickson
and Klug, 1971; Unwin and Henderson, 1975).

Let us suppose that, in a perfectly focused and corrected electron microscope, the
electron wave at the image plane is {at a point specified by the vector x)

A(X) = Ag + AA(X)

Here A, is a strong, constant wave and AA(x) is a small, varying wave that carries all
the picture information. Simple Fourier imaging theory {Chapter 4; Goodman, 1968)
shows that the electron wave at the back focal plane of the objective lens* is

FT.[A(x)] = FT.[4,] + FT.[AA(X)]

Since A, is a constant, its F.T. is a peak at the origin, i.c. on the optical axis of the
microscope. Around that axis, at the back focal plane, is F.T.[A4(x)]. Thus the image,
and the amplitude distribution around the back focal plane, are (when suitably scaled)
simply F.T.s of each other.

Now suppose that the image has been changed by imaging defects, e.g. defocus or
-astigmatism. These can be supposed to affect the imaging process by changing the phases
at the back focal plane. Consider a point at an angle a at the back focal plane (where
@ is a vector, since the angle is measured in a particular direction). Then the phase
change is called the aberration phase shift x(a). Express « in terms of polar coordinates

* Strictly, this is at the reference sphere (Goodman, 1968 Born and Wolf. 1980).
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|&| and an azimuthal angle. x(a) can be developed as a power series in |a|, which ig
useful since |a| is very small in an electron microscope. Then the different coefficients
(which will be functions of the azimuthal angle) have different meanings. The coefficient
of |a] refers to a simple transiation of the image, and can be set at zero. The coefficient
of Ja|? determines the state of focus and astigmatism. The coefficient of ja|* determines
the aberration coma, caused by residual misalignment of the microscope, and now
realized to be significant at high resolution (Henderson et al., 1986). The coefficient of
Je|* concerns the spherical aberration of (mostly) the objective lens.

Correcting imaging defects: the general problem. Correcting image defects is simple in
principle. First we need to find F.T.[AA(x)] and the y(«) that applied when the
micrograph was taken. Then we subtract y(«) from the phase of F.T.[AA(x)], to obtain
the value of the F.T. under ideal imaging conditions. Finally, we inverse Fourier-
transform it to obtain the “perfect” image. The problem is to find F.T.[AA(x)] and
x(a) from the micrograph.

Start by considering F.T.[ AA(x)]. The micrograph records the probability distribution
of electrons, ie. the intensity of the electron wave function. This is

[A(X)]? = [A4, + AA(x)][AF + AA*(x)]
= [Aol? + AFAA(X) + AgAA*(x) + |AA(X)]?

Since we can choose the real axis to coincide with A, this is
A + A [AA(X) + AA*(x)] + |AA(x)}?
If the specimen has very low contrast, we can neglect the last term, obtaining
[A(x)|2 = AL + 24, Re [AA(x)]

We therefore face the problem that the micrograph gives us, not the required AA(x),
but only its real part (symbolized by “Re”).

Correcting imaging defects: pure phase objects. The solution is relatively simple if we
can make the further assumption that the specimen is a pure phase object. (Actually,
this is about 90 % true of a specimen composed entirely of light atoms, and about 60 %
true of one composed entirely of heavy atoms.) Making this assumption, the (h, k)
diffracted beam in the back focal plane will have the amplitude i| F(k, k)] exp [if(h, k)],
while the (—h, — k) diffracted beam will have the amplitude i| F(h, k)| exp [ —ip(h, k)].
(Here B(h, k)is the phase of the (h, k) reflection in the F.T. of the electron wave transmitted
by the specimen, and the amplitude is a pure imaginary number since the specimen is
supposed to be a weak pure phase object.) At the back focal plane, each beam will
receive an aberration phase shift y(h, k). For the most important aberrations (defocus,
astigmatism and sphcerical aberration). x(h, k) depends on an even power of |«f, i.c. of
{h* + k*)%. For these aberrations, y(h, k) = y{ —h, — k). Making this third assumption,
the diffracted bcams are

iexp Lix(h k)Y F(lk)exp [if(h,k)] and iexp[ix(h k)| F(h k)| exp[—if(h, k)]

,
’ - , LJ . s
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Together, they generate at the image a wave of amplitude
iexp [ix(h k)| F(h, k)| {exp [iB(h, k)] + exp [ —if(h, k)]}
= 2iexp [ix(h, k)]| F(h, k)| cos [ B(h, k)]
As we have seen, however, the micrograph preserves only the real part of this wave, i.c.
—2sin [x(h, k)] | F(h, k) cos [ B(h, k)]

—2sin [ x(h, k)] is called the “phase contrast transfer function”.

To correct for imaging defects in this simple case, we have only to divide the calculated
diffraction amplitudes by the phase contrast transfer function. This function can be
estimated from the Thon rings in the diffraction pattern (Thon, 1966; Chapter 4). Its
general shape, shown in Fig. 7.72, is (of course) mostly determined by the state of focus.
When the defocus is big enough to affect the image seriously, it changes the sign of the
outer diffraction spots. Division by the phase contrast transfer function restores the
correct sign—the most important correction. However, this division is difficult to
accomplish where the phase contrast transfer function is very small. Then we may
need to combine data from several different micrographs with different focal states
(Section 7.5.1(b)).

When our simplifying assumptions do not apply, the imaging correction is more
complex; see Erickson (1973).

(b) ~-=

N

Fig. 7.72  The phase contrast transfer function appropriate to a Philips EM300 operated at 100 kV. it is
plotted for two states of underfocus: (a) 1500 A; (b) 2500 A. (The first plot is adapted, and reprinted
with permission, from Progress in Biophysics and Molecular Biology, Volume 39, L.A. Amos, R. Henderson
and P. N. T. Unwin, “Three dimensional structure determination by electron microscopy”, Copyright
(1982), Pergamon Press PLC.) '
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(c) Structures with rotational symmetry

Fourier filtering applies, in principle, to rotational as well as to translational symmetry.
Since optical diflraction works only for translational symmetry, however, rotational
filtering must be performed by numerical techniques.

As usual, the first step is to find the symmetry; for rotational symmetry, this means
the order (N) of the rotation axis. That can be determined by the methods outlined in
Section 7.4.6. Those methods also give us the rotational Fourier components in either
real or reciprocal space (i.. either g,(r) or G,(R})). Of these two quantities, the G,(R)
would seem to be the more useful for rotational filtering. This is because they are easily
terminated at a value of R corresponding to the resolution of the particle; we can then
obtain a best-fit to density-waves in R at the same time as the rotational best-fit filtering.
That filtering is performed in essentially the same way as translational optical filtering.
Analogously to passing just the Fourier components corresponding to reciprocal lattice
points, we now accept only the G,(R) for which n is a multiple of N. And whereas
translational filtering eliminates all Fourier components whose spatial frequency exceed
the picture’s resolution, we now reject all multiples of n exceeding some upper limit m.
m is found by examining the rotational power spectrum (Fig. 7.67); it cotresponds to
the highest order of any peak above the noise level. Having chosen the range of R and
the required orders (n) of the rotational Fourier components G,{R), we substitute them
into Equation (40) to calculate the filtered image.

Rotational filtering has not proved quite as useful as conventional translational
filtering. Aggregates of subunits seldom have rotation axes of very high order; the largest
appears to be 17-fold, for the disc aggregate of tobacco mosaic virus protein (rotational
filtering: Crowther and Amos, 1971). This is far fewer than the number of unit cells in
a typical translational filtering, so the improvement in signal-to-noise ratio is more
modest. Nevertheless, even when the rotation axis is only six-fold (as with the T4
bacteriophage base-plate) filtering can yield sufficient improvement to reveal the location
of protein components removed by mutations (Crowther et al., 1977).

(d)  Staustical aspects ol filtering

Improvement and reliability of filtered images. As we have seen, filtering is roughly
equivalent to averaging. Obviously the improvement resulting from averaging is the
greater, the more images are averaged together. But exactly how big is the improvement
in the signal-to-noise ratio?

The improvement factor is easily derived if the micrograph noise is “additive noise”
(Section 7.3.3(a)), such as that caused by irregularities in the supporting film, or by
“fog”. In this case, the micrograph can be considered to be a perfect image to which
noise has been added. Then the “signal™ component of cach micrograph is the same,
so averaging n micrographs increases it by n. However, the “noise” components are
uncorrelated, so averaging n micrographs increases the noise by only \/ﬁ Consequently,
the signal-to-noise ratio is increased by n/(ﬁ) = ﬁ Alternatively, the micrograph
noise may be “multiplicative noise”, such as that caused by using a very low electron
dose, i.e. “shot noise”; then the electrons will have a Poisson distribution, which has a
standard deviation of \/(numbcr of electrons). (The noise from irregularities in the
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negative stain may fit this model approximately.) Averaging n micrographs muitiplies

‘the number of electrons by n, and therefore muitiplies the standard deviation by \/;

As before, the signal is multiplied by n, so the signal-to-noise ratio is increased by

n/(ﬁ) = \/;l We thus find the same ﬁ improvement in the signal-to-noise ratio, for
both major sources of noise.

The improvement in the filtered image depends on removing light that corresponds
to unwanted (e.g. noisy) features in the micrograph. Consequently, the improvement
can be assessed (Aebi et al., 1973; Smith et al., 1976) by determining the fraction of the
input light intensity that was lost by filtration. (When numerical filtration is used, one
calculates the “power”, a quantity proportional to the light intensity in an optical
diffraction pattern.) The improvement factor is the fraction of the input intensity or
power lost. This factor is used to assess the relative contributions of different kinds of
averaging, e.g. of translational versus rotational averaging for a two-dimensional crystal.
However, although a large power loss means that the micrograph has undergone a
substantial amount of filtering (and, hopefully, improvement), it also implies that the
micrograph was very noisy to begin with. Therefore power losses are most significant
when used to compare the filterings of micrographs of similar initial quality.

Before features in a filtered image can be interpreted, it is necessary to determine
their reliability. The variance o(x)? of the averaged density {p(x)> (at the point x in
the image) can be calculated from

a(x)? = (p(x)?) — {p(x))? (56)

If the averaging involves many different micrographs, the mean square density {p(x)*>
could be calculated by Fourier-transforming the variance-covariance matrix* of the
diffraction amplitudes:

(p(x)?) = ; };<F(h)><F(h')> exp { — 2mix - (h + h')} (57)

Having calculated the variance, the reliability can be found from Student’s t-test (Milligan
and Flicker, 1987). t(x) is calculated from

t(x) = [<p(x)>] /n/a(x) (58)

where n is the number of images averaged. t(x) can be converted into probabilities using
tables or various approximations (see, for example, Chapter 26 of Abramowitz and
Stegun, 1964, et seq.). Contours of this probability can then be plotted (Trachtenberg
and DeRosier, 1987). Unfortunately, there is some arbitrariness deriving from which
optical density level is shown to be zero. (This might be the average density of the
particle’s perimeter, as in “floating” —see Section 7.4.2(b).) This arbitrariness does not
apply, however, when difference images are calculated, since the “zero™ level is the same
for both images. Difference images are particularly susceptible to noise (since, although
the densities are subtracted, their variances are added), so statistical tests are necessary
in order to decide whether features in the difference map are significant.

*The errors in different Fourier coefficients may be largely uncorrelated. in which case this matrix would be
nearly diagonal. so that Equation (57) could be approximately replaced by a single summation.

[
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Maximumentropy. The maximum entropy method has not yet been used for processing
electron micrographs; but such applications are to be expected soon, because of its value
in de-blurring photographs, generating tomographic images from medical scanners, etc.
(see Gull and Skilling, 1984, for a brief review). Moreover, although some aspects of the
method remain unacceptable to many statisticians, the success of its practical applications
suggests that, at least, it contains an important core of truth.

Maximum entropy (Jaynes, 1979; Skilling, 1984) is a development of probability
theory originally applied to statistical mechanics. Probability, though often defined in terms
of the frequency of an event in an infinite number of trials, is more usefully taken to
represent our current state of knowledge. In estimating the probability that a given horse
will win a race, for example, infinite series are irrelevant. If no information is available
about the horses, then it is arbitrary not to give them equal odds. When some information
is acquired, the odds should still remain as unbiased as is consistent with this information.
According to the maximum entropy principle, this “most unbiased” distribution of
probabilities is the one that can be realized in the greatest number of ways, consistent
with the available information. That is, it is the distribution with the maximum entropy.

What is the relevance of this to de-blurring an image? Suppose, for instance, we know
nothing about a micrograph except the total number (n) of electrons that were used to
form it. Lacking any other knowledge, we have no restrictions on how these n electrons
are to be distributed among the pixels. However, they would maximize their entropy
by distributing themselves uniformly. In general, we need to assign a probability p;, that
an electron would have reached the ith pixel. The maximum entropy method finds all
the p; by maximizing the picture’s entropy S = — Zp; log (p;), subject to constraints
imposed by the blurred image data. Thus maximum entropy is another optimization
technique, and makes correspondingly heavy demands on computer time.

7.6 THREE-DIMENSIONAL RECONSTRUCTION FROM IMAGES

The ultimate purpose of microscopy is to find the three-dimensional structure of the
specimen. Starting from electron micrographs, that goal can be approached in a relatively
straightforward manner, because of two factors. First, the severe aberrations of all
electron lenses make it necessary to restrict their apertures to an angle very much
smaller than that used in light microscopy. The depth of field is therefore considerable
at high magnifications. All levels of an ordinary, thin, untilted biological specimen are
simultaneously in focus, at least to within their effective resolution (usually no better
than 15 A). Second, many specimens for electron microscopy have very low contrast.
This is most obviously true for unstained specimens, but it also applies to those areas
of stained specimens that give high-resolution images. For the relevant changes in
specimen contrast (either amplitude or phase) are then so small that they are effectively
a linear function of the specimen mass thickness.

Because of these two factors, the image approximates to a projection of the density
of scattering matter in the object. But there are substantial problems in interpreting
these projections, even when we are presented with a range of views that is suflicient to
lead to a unique solution. Everyday life presents us with few situations where we sce
the projection of an object, so that our visual system has had little need to evolve or
acquire much facility in interpreting such data. Consequently, the intuitive methods that
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L were first tried with high-resolution micrographs encountered difficulties. It is instructive
to look briefly at thesc, before discussing their present solutions. ’

7.6.1 Limitations of intuitive methods
(a) Stereo viewing

The most natural method uses our visual system, which is designed to perform a kind
of three-dimensional reconstruction through stereoscopic vision. This works quite well
in interpreting the stereo-micrographs of metal-shadowed surfaces, and other clear
structures, at relatively low magnification (King, 1981). However, high-magnification
stereo images of structures, showing detail near the microscope’s resolution limit, produce
an unsatisfactory and confusing eflect. Partly this is because the finest detail, consisting
mostly of imaging artifacts, is often uncorrelated in the two images. But it is easily shown
that stereo-vision is certain to fail for many objects. For, if the depth coordinates of any
three-dimensional structure could be found from one pair of stereo-photographs alone,
then two projections of the structure would suffice to give the coordinates of all its
points. But this is not possible if two or more isolated points lie on any plane perpendicular
to the tilt axis. This is illustrated in Fig. 7.73: the different arrangements of points in
(a) and (b) give the same pair of projections.

Though theoretically impossible, stereoscopic vision nevertheless works well in
ordinary circumstances because it is used for interpreting a very restricted class of objects.
These arc groups of surfaces, like stage scenery, cach possessing both continuity and
texture. Because of the continuity, the depth coordinate changes only slowly and
continuously on any given surface. Because each surface also has a texture, the two
images of that surface can be brought into register, by a process akin to finding the
X.CF., in order to determine their depth coordinates. The shadowed surfaces given by

Fig. 773 The limitations of stereo-viewing as a technique for finding the depth coordinates of isolated
points. The broken lines show the projections seen by the two eyes. {a) and (b) represent alternative
interpretations of these projections, both satisfying them.
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uniform density bounded by a smooth surface. Now we have only to determine the
shape of that surface, which needs all the fewer parameters to specify, since the model’s
resolution has been lowered.

By these two drastic simplifications of the model, the problem is no longer one of
determining a density distribution from projections (a problem to be considered in morc
detail in Sections 7.6.2 and 7.6.3). Instead, it is one of determining a surface from its
shadows. Whether or not this can be done depends on the clarity of the micrographs.
which will obviously be poorer in the case of smaller particles. If the “shadows” arc
clear, is the problem soluble? It would seem so, provided that the surface contains no
hollows (which can never affect the shadows, and are therefore “invisible functions™, as
defined in Section 7.5.1(a)). Granted this condition, the convex surface could be found
as follows. Back-projection (see Section 7.6.3 below) from each shadow generates a
prism, and the siperposed prisms of all the back-projected shadows contain the required
surface within their common volume. We can estimate this surface from the smoothest
approximation to that volume. (However, published models do sometimes contain
concave arcas, ¢.g. where three or more buiges join: but these seem to be required by
the low resolution of the model, which imposes smoothness constraints on the surface.)

Through techniques such as these, the model-building technique has been able to

obtain useful and reliable structural details of the main features of the ribosome (Lake,
1976).

7.6.2 Reconstruction from projections: the back-projection method

An electron micrograph is approximately a projection of the specimen in the direction
of the electron beam. So the problem of finding the specimen structure [rom micrographs
is (nearly) equivalent to the mathematical problem of reconstructing a density distribution
from its projections. Model-building guesses a density distribution and tests it by
calculating the projections. Projections are casily calculated from a density distribution:
but how should we set about calculating a density distribution directly from its
projections?

* Since the whole problem stems from the microscope’s large depth of field, the most
direct solution would calculate the image to be cxpected from a microscope with a
smaller depth of field. The depth of field is determined by the lens aperture. For consider
the image formed by a lens of large aperture. Its depth of field is smali; but, if the lens
is covered by a card with a pinhole, the depth of field becomes very large: an object at
any distance gives an equally sharp (pinhole) image. This is true irrespective of where
the pinhole is placed, but different positions of the pinhole give different pinhole images
(Fig. 7.74). When the entire lens aperture is used, the image is the sum of all the diffcrent
pinhole images (ignoring diffraction effects). Figure 7.74 shows how, with three
simultaneous pinholes, the three diffcrent pinholc images from any object combine exactly
at only one distance. Objects (A, B or C) at different distances from the fens give pinhole
images that superposce exactly at different ficld depths (A' B, C).

The narrow depth of ficld of a wide-aperture lens is thus a consequence of combining
many different pinholc images. Each shows a projection of the scene from the viewpoint
of the corresponding pinhole. So the wide-aperture lens is an analoguc device for
recombining many different projections to yield a three-dimensional image. It should
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Fig. 7.74 A wide aperture lens has a narrow depth of field for each point of the object, and hgnce
preserves depth information about the object’s points (A, B, C)in the image (A", B, C'). The lens achieves
this by superposing a series of different pinhole images; three such images are isolated by the mask
covering the left of the lens.

be quite feasible to simulate this process using different electron micrograph projections.
But one feature of each pinhole image is unnecessary: the divergence of the rays as they
leave the pinhole. This divergence could be neglected if the image being reconstructed
were very small. So the reconstruction could just as well be accomplished with parallel
rays. That would give us the “back-projection” method.

Since this method is a calculation rather than an instrument, it can avoid the limited
range of projections admitted by ordinary lenscs (even by wide-aperture light-microscqpe
objectives). So this calculation can produce a threc-dimensional image that is superior
to that of any light microscope. Nevertheless it is imperfect. This can be appreciated
by considering the image it would give of a point object, werc this reconstructed from
projections over 180° (2x steradians). The incoming rays converging onto the image of
the point would arrive from the surface of a hemisphere, and the outgoing rays would
diverge to fill the other hemisphere. Thus the point-image would be surrounded by a
multitude of radiating lines, like the lines of force around a point charge. The average
density of these lines would vary inversely as the distance from the point-image
(1/r dependence). Every point of an object would be imaged in the same way, so the
reconstructed image would (apart from magnification) be the object convoluted with a
spherically symmetric 1 /r density distribution (the “point spread function™). The relation
of the reconstruction to the object would be that of an electrical or gravitational potential
distribution to the assemblage of point charges or masses.

Are these imperfections serious? The point-spread function will not obscure the image
of a point very much. Furthermore, a line of density will, after convolution, remain a
line (though with a more diffuse cross-section). The images of distant points will be so
biurred that they causc only slight interference. This explains the success of the light
microscope in surveying the three-dimensional structure of thick Golgi sections
containing a few, dark, widely separated cell processes. But more diffuse objects (such
as most specimens for high-resolution electron microscopy) are poorly reconstructed.

Thus we see that even an optically perfect electron microscope would not give the
best possible images, and some form of image processing is inescapable for determining
the three-dimensional structure of the object. But it is quite easy to correct for the
imperfections of back-projection. In the case of a tilt-series, the sections in Fourier space
fan out, so that their separation increases proportionately to the radius R from their
common intersection. Thus, for a back-projected image, the density in Fourier space
drops off as 1/R; so multiplying by R can restore the correct density. This “ R-weighted
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back-projection” method (Gilbert, 1972) is the most common method in computer-
assisted tomography (Herman, 1980; Natterer, 1986). It is also the method of choice
when reconstructing the three-dimensional structure of particles from tilt-series. It has
been used, for example, with negatively-stained clathrin cages ( Vigers et al., 1986), and
with sectioned ribo-nucleoprotein particles (Skoglund and Daneholt, 1986; Skoglund
et al., 1986).

There are many other ways of solving the projection equations, e.g. by iteration, by
matrix inversion or by eigenfunction expansions. (See the books on computer-assisted
tomography listed above.) However, in electron microscopy, the main alternative to
R-weighted back-projection, as might be expected, also depends on Fourier transforms.

7.6.3 Reconstruction from projections: the Fourier method
(a)  General principles

Fourier transform theory (Section 7.2.2) provides a simple approach to finding the
three-dimensional structure of an object from its projections. We can calculate the
required three-dimensional structure if we know its three-dimensional transform
{Section 7.2.2(c)). But we can obtain this threc-dimensional transform by using the
projection rule (Section 7.2.2(d)). This connects the transform of the three-dimensional
object with the transforms of its projections. These two-dimensional transforms are planc
sections through the required three-dimensional transform. Each planc scction passes
through the centre of that transform, and is oriented parallel to the plane of the projection.

Thus the projection rule changes the problem of reconstructing the three-dimensional
object from its projections into the intuitively much simpler problem of reconstructing
a different three-dimensional structure (the transform) from its sections. This simpler
problem is not however completely free of difficulties. The two-dimensional sections are
infinitely thin, so it might appear impossible to construct a three-dimensional transform
from any finite number of them. In fact it is possible, but only because the transform
we are secking has a texture composed of smoothly changing “regions”, all of very
roughly the same size and shape. This texture allows the transform to be interpolated
from its values sampled at the points of some (appropriately fine) lattice. All the necessary
sampled values of the three-dimensional transform can therefore be determined from
two-dimensional sections, provided these are nowhere too far apart. Exactly how far
apart they can be depends on the size and shape of the “regions™ of the transform. And
these, in turn, depend on the size and shape of the object whose three-dimensional
transform we are attempting to reconstruct. This question needs more detailed
consideration.

(b) How many projections are needed to reach a desired resolution?

If there is too big a gap between the two-dimensional sections, it must be narrowed by
including additional sections, i.e. by obtaining additional projections. The effect of this
additional information can be seen by considering a simple case. Suppose that all the
projections are obtained by rotating the object, through equal angular increments, about
a single axis (a “tilt series™). A section through the transform, cut perpendicular to this
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axis, will look something like Fig. 7.75. This section contains numbered lines showing
the positions of the transform sections obtained from projections. The separation between
the lines naturally increases with the distance from the transform centre. So long as this
separation is smaller than the size of the transform “regions”, we have sufficient data
to interpolate the transform. Beyond a certain radius, however, the separation of the
lines becomes too great. and the transform can no longer be determined. Thus we can
always determine the transform out to some maximum radius (determined by the size
of the “regions” and the number of sections). Our calculation of the object is thereby
restricted to using only that part of the transform within this radius. The size of this
radius limits the resolution of our reconstruction, in which the finest spacing is roughly

the reciprocal of this radius.

‘ This. approach allows us to obtain a useful rule of thumb relating the greatest
dimension of the object (D), and the number of projections (n), to the resolution of the

reconstruction (d) (Klug, 1971). For the maximum radius to which the transform can
be determined is 1/d (Fig. 7.75). At this radius, the separation of the section planes
(corresponding to projections) is approximately the radius (= 1/d) times the angle
between the planes ( = n/n). That separation must equal the size of a transform “region”,
which is the reciprocal of the object size (D). (This follows from the sampling theorem;
see Section 7.2.2(h).) So we have n/(nd) = 1/D, showing that the resolution of the

Fig. 7.75 Diagram for deducing the rule connecting the particle diameter (1) and the number of
equally-spaced tilt images (n), with the resolution of the three-dimensional reconstruction (d). (See text.)
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reconstruction d = nD/n. Alternatively, the number (1) of projections needed to reach
some desired resolution (d) in the reconstruction is n = nD/d.

This formula applies only if the tilt-series are at equal angles. In practice, this can be
difficult to achieve. When a grid is tilted by more than about 60°, various factors {(e.g.
a strong defocus gradicnt) start to limit the value of the images. A tilt-serics is therefore
likely to have a wedge-shaped gap, though it might be possible to fill this if the particle
has rotational symmetry (with the rotation axis along the plane of the grid). The missing
region’s shape depends on the tiiting scheme used. For conical tilt-series (Section 7.6.6(b)),
the missing region fills a cone; indeed, the problem of the missing region is usually
referred to as the “missing cone™. Various schemes have been proposed for restoring
the missing data, but there is really no alternative to measuring them, through particle
symmetry, or through making specimens where the particles have different orientations.
However, if the missing region is really a cone of rather small semi-angle, its volume
can be quite a small fraction of the volume of the sphere (of radius equal to the reciprocal
of the resolution). Consequently, the imperfection resulting from omission of the cone
data may be tolerable.

(c) Two ways to obtain the projections

We still have the problem of obtaining these projections. There are two general ways
of doing this. The direct way is to use a goniomeler stage to obtain a “tilt-series” of
micrographs. There are, however, severe imaging problems at high angles of tilt, so that
part of the tilt-series will be missing. Morcover, radiation damage in the specimen
accumulates with each successive micrograph, and soon reaches unacceptable levels.
New specimens will be needed to complete the tilt-series. Despite these problems,
tilt-series have usually given the best three-dimensional reconstructions. That is because
tilting is the only method that will obtain the necessary projections from two-dimensional
crystals. These contain more unit cells than any other type of electron microscope
specimen, and consequently yield the highest signal-to-noise ratio. The techniques for
analysing tilt-series have been extensively reviewed (Fuller, 1981; Amos et al., 1982),
and need not be described here.

The second general method avoids (at a price) the problems of tilt-series. A particle’s
rotational symmetry can give, in one picture, many different views of the repeating unit.
This means that a single projection immediately yields the appearance of a number of
symmetry-related projections, and several projections are obtained for the price of one.
What sort of symmetry is best for this? Rotations (rather than translations) cause the
object’s projection to be repeated from different directions, so the symmetry group must
contain either rotations or screw axes (which combine a rotation with a translation).
In looking for symmetries that contain these, the plane- and space-groups are poor
choices, since they restrict the highest permissible order of a rotation or screw axis
to 6. We are left with point-groups or helical line-groups (Scction 7.2.1). The largest
number of different rotations in any useful point-group is present in the icosahedral
group (order = 60; this group is of considerable practical importance, since it applies
to most small viruses). But there are even more different rotations in those cases of
helical symmetry where the repeat distance is long. (All the asymmetric units within a
helix repeat must have different orientations, since any two units with identical
orientations can differ only by a translation, i.e. the helix repeat.)
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ig. 7.76 Two stereo pairs illustrating how, for objects with helical or icosahedral symmetry, one
sojection is sufficient to convey depth information. (View the left image with the left eye, etc.) (a)
rom one view of a helical particle (top part of Fig. 7.28), a group of 10 annuli has been |solatgd, but
he groups on the left and right differ by a displacement of one annulus. This generates stereo images
secause of the rotation by the twist angle Q (about 17°) relating the displaced groups. (b) One view
f an icosahedron (down a two-fold axis), and containing part of an inscribed dodecahedron, is repeated
vith a mirror plane. This generates a stereo image because the two copies represent views with a
otation of 36°. (Try fusing the two dark triangles.)

Thus the most favourable particle symmetries for three-dimensional image reconstruction
ire either icosahedral symmetry, or helical symmetry with a long repeat and (ideally)
 parallel rotation axis as well. This can be illustrated as follows. Since one view of the
yarticle has the same appearance as does a view taken from a nearby direction, one
sicture of a structure with either symmetry can be repeated exactly in such a way that
he two (identical) images form a stero pair (Fig. 7.76).

How is this particle symmetry utilized by the Fourier method? The high rotational
ymmetry of the particle is present also in the transform (rotation rule, Section 7.2.2(d)).
Jne view gives us, not merely one section of the transform, but all the symmetry-related
ections. In favourable cases, those sections go far towards filling up the transform.

d) Using the transform sections

Siven the data, in the form of a tilt-series of the image of a symmetrical particle, there
‘emain several tasks.

First, the transform must be calculated and corrected for defocus and distortions.
Jorrecting distortions has been considered in Sections 7.4.4 (lattices) and 7.4.5(d)
helices). Correcting for defocus, etc. (ie. for the phase contrast transfer function
ppropriate to the micrograph) was outlined in Section 7.5.3(b). This is a particularly
mportant correction if high resolution (10 A or better) is to be attained. Extra
nformation, from electron or X-ray diffraction, concerning the F.T. amplitudes helps
o refine this correction.
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By such means, a resolution of around 6-7 A is obtainable from (sufficiently ordered)
plane crystals, and better than 10 A has recently been obtained from helical tobacco
mosaic virus particles (Jeng et al.,, 1989). Though far short of atomic resolution, this
can reveal the orientation of a-helices and other broad features of the domain structure.
To approach atomic resolution, many new problems must be solved. Among these is
the need to correct the phase contrast transfer function for coma (Henderson et al., 1986).

The second task is to find the exact orientation of the projections (i.e. of the transform
sections). For a tilt-series, the angles are given by the goniometer stage (or they can be
deduced from the Thon rings given by the regions at the four corners of the micrograph),
but particles used in different tilt-series must have their mutual orientations determined.
For a symmetrical particle, this means determining the orientation of its symmetry axes
(see Section 7.4(b),(c)). Each different particle orientation gives us a different section
of the particle’s transform.

The third task is to estimate this transform. We need its values at the points of a
regular lattice, so that we can calculate an undistorted inverse; but very few of the desired
lattice points will lie exactly on one of the observed transform sections. This problem
receives detailed discussion in the next section (7.6.4).

Finally, the particle density must be calculated, and displayed; a few comments about
display are added in Section 7.6.8(b).

7.6.4 Finding the three-dimensional F.T. from sections
(a) Reverse interpolation

To calculate the particle’s density, we need its F.T. We shall invert this by an F.F.T.
routine, obtaining (from this Fourier series) a periodic density distribution—copies of
the particle arranged on a three-dimensional lattice. Neighbouring copies of the particle
should not overlap; this implies that the F.T. must be sampled at a fine three-dimensional
reciprocal lattice, whose size is prescribed by a three-dimensional version of the sampling
theorem (Section 7.2.2(h)). Although we need the F.T. at these lattice points, we have
experimental values for it only on certain central sections. It would seem, therefore, that
we must calculate the values at the lattice points by some kind of interpolation. In effect,
the sections present us with tabulated values of the F.T., at unequal intervals (and
without differences). Although this is not a favourable situation for interpolation, there
exist applicable methods (such as Aitken’s method: Acton, 1970).

The difficulty with this approach to find the F.T. is that we cannot easily tell how
accurate the results are. Obviously the accuracy will depend on the positions of our
transform sections, but exactly how do we estimate it? How are we to be sure that we
have enough section data to get a reliable particle density? It turns out (Crowther
et al., 1970b) that such questions can be answered more satisfactorily if we consider the
reverse of our present problem. If we had found what we arc now looking for (i.c. the
values of the F.T. sampled at the lattice), then we couid calculate our experimental data
(ie. F.T. values on the sections). For the lattice-sampled F.T. values suffice, by the
sampling theorem, to calculate the F.T. anywhere (including at our experimental points
on the sections). This calculation is an interpolation from data at equal intervals, and
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it is quite reliable. Since, therefore, the reverse problem is soluble through interpolation,
the original problem itself should be soluble by the reverse operation, i.e. by “reverse

interpolation”.
(b) A simple example

Exactly how this works is best appreciated from an example. Suppose we are trying to
determine a one-dimensional F.T.; we need a set of equally spaced sampled values that
we shall refer to as “determining values”. These should be distinguished from the
experimental F.T. values, from which we are trying to deduce them. To simplify the
example, we suppose that the F.T. is symmetric about the origin (because the
corresponding picture has a two-fold axis), and that the resolution of the picture is so
low that only two “defining values™ are required to reconstruct its F.T. If we knew these
values, the reconstruction could be achieved as in Fig. 7.77a. The unit of X is the
reciprocal of the picture’s width, and the defining values (shown as vertical arrows) lie
at exact mulitiples of these units, Each arrow-tip defines a sinc-function (Section 7.2.2(e))
with nodes where the other arrows must be positioned. To reconstruct the F.T., we
simply add together all these sinc-functions, obtaining the curve in Fig. 7.77b. However,
we do not yet know the “defining values”, but only the experimental ones.

How much information docs a knowledge of just one experimental value give us?
The answer is shown in Fig. 7.77b and c. The heights of the required defining values
are F(0) and F(1) [ = F(—1)], so these are the axes of Fig. 7.77c. Knowledge of any
experimental value allows us to plot a straight line on this diagram. If the experimental
value were at the origin (i.e. point A in Fig. 7.77b), we should know F(0) exactly, but
have no information about F(1); so the corresponding line in Fig. 7.77c is vertical.
Similarly, if the experimental value were at X = 1.0 (point D in Fig. 7.77b), we should
know F(1), so line D in Fig. 7.77c is horizontal. Other points (B, C, E) in Fig. 7.77b
give straight lines with appropriate gradients in Fig. 7.77c. The position of each point
determines the gradient of the corresponding line. However, the line is not fixed
completely until one of its intercepts is also known; this is found from the experimental
value of the F.T. All the lines of Fig. 7.77c, if their experimental values are correctly
measured, must intersect at one point, whose F(0) and F(1) coordinates give us the
“defining values™ from which the F.T. can be reconstructed.

In practice, of coursc, the experimental values will contain errors, which will affect
their magnitudes rather than their positions. Consequently, although we shall still know
the gradients of the lines accurately (from the positions of the experimental values),
there will be errors in their intercepts (from the magnitudes). Instead of a single line,
each experimental value now gives us a pair of parallel lines separated by the expected
error. If we try to calculate F(0) and F(1) from two such lines, we shall encounter the
situation shown in Fig. 7.77d. The intersection of the two sets of parallel lines gives us
an error ellipse. (All points on this ellipse have the same expected error.) We see that
the error is much greater in one direction than in another. These directions are simply
the directions of the ellipse’s axes. Thus the information contained in the error ellipse
can be more briefly summarized by a pair of perpendicular error bars, tilted to lie parallel
to the ellipse’s axes (Fig. 7.77¢).
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Fig. 777 A series of diagrams to explain how an extremely simple F.T. can be deduced from two
experimental sampled values, and how the accuracy depends on their positions. (a) The F.T. can be
reconstructed from three defining values, F(— 1), F{0) and F(1); but only two values are needed here,
as F(—1) = F(1). (b) The F.T. is sampled at different points (A, B, C, D, E). (¢} The information concerning
F(0) and F(1) which is derived from each of these experimental values. Lines A, ... refer to the
corresponding points in (b). The correct values of F(0} and F(1) are obtained at the intersection of all
the lines. (d) Trying to reconstruct the F.T. from two experimental values, X = 0.5 (point B in (a)), and
X = 0.95 (a point between C and D in (a)). Errors in measuring the F.T. at these points lead to an ellipse
of uncertainty in determining F(0) and F(1). (e) The ellipse of uncertainty can be replaced by its axes,

which are error bars.

(c)  Mathematics of reverse interpolation

How would the calculations of the previous section be programmed for a computer? In
this section, we continue to suppose that the F.T. is one-dimensional. (Three-dimensional
F.T.s pose the additional problem of sampling schemes, discussed in the next section.)
However, the one-dimensional case is not only a simplification. It is of practical
importance in three-dimensional reconstruction from two-dimensional lattices, where
the F.T. consists of lines of continuous amplitude positioned at the reciprocal lattice
points; reconstructing the F.T. along such lines involves one-dimensional reversc
interpolation: Amos et al., 1982; Henderson et al.. 1986.)
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We start with the formulation of Section 7.6.4(a), that each experimental value coulq
be calculated from the (as yet undetermined) defining values, by using an interpolation
formula. This formula may be based on the sampling theorem (Section 7.2.2(h)) and
use sinc-functions, or it may use other interpolation methods and functions. In almost
all cases it will express the interpolation as a convolution. Let the defining values be F
at X =jAX (j=0,+1,+2,...,+J) Let the experimental values be G(X,), where
k=1,...,K; and let the interpolation function be g(X), which will depend on the
interpolation interval AX. Then we have, by the convolution Equation (6),

G, =G(X,) = J‘w {ZFjé(u —jAX)}q(X,‘ — u)du

— o

(X, —JAX)F; = Z%Fj (59)
i j

Thus, if all the experimental values were viewed as a vector G, we could calculate them
from the matrix equation

G =gF (60)
Our problem is to reverse this, i.e. to calculate the defining values vector from the matrix
q and the vector G. We cannot simply use the reciprocal matrix, as g is not square; it
has K rows and J columns. Moreover, straightforward matrix inversion would tell us
nothing about the reliability of the vector F. If the matrix q were square, however, the
reliability of its inverse could be found from the eigenvalue spectrum of the inverse
matrix; so we would diagonalize q. This is excluded since q is not square, but there is
a decomposition of a rectangular matrix that corresponds to diagonalization. This is
called a “singular value decomposition” (usually given the abbreviation SVD: Lawson
and Hanson, 1974, and Chapter 2 of Press et al., 1987, give explanations and programs
for this generally useful technique). As part of the decomposition, SVD gives the
eigenvalues of q. Those eigenvalues below a critical value are set to zero, which avoids
the large errors associated with inverting a near-singular matrix. {The use of SVD for
exactly this sort of least-squares fit is described in Chapter 14 of Press et al., 1987.) In
the case of our reverse interpolation problem, additional transform sections should then
be added, until the smallest eigenvalues become large enough. However, matters are a
little more complicated since the matrix q is, in general, complex. Nevertheless, it is
surprising that SVD has not been applied to our problem. Instead, a closely related
eigenvalue method is used (Crowther et al., 1970a,b). The matrix q"q is formed. It is
square, symmetric and real. Its eigenvalues are the squares of the corresponding
eigenvalues of q (as is easily seen by multiplying the SVD expressions for ¢" and q).
However, these can still tell us when we have sufficient transform section data to make
the solution reliable. Moreover we can calculate, from the eigenvalue spectrum, estimates
for the errors in the “determining values™ of the F.T., and hence in the calculated particle
density. (See Crowther et al., 1970b; or, for the errors in SVD, Chapter 14 of Press et al.,
1987.)

(d) Sampling schemes

Hitherto we have supposed that we have only a one-dimensional F.T. to reconstruct.
However, a three-dimensional density reconstruction obviously needs a three-dimensional

.
=
i

7. Image Analysis of Electron Mic rographs 273

F.T. In principle, nothing changes with the extra dimensions; the sampling theorem still
applies (using three-dimensional sinc-functions, or—if a non-rectangular lattice is
used—the F.T.s of Voronoi polyhedra, obtainable by Laue transformation: Hosemann
and Bagchi, 1962). In practice, however, the number of “determining values” is very
greatly increased, so that the eigenvalue analysis of the matrix q becomes quite lengthy.
Because of the relative slowness of computers during the years when these methods were
developed, special F.T. sampling techniques were invented to shorten the calculations;
and these will continue to be useful, until array processors and super-computers become
easily available.

The problem hardly exists for helical particles, where the F.T. consists of discrete thin
layer-planes (Section 7.2.3(b)). Unless some of the layer-planes interfere, the F.T. on
each plane is determined by its value along any line that is in the layer-plane, and also
intersects the Z-axis. (See Section 7.2.3(b) and Equation (19).) In this case, there is
only one Bessel function, so the interpolation problem actually disappears; the calculated
F.T. on each layer-line can be taken to define G,(R, Z) (Equation (20)). If, however,
some layer-planes should interfere, then there will be several different Bessel functions.
So we shall have to find several different G,(R, Z)s, each with a different value of n.
(The values of n will be available through the (n, Z) plot; Sections 7.2.3(c) and 7.34.)
To find these G,(R, Z)s, the layer-plane is divided into concentric annuli, centred on
the Z-axis and of regularly increasing radii. Along each annulus, we now have the sort
of one-dimensional reverse interpolation problem discussed in the previous section; the
only difference lies in the use of G,(R, Z) as interpolation functions.

Cylindrical polar coordinates have also been used for reconstructing the F.T.s of
particles with point-group symmetry (Crowther et al., 1970b), in order to simplify the
computations. However, there are now no discrete layer-planes; Z is a continuous
variable which must be discretized for the purpose of evaluating the Fourier integral.
Z is usually sampled at equal increments which are spaced somewhat more finely than
the reciprocal of the particle diameter. On these closely-spaced Z-planes, the F.T. is
further sampled on annuli of the sort used for helical F.T.s. If the point-group has an
N-fold axis, this is positioned along the Z-axis and each G,(R, Z) has its n equal to a
multiple of N. This procedure has also been used for higher point-groups, especially the
icosahedral group, although that group cannot be expressed directly in the least-squares
equations. In this case, it would appear to be more satisfactory to use the method of
functional expansion (next section).

7.6.5 Reconstruction from projections: functional expansions
(@) Functions appropriate to point-group symmelry

Most of the techniques surveyed in this chapter are based on a representation of particle
structure as the sum of a (relatively small) number of density-functions. The simplest
of these are the familiar trigonometric functions (sine and cosine). By using them,
we have the Fourier transform (Section 7.2.2), and the Fourier projection-section
reconstruction method (Section 7.6.3). Though quite general, it is most appropriate when
the structure is crystalline, as the translational repeats of a crystal match those of the




274 M. F. Moody

trigonometrical functions. If the particle has any form of rotational symmetry, then other
functiops are more convenient. (“Convenience” means needing fewer functions to
approximate, to a given accuracy, any structure with this symmetry.) The same functions
can also be used (like the trigonometric functions) for 3-dimensional reconstruction
(Crowther et al., 1972).

A structure with one axis of rotational (or screw) symmetry is best represented with
cylindrical polar coordinates (Fig. 7.48). As the structure is periodic in ¢, it is appropriate
to use a Fourier series in this coordinate. (With helical structures, the Fourier series
couples ¢ and z; see Section 7.2.3(j).) The particle cannot be periodic in the radial
coordinate r, so a quite different set of functions must be used here. Extensive application
to helical structures has made the Bessel functions (Section 7.2.3(j)) familiar. However,
other (and perhaps superior) functions could be used (Zeitler, 1974; Smith and Aebi’
1974), ’

When particles have point-group symmetry with more than one rotation axis, the
spherical polar coordinate system (Fig. 7.78) is more convenient. All the rotational
periodicity is associated with ¢ and 0. Every particle is periodic in ¢, so that a Fourier
series is again the most appropriate in this coordinate. But the Fourier series is now
coupled with functions that depend on 0, giving the weli-known “spherical harmonics”
(described in almost any textbook on mathematical physics or quantum mechanics).
Convenient formulae exist for computing them, and also for transforming them when
the spherical coordinate system is rotated.

The spherical harmonics describe the angular variation of the wave functions of the
hydrogen atom. Through this, their characteristic symmetries have become familiar:
spherical (s), cubic (p), etc. Combinations of them can generate other symmetries; this
too is familiar from the “hybridization” of s- and p-orbitals to give tetrahedral sp’
orbitals. Only certain combinations will yield any particular symmetry. Thus, when using
these harmonics to represent the angular features of a particle’s structure, the symmetry
shows up through restrictions on the functions used. (This minimizes the number of
functions needed, adding to the convenience of the method.) The restrictions, as in the

case of helical symmetry, take the form of “selection rules” (see Finch and Holmes’s
(1967) review for the case of icosahedral symmetry).

As with helices, we need special non-periodic density-functions to represent the density
in the radial direction. Various choices are possible. For example, X-ray scattering theory
uses the “spherical Bessel” functions (Abramowitz and Stegun, 1964, et seq., provide
tables and formulae for these and:other relevant functions). These have also been used

Fig. 7.78  Spherical coordinate system, defining the variables 0, ¢ and r.
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in an ambitious effort to reconstruct particle structures from extremely noisy micrographs
of disoriented particles (Kam, 1980; Kam and Gafni, 1985).

(b) Reconstruction by series expansion

This general approach has been implemented by Provencher and Vogel (1983, 1988) as
an alternative to the common-lines technique. They use spherical harmonics for the
angular components of the particle density, but choose Hermite functions for the radial
component. {Hermite functions have the advantage of being almost unchanged by
Fourier transformation; the Gaussian distribution—see Fig. 7.18—1is the simplest of
them.)

Since the particle is three-dimensional, the coefficients of the expansion must depend
on three (integer) variables. These coefficients, which define the particle’s structure,
correspond to its F.T.; our task is to use projection data to determine them. If we knew
them, then the projected particle density could be calculated from a series, which would
also involve the appropriate density-functions and the rotations needed to define the
particle’s orientation. Such an equation, which essentially allows the projection to be
calculated from the particle density-distribution and orientation, needs to be inverted.
As it stands, this is impossible, since a three-dimensional distribution cannot generally
be found from one projection. With sufficient projections, however, the inversion of the
whole set of equations becomes possible in principle.

Nevertheless there are technical problems. The inversion involves a multidimensional
integral over the density-distributions of each projection. To reduce the computation
to a manageable size, these density-distributions are first “compressed” by Fourier
transformation, etc. Of course, the inversion cannot be effected without knowing all the
particle orientations, and we have yet to find them. If we knew them, we could calculate
the particle’s density-distribution and, from it, a theoretical estimate for each experimental
projection. The agreement between theory and experiment can be measured by a variance,
which will reach a minimum value when the correct particle orientations are chosen.
Consequently, we can find these orientations by minimizing the variance.

Besides these techniques, and the usual procedures for finding the position/orientation
of each particle’s image in the plane of the micrograph (Section 7.4.3) and for correcting
for the state of focus (Section 7.5.3(b)), the method employs statistical tests both for the
resolution limit and for the distribution of errors in the reconstruction. It has been
applied to 50S ribosomal subunits (unsymmetrical particles) and to the icosahedral virus
capsids of tomato bushy stunt (TBSV) and Semliki forest (SFV) viruses (Vogel et al,
1986; Vogel and Provencher, 1988). The best test is provided by TBSV, which has been
previously reconstructed by the common-lines technique, and whose structure has been
determined by X-ray crystallography. Both comparisons yield good agreement: the latter
confirms the reliability of the method; the former indicates the similarity of the results
obtained by the two reconstruction methods (and both methods also find the same
resolution, 25 A, for TBSV micrographs). But the conclusions concerning SFV were
disputed by Fuller (1987), who reconstructed the closely related Sindbis virus using a
modification of the common-lines method (Section 7.4.7(b)). (The modifications correct
for lack of independence in the common-lincs data and improve convergence when
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determining the orientation.) It is to be hoped that the source of this discrepancy wil
be found, so that both techniques can be used with confidence.

7.6.6 Reconstruction from projections of isolated unsymmetrical particles

Isolated unsymmetrical particles pose a special problem, since there is no symmetry to
help in finding the position and orientation of the particle {(Section 7.4). Unless the
specimen permits all the exposures necessary when coliecting tilt-series data, we may
be forced to interpret single micrograph images. An unsymmetrical particle gives
projections with many different appearances, which are present as a jumble in its
micrographs. The first step towards finding its structure is to sort this jumble into a
gallery of characteristic views.

(a) Characteristic views

Visual selection. Any classification into characteristic views must start by selecting the
clearest of the images, and making some preliminary allowance for artifact in them.
Established distortion phenomena may well be present: the shrinkage of negative stain
can flatten and. anisotropically contract small particles embedded in pools of stain,
stretch particles in thin films of stain spanning holes in the supporting grid, and flatten
particles between a carbon film sandwich. Clues to the particle shape can emerge from
the general spatial relations between the objects in a micrograph—which particles are
superposed on, or leaning against, other particles, and which are probably lying flat.
When all such factors have been taken into account, it may be possible to classify the
images into several characteristic projections (accumulating a “gallery” of micrographs
for each), and perhaps to form some initial views about their relative orientations.

Correspondence analysis. However, classifying particle images is a subjective process.
Objective, statistical, methods are preferable. General classification methods have been
developed by statisticians under the names “multivariate statistical analysis” or
“classification” (see, e.g., Gordon, 1981). From these, one technique has been extensively
applied to the classification on unsymmetrical particle images (van Heel and Frank,
1981; Frank and van Heel, 1982). This technique, correspondence analysis (Greenacre,
1984), is unfortunately both mathematical and complicated. For details of its applications,
readers are referred to the review by Frank er al. (1988b); or (for a well-illustrated
introductory review) to Bretaudiére and Frank (1986). Here it is only possible to give
a brief account of how the technique tackles the classification problem.

To begin with, the particle images must be clear enough, not only for recognition,
but also for orientation and matching. Then, by the methods discussed in Section 7.4,
we find, for cach image, the transformation parameters that will bring it to a standard
position. When in that standard position, every image is scanned in exactly the same
way. Thus each image gives a string of pixels, such that the corresponding pixels of
different strings refer to corresponding parts of the particle tmages. All our data can
now be collected into a rectangular array of pixel densities. Each row is the scanned
image of a different particle; each column is the set of corresponding pixels from the
same part of each particle. This rectangular array, alter scaling by division by the total
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pixel density, is subjected to an eigenvalue analysis (presumably along very similar lines
to SVD; see Section 7.6.4(c)). For each eigenvalue, a corresponding “eigen-image” can
be calculated. The size of the eigenvalue gives the relative contribution of its eigen-image
to the total set of particle images. )

The situation is roughly analogous to Fourier analysis of a noisy lattice (Section
7.2.2). There, the size of the Fourier component (corresponding to eigenvalue) indicates
the relative contribution of the appropriate density-wave (corresponding to eigen-image)
in the original data. In Fourier analysis, when the “size” of the Fourier component (i.c.
the amplitude at the corresponding reciprocal lattice point) falls below the noise level,
nothing is gained by including the corresponding density-wave in the filtered image;
and we therefore exclude all Fourier components beyond a certain spatial frequency
(ic. beyond a certain resolution). Similarly, in correspondence analysis, eigenvalues
below a certain cut-off value are ignored. Only the largest eigenvalues (in practice, about
the first eight) are considered statistically significant; these contain the lowest-resolution
information.

The ( ~ eight) acceptable eigenvalues, and their corresponding eigen-images, define
significant “factors” in the particle images. Each particle image can be represented as
a linear combination of the eigen-images, and the coeficients (which can be calculated)
show the contribution of that “factor™ to the particular particle image. For each particle,
the set of eight coefficients constitute the coordinates of a point in eight-dimensional
space (“factor space™). After each particle has had its lincar combination coefficients
calculated, there will be a point in factor space for that particle. The total set of points
constitutes a “cloud” whose distribution conveys information about the types of particle
image present in the micrographs. To assess this “cloud”, two-dimensional projections
of the eight-dimensional space are plotted. Such a projection shows the distribution of
all particle images with respect to the two chosen “factors”. If the “cloud™ shows two
scparate concentrations in the projection, this indicates that there are two distinct classes
of particle. The particle image typical of each cluster is calculated and examined. Two
such images might, for example, be nearly mirror-images; this would suggest that the
particles are attaching by opposite surfaces. On the other hand, the “cloud” may form
a continuous band without any local concentrations; this would indicate that particle
images can vary continuously with respect to these factors, perhaps as a consequence
of different orientations about some preferred axis. In some cases this can be confirmed
by tilting experiments (e.g. the “O” and “R” images of negatively-stained ribosomes;
Verschoor et al, 1986). The local concentrations of points—*“clusters”—may be
connected with each other in ways that relate the (random) particle images to the
three-dimensional structure of the particle. Attempts are therefore being made, by various
statistical techniques, to classify these clusters into “super-clusters”, etc., so as to construct
a tree-like hierarchy.

Before correspondence analysis can be performed, the particle images must be aligned
accurately so that, after they have been scanned, the Ist, 2nd, etc. pixels of different
lmages all correspond as nearly as possible. This requirement restricts the technique to
lmages that are very similar-— perhaps identical. After analysis, a single cluster of points
in factor-space would confirm that they are indeed identical, and they could then be
averaged with confidence. Two distinct clusters, on the other hand, would imply two
classes of particle image, and averaging could then proceed with each class separately;
the class members would be identified by the positions of the corresponding points in
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factor-space. Such applications make correspondence analysis a technique of image
enhancement.

However, it is discussed here, as a technique of three-dimensional reconstruction,
because much of the variation in particle image is the consequence of particle orientation,
Correspondence analysis can provide some objective information about the types of
orientation present. For example, two clusters of points might indicate two attachment
surfaces. On the other hand, elongated particles might always lie with the long axis in
the plane of the grid, but with all possible rotations about that axis; then the points in
factor space would (if the images permitted correspondence analysis) all cluster around
a single closed curve. However, as a technique contributing to three-dimensional
reconstruction, correspondence analysis seems to suffer under two disadvantages. First,
different particle orientations must often yield images that are so different that the image
alignment step can easily fail. In such a case, the images subjected to analysis may need
previous visual sorting. Second, correspondence analysis is a general technique that
makes no special assumptions about the images to be classified. This is a strength, in
that no a priori assumptions are built into the analysis. But it can also be a weakness
when analysing particle orientations, since it omits the common features present in
images that are all projections of the same solid. We turn now to the general problem
of reconstructing the three-dimensional structure from images of isolated, unsymmetrical
particles.

(b) Determining the particle orientation

Experimental limitations. If many different projections are obtained, along known
directions, from the same solid structure, then it is straightforward to reconstruct that
structure by (for example) the back-projection method (Section 7.6.2) or the Fourier
method (Section 7.6.3). Unfortunately, the necessary experimental data are difficult or
impossible to obtain, for two reasons. The first is that the preparation procedure distorts
the particles. The distortion is usually correlated with the position of the supporting
film, so that particles with different orientations have their structures distorted in different
directions. The second reason is that radiation damage causes significant image
degradation in even one exposure. Multiple exposures, necessary to obtain different
views of the same particle, impose correspondingly greater image degradation. Radiation
damage can be minimized in two ways, but each carries a penalty. Negatively stained
preparations are somewhat more resistant than ice-embedded preparations, but cause
more particle distortion. The other way to reduce radiation damage is to reduce the
exposure; but the reduction necessary to eliminate damage leaves the “image” with so
few electrons that the particle orientation is virtually impossible to determine. The effect
of these limitations is to reduce the resolution of the reconstructions, and also to leave
some uncertainty about possible distortions in them. The limitations also lead to 2
choice of strategy for collecting the images (i.e. the projection data); each strategy poses
different problems in determining the orientation of the projection direction.

Obtaining and recombining projection data. The different strategies for collecting image
data can be classified according to the number of exposures exacted from each particle.
Easies! to analyse are the images of a single particle tilted through angles that are known
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(e.g. from a goniometer stage), so that we know the orientations of all the F.T. sections.
The only remaining problem is to find the position of the particle’s centre in each image,
so that all F.T. sections will have their phases calculated relative to a common origin.
This translational alignment can be performed by finding the X.C.F. of images with
similar orientations (Hoppe and Tietz, 1986). (This approach has been used to find the
structure of a 508 ribosomal subunit; Oettl et al,, 1983; Hoppe et al., 1986.) But it is
probably more accurate 1o use colloidal gold particles in the micrograph as reference
points (Skoglund et al., 1986).

At the other extreme, radiation damage may need to be reduced to the minimum, so
that only one exposure is possible. The nature of the projection data obtainable from
this exposure will depend on the particle shape. Suppose, for example, that the particle
is elongated and lies with its long axis in the plane of the grid, but has no other preferred
orientation. The different particles in a micrograph will then provide a random tilt-series,
with the projection direction rotating about the long axis. (Let us refer to this situation
as a “random one-axis tilt-series™.) However, many types of particle (like most objects
placed on a table) come (o rest in one of a smalil number of orientations. In some cases,
there are (as with a coin) only two stable orientations, giving essentially the same
projection if the grid is untilted. If, however, the grid is tiited through (say) 50°, a wide
range of projections is obtainable (“random conical-tilt-series™). For each image then
gives a section of the F.T. on a plane tilted 50° relative to the grid-plane normal. And,
since all the F.T. section-planes are (like the particles) rotated randomly about the
grid-plane normal, we can sampie all of the F.T., except for the portion within a cone
of semi-angle 40° ( = 90°-50°).

How shall we perform the three-dimensional reconstruction, i.c. how shall we orient
the random F.T. sections? For each image, we shall have to find the correct translation
{as with the conventional tilt-series). But we shall also need an orientation angle: with
the random one-axis tilt-series, that angle is the rotation about the unique axis; with
the random conical tilt-series, it is the rotation about the grid normal. If all the projections
were very clear and undistorted, the whole problem would seem to be soluble in principle.
For the F.T. sections could be rotated and their amplitudes compared pairwise until a
unique angular sequence was obtained. Converting the angular sequence into numerical
rotations would be more difficult, but might be approximately soluble by using the
criterion that the “chunks™ of F.T. amplitude must have roughly similar sizes and shapes
(because of the sampling theorem). Finally, the translations could be estimated from
the centres of mass, and refined by bringing the phases of adjacent F.T. sections into
harmony.

Presumably, however, such a scheme is chimerical when the images are noisy and
distorted projections. Then more data are needed to render the problem soluble. A
method has been developed and applied to the three-dimensional reconstruction of
ribosomal subunits (Carazo et al., 1988: Frank et al, 1988b, c: Verschoor et al., 1989).
Two exposures are obtained from a grid; the first, when the grid is tilted (giving a
random conicai-tilt-series); the second, when it is in the untilted position. The first
exposure, which is less degraded by radiation damage, yields the projection data actually
used in the reconstruction. The second exposure helps to establish the orientation angle
for each particle (and hence of the corresponding F.T. section).

The orientation of particles in random tilt-series could be determined either by
orienting the section within the F.T., or by correlating the particle images directly. The
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latter procedure was developed by Guckenberger (1982), and has been adapted for the
random conical-tilt-series by Carazo and Frank (1988).

7.6.7 Reconstruction of sectioned symmetric structures

(a) Deficiencies of images of sections

Finding structures from projections is a relatively new development in electron
microscopy. The traditional approach is to cut thin sections of complicated structures,
However, this technique does not always solve the problem. A section of finite thickness
degrades the resolution (to something approaching the section thickness), because the
entire contents of the section are projected onto the image. When the structure of interest
is much smaller than the section thickness, additional data are necessary to reconstruct
it from this projection.

Obviously, sections can be tilted, and the micrographs taken at different tilts can be
used for three-dimensional reconstruction by one of the methods described in Sections
7.6.2-7.6.6. For example, sections of isolated particles have been reconstructed (Skoglund
and Daneholt, 1986; Skoglund et al., 1986) using the R-weighted back-projection method
(Section 7.6.2). On the other hand, sections showing a two-dimensional lattice would
be better reconstructed by the Fourier method (Section 7.6.3-7.6.4; see the review by
Amos et al., 1982). This approach has been used to reconstruct the structure of the
M-band of fish muscle (Luther and Crowther, 1984).

However, reconstructions from sectioned material face the problem that the plastic
embedding material is much more radiation-sensitive than negative stain. The exposure
necessary to take one micrograph can thin the section to 50-80 % of its original thickness,
depending on the embedding plastic (Bennett, 1974). (Along with the thinning, there is
also some shrinkage in the plane of the grid, but this is relatively small, and its effects
can be corrected.) The magnitude of this thinning has stimulated the development of
methods for finding the three-dimensional structure from just one untilted micrograph.

The problem is that, with only one untilted micrograph, there are many “invisible
functions” (Section 7.5.1(b)): any density function whose projection is uniform may be
added to the derived structure, without changing the micrograph. Invisible functions
can be restricted only by having additional data in the same micrograph: the specimen
must be symmetrical. Since the highest symmetry order involves translations, we should
expect most success iniwo cases: one-dimensional repeating structures (which, in general,
are helices), and two-dimensional lattices. Sectioned helices were reconstructed by Lake
and Slayter (1972), and sectioned two-dimensional lattices by Crowther and Luther
(1984).

In each case, the images consist of the original structure modified by two consecutive
operations. First, we have only a section of it; that is, its density distribution has been
multiplied by a “section-function™ that is unity within the section, and zero outside.
Second, the resulting density distribution has been projected perpendicular to the section
plane. Both operations must be reversed before the original density distribution can be
obtained; but these reversals are not of equal difficulty. The more difficult reversal is
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the first operation in the case of helices, and the second in the case of two-dimensional
lattices.

(b) Helices

The reconstruction of a helical structure from one projection is fairly straightforward
(Sections 7.6.3(c), 7.6.4(d)), provided the helix repeat is long. For, in the case, the F.T.
is confined to layer-planes on which its amplitude has circular symmetry and its phase
rotates by some number of complete revolutions, that number being the order of the
layer-plane (Section 7.2.3(b)). After sectioning, the structure has been multiplied by a
“section-function” (unity within the section, zero outside); so the helical F.T. has been
convoluted with the section-function’s F.T. Consider the case where the section-plane
is parallel to the helix axis. Then the section-function’s F.T. is a “spike” perpendicular
to the helix axis. Convolution with such a “spike” keeps all the layer-planes intact, and
merely redistributes the density within them. This spoils the F.T.’s circular symmetry;
but the very simplicity of that symmetry, and the unaltered layer-plane arrangement,
make deconvolution a practical operation. The deconvolution integral was converted
into a sum, i.c. a matrix equation, which was solved by methods very similar to those
discussed in Section 7.6.4(c). However, there is a further complication. Although the
form of the section-function’s F.T. is known (the “spike” is a sinc-function), the details
depend on the exact positions of the section surfaces, which have yet to be determined.
Therefore trial section-functions are tested and judged by the quality of the deconvoluted
helical F.T. (Lake, 1972).

(c) Two-dimensional lattices

The problems were different with the two-dimensional lattice structure. Such a structure,
lacking any rotational symmetry axis (except perhaps a two-fold axis) within the lattice
plane, is impossible to reconstruct from only one projection. In this case, therefore, the
section-function is not a hindrance, but the factor that makes reconstruction possible.
Instead, it is the projection along the section thickness that needs to be reversed. This
projection can be viewed as a convolution (with a projection-function, a line perpendicular
to the section plane), so reversal again involves deconvolution. Unlike the situation with
helices, however, the deconvolution is now in real space. Two deconvolution procedures
were tried (Crowther, 1984). The first used F.T.s to convert the convolution into
multiplication, so that deconvolution involves division by the F.T. of the projection-
function. That F.T. is a sinc-function, whose zeroes frustrate the attempted division and
limit the extent of the deconvolution. The second deconvolution procedure (like Lake’s)
converted the integral into a sum, rather as in the “reverse interpolation” of Section 7.6.4.
Thereafter, the solution followed closely that of Section 7.6.4(c). A matrix equation
was obtained, in which the matrix is ill-conditioned (this is the way in which the matrix
equation also limits the extent of the deconvolution). However, instead of using SVD,
Crowther calculated the square, symmetric matrix product. Its cigenvalue spectrum
indicated the exact limits of the deconvolution, and the corresponding eigenvalues showed
how the reliability of features varied inversely with their detail. Finally, as in the case
_of sectioned helices, the section function had to be refined by means of the criterion that
it should give the best deconvolution.
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7.6.8 Reliability and display of structures

(a) Reliability

Quantitative measures of reliability are most important when interpreting the structures
produced by three-dimensional reconstruction. This is because the structures have no
in-built test of their reliability, such as the quality of an electron-density map in protein
crystallography. On the other hand, three-dimensional structures are meaningful in
relation to biochemical data, so there is a real danger of misinterpretation if they are
unreliable.

All the considerations affecting the reliability of filtered images (Section 7.5.3(d))
apply also in the case of three-dimensional constructs. Thus averaging increases the
signal-to-noise ratio, and is consequently a most important factor in three-dimensional
reconstruction. This is why most of the successful work has employed specimens with
lattice or helical symmetry, or else has used particles whose images were so clear (e.g.
through intrinsic symmetry) that they could be aligned accurately for averaging. The
most reliable way to estimate the errors is to repeat the reconstruction several times,
using different data, and to calculate from the variability of the results some statistical
measure of the error. Thus the original data set is partitioned into a reasonable number
of subsets, and the calculated densities used to find the standard deviation and (via
Student’s t) the probability of that density, as explained in Section 7.5.3(d). It would
be very instructive (though perhaps depressing) if two structures were displayed, one at
a contour level of | standard deviation above, and the other below, the mean density.

However, it is useful if errors can also be assessed during the course of the calculation.
Presumably this can be done through a comparison of the processed data subsets at
each stage. However, this is not always necessary. It can be predicted, in advance of the
calculation, how the errors in the data will be increased or reduced during the calculation,
as a consequence of the positions of the sampling sections of the F.T. This can be done
roughly by rules of thumb (for an equi-angular tilt-series, see Section 7.6.3(b)). It can
be done more precisely by examining the eigenvalue spectrum obtained during the
least-squares reverse interpolation (Sections 7.6.4(b), (c)).

One of the most insidious potential sources of error is the programming mistake
(“bug™). Three-dimensional reconstruction programs are quite complex, with several
different steps, so it is not easy to avoid errors. Although the obvious ones demand
correction, the programmer may not notice more subtle errors, e.g. in weighting factors
or in the handedness of the calculated structure. The best way to test them would be
to project the calculated structure, giving pseudo-images, and then to see il the program
reconstructs them correctly. (Of course, the correctness of the projection program would
also need testing!) Instead of this, the projections calculated from the final structure are
sometimes compared with those obtained experimentally. But this is less satisfactory,
since it is diflicult to make satislactory comparisons between such images by eye.

(b) Display of three-dimensional structures
After calculating a three-dimensional structure, we shall wish to represent it for

publication or further analysis. Now the three-dimensional structure is a continuous
function of spatial position. It is sometimes published as a series of contour maps; but,
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though these can be useful to clarify specific points, they give no clear impression of the
overall shape. For the human visual system cannot perceive such a complicated function
as a three-dimensional object. Instead, it perceives such objects by their reflecting surfaces.
We saw earlier (Section 7.6.1(b)) that this limitation causes model-builders to make
their structures akin to sculptures. Thus, although the computational limitations of
old-fashioned model-building can be circumvented, its display limitations are immoveable.
Consequently we must convert our continuous three-dimensional density distribution
into a sculptural model. The common procedure is to plot sections at short intervals of
the z-coordinate, cut out sheets along some chosen contour level on each section, and
stack the sheets to form a model. Alternatively, there are computer programs that
calculate the surface at some chosen contour level and display it on a graphics terminal.
Some of these use “wire netting” (“chicken-wire™) representations of the surface, but
more recent programs suitable for raster-graphics systems give fairly realistic images of
the contour surface.
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NOTE ADDED IN PROOF

Image analysis of electron micrographs of bacteriorhodopsin sheets (Section 7.4.4(b))
has recently yielded an interpretable atomic modet (Henderson, R., Baldwin, J. M.,
Ceska, T. A., Zemlin, F., Beckmann, E. and Downing, K. H. (1990), J. Mol. Biol. 213,
899-929). Under sufficiently favourable conditions, therefore, the methods reviewed in
this chapter can provide an alternative to protein crystallography and multi-dimensional
nuclear magnetic resonance.
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