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Transfer of Image Information
in the Electron Microscope

F. A. LEnz

Institut fiivr Angewandte Physik, Universitét Tiibingen - Tiibingen, Germany

1. General theory.

The purpose of the electron microscope as that of any other optical o
electron optical imaging device is to transmit information about propertie
of an object to an image. Therefore, we may consider it as an informatio:
channel and use some of the concepts and methods of information theory t«
describe the imaging properties of an electron microscope. In order t
illustrate some of the basic concepts, let us start with the transfer o
a signal which is a function of one variable only. An example is the transmis.
sion of an electrical signal along a telephone line. In this case, the signa
may be a voltage or current, and the variable on which it depends is time
The input signal S)(¢) which is entered into the transmission line on the inpus
end gives rise to an output signal S,(+) at the output end of the line. If thc
transmission line is any good, the receiver at the output end should be able
to conclude from the output signal S;() he is receiving on at least some of
the information contained in the input signal So(#). In the case of an imaging
device the input and output signals depend on at least two variables x and ;
if an object surface is imaged to an image surface. x and y may stand for
co-ordinates in these surfaces. If three-dimensional information on the object
is to be transmitted, the input and output signals are functions of three
variables. Using vector denotation, an input signal Sy(r,) is fed into the trans-
mission system at the object (input), and an output signal Sy(ry) is received
at the image (output). If the imaging device is any good, the receiver at the
output end should be able to conclude from the output signal S;(r) (the
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image) on at least some of the information contained in the input signal Sy(r,).
If the transmission system is free of noise, the output signal S, will depend
only on the input signal S, and on nothing else. Noise does not have to be
audible: In the case of the electron microscope it means the source of any
part of the output signal S, which is not due to the input signal S, but to such
causes as mechanical vibrations of the microscope column, granularity of
the photographic emulsion or fingerprints of a technical assistant on the
micrograph.

Let us first neglect noise, not because there is not any but because it makes
the theory simpler. Then there is a unique relation between input and output
signal. In other words: Two or more different shots of the same object taken
under exactly equal conditions should give two or more exactly identical
micrographs. If there is some noise on the transmission line, and one has a
reproducible input signal, one better records the output signal repeatedly
in order to be able to distinguish which part of the output signal is real
information and which part is due to noise.

We have seen that, neglecting noise, there is some unique relation between
input and output signal. We call a system linear if this relation is linear.
In other words, if the response of the system to one input signal S, is S; and
the response to another input signal S, is S;, then an input signal aS,+ BS,
would, in a linear system, produce an output signal S, 4 S, for arbitrary
« and f. It is easier to treat linear than nonlinear systems. We shall therefore
take care to define our input and output signals S, and S, so that they are
related to each other by a linear relation at least to a good approximation.
The transfer of electrical signals in electrical transmission lines can be made
well enough linear. If, in an electron microscope, we define input and output
signals as the amplitudes of an electron wave in the object and the image,
they are also linearly related. This follows directly from the linearity of
Schrodinger’s or Dirac’s wave equation. If we declare the mass thickness of
the object as the input signal and the optical density of the developed photo-
graphic plate as the output signal, the linearity between input and output
are no longer self-evident but at best a tolerable approximation. Most transfer
theories are restricted to the case of linear transfer.

One function which can be used to describe the relation between input
and output signals in a linear system is its impulsive response G(f,t") or
G(ry, ro), respectively. It describes the response of the system to a short pulse
So(t) = 6(t —1,) in a one-dimensional transfer system or to an object consisting
of one point only in an image transfer system, i.e. Sy(r,) = d(r,—r;). The
delta function describing the short pulse or the object point, respectively,

Transfer of image information in the electron microscope 543

is defined so that d(r—#,) equals zero for all times 1 # 1, but is so large
for t = t, that

frﬁ(r_ro)dt:[ (1.1)

if the interval of integration contains the time t =t,. If the interval of
integration does not contain t — fy, the value of the integral equals zero.
Correspondingly, the delta function in two-dimensional space is defined so
that

f fa(rrr{;)drﬂz fa(xo—x;) 80— ) ey = 1 (1.2)

if the two-dimensional interval of integration contains the point ry with the
co-ordinates x;, y,. Otherwise, the value of the integral equals zero. This
definition of the delta function can be extended to more than two dimensions.
The definition of the delta function implies that

+o

f AW~ =40); [ [A)sm—rar = a6y, (1)

—@

In other words: Any arbitrary function A(f) can be written as a linear super-
position of delta functions d(+'—¢) with a weight function A(#'). Since we
have assumed that G(t, ') is the response of the linear system to the input
signal d(z—¢'), the output signal S,(t) of an arbitrary input signal

+ o
So(t) = [ Sy(t")o(r—1')dt’ (1.4)
can be written as
+
Si(1) = | Sy(t")G(t, t")dt . (1-5)

-

The transfer properties of a lincar transfer system are therefore completely
described by its impulsive response G(r,1’). Mathematicians and theoretical
physicists refer to the impulsive response as « Green’s function ». For
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signals with more than one dimension, we have correspondingly
560 = [ [0 G0, r i, (1.6

where G(ry, ry) is the impulsive response of the linear imaging system to a
delta function rﬁ(ru—r;). The integration (1.6) is extended over the object
surface.

The transfer properties of a good electric transmission line should not
depend on time. In other words: If the same message Sy(r) is transmitted
at two different times 1, and #,, say today and tomorrow, then the two input
signals Sy(r—1,) and Sy(t—1,) should produce the same output signals
S,(t—1t;) and Sj(t— 1), apart from a shift f,—# in time. This independence
of the transfer properties on time can be expressed by saying that the impulsive
response is a function not of the two separate variables ¢ and ' but only a
function of one variable, viz. the difference t—1t':

Glt; ') = Glt==1"). (1.7)

The response to a short pulse at time ¢ =1’ will be the same as to a pulse
at +=1", only with a time delay of t"—1t' between both. If the signal has
more than one dimension such as in imaging devices, the corresponding
property of the system would be that the image disk of an object point at
position ry=r, is the same as the image disk of an object point at ry =ry,
only displaced to another position in the image. The shift in the image may be
different from ry—r, because the image may be magnified with respect to
the object. This desirable property of an imaging system that all object points
at ry = r, would produce an image disk of equal shape around the point Mr,
(M is the magnification) in the image plane or in the image space is called iso-
planacy. It can be expressed by saying that the impulsive response is a func-
tion not of two separate vectors r; and r, but only of the difference r,— M.

Gl 1) = G (uﬂ—x) (1.8)

The condition of isoplanacy is not precisely satisfied in optical and electron
optical imaging systems. If the system has aberrations depending on r, such
as distortion, third-order astigmatism, or coma, the isoplanacy condition (1.8)
is violated, i.e. the image disk of an off-axis point looks different from that
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of an axis point. Aberrations depending only on the initial direction of an
electron trajectory such as spherical aberration, defocusing, axial astigmatism
and axial coma do not affect isoplanacy. If the field of view is sufficiently
small, the condition of isoplanacy can always be considered to be approxi-
mately satisfied.

In the isoplanatic approximation we can write eqs (1.5) and (1.6) as

+o

Si(6) = [ Sy(t)G(t—1t")dt’ (1.9)

and

Sy(ry) = f J‘ Sy(re) G (%7 rﬂ) dr, . (1.10)

Integrals of this type are called convolution integrals. To understand the
physical meaning of the linear relation between the input signal S, and the
output signal §; the following consideration may be useful.

The input signal which we have considered above as a linear superposi-
tion of delta functions, can, according to Fourier’s theorem, also be con-
sidered as a linear superposition of sinusoidal functions:

+o©

So(t) = | so(f) exp [ 2mift]df . (1.11)

—m

Because of the linearity of the transfer system, each Fourier component
so(f) exp [ 2mift] of the input signal corresponding to a frequency f can be
transformed to the corresponding Fourier component of the output signal
and then summed up (or rather integrated up). In other words: In the ex-
pression

4o 4o

S = f J'so(f) exp [ 27ift'] dfG(t —t")dt’ (1.12)

—® —m

we can first integrate over ¢’ and then over f. The integration over ¢' is nolhing
else but a Fourier transform of G:

+o Lren
fexp [—27ift")| G(t — ") dt' = exp [— 2=ift] [exp [2=ift'1G(¢))de’ . (1.13)
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Equation (1.12) and (1.13) can be interpreted as follows: The calculation
of the output signal S;(¢) from a given input signal Sy(¢) can be performed
in the following steps: First, the Fourier transform sy(f) of Sy(t) is formed.
Then sq(f) is multiplied by the Fourier transform of the impulsive response G
to obtain the Fourier transform of Sy(¢). The Fourier transform 7T(f) of the
impulsive response G is called the transfer function of the system:

+@

T(f) = |exp [2ift] G(t)dt . (1.14)

—m

According to egs. (1.12) and (1.13), the product of s, with the transfer
function T(f) yields the output signal by another Fourier transform:

+o

500 = [so( T exp - 2l (1.15)

—m

Let us for a while assume that the input signal is a sine or cosine function:
So(1) = A exp [—2mify1] . (1.16)

A comparison with eq. (1.11) shows that this is equivalent with a Fourier
transform s,(f) of S, (an «input spectrum »)

so(f)=A0(f—1) . (1.17)

As we have seen, the output spectrum s,(f) is obtained by multiplying the
input spectrum sy(f) by the transfer function

si(f) = AT(f)o(f—1y) - (1.18)

The output signal S,(¢) is, according to eq. (1.15), the Fourier transform of
the output spectrum s;(f):

-+
Sy(1) = | s;(f) exp [— 2mift]df = AT(f) exp [ 2mify1] . (1.19)

—@
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In other words: A sinusoidal input function with frequency f, and amplitude 4
is received at the output as a function of the same frequency but with an
amplitude AT(f,). A transmission system for which T(f;) equals one for all
frequencies f, would be an ideal system because the output signal would
always be identical with the input signal. According to Fourier’s theorem
any arbitrary input function can be written as a linear superposition of
sinusoidal functions with different frequencies f and amplitudes s,(/). Each
of them is transmitted and forms a Fourier component s(f) = T(/)sy(f) at
the output. They only have to be linearly superimposed to form the output
signal S,(¢).

If the signals are two-dimensional as in image transfer systems the same
reasoning can be applied. We have, however, to use different variables ry
and r, in the input and output signals, respectively, because the co-ordinates
in the object and in the image plane do not have the same meaning.

Let us define the Fourier transforms of input and output signal and of
the impulsive response G

So(re) =ffsﬂ(f) exp [— 2mifr)ldf; s(f) = ':[Su(ro) exp [2mifiy]dry; (1.20)

Si(r) :ffv1(f)exp[—%m frl]df, s = f J-S](rl)exp[z%; ﬁl]% (1.21)

T(f) = J.G(r) exp [2mift]de . (1.22)
In eq. (1.22), ¢ stands as a substitution for

F,
==t r,. (1.23)

As in the case of one-dimensional signal functions it can again be shown
that it follows from eq. (1.10) that

5100) = T(f)sy(f)- (1.24)

The «space frequency » f is now a vector with two components Sz and fy,
The area elements dr, and dry in egs (1.20) and (1.21) stand for

dry=dx,dy,, drp=dx;dy,, (1.25)
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such as the element df stands for

df = dfzdfy . (1.26)

The Fourier transforms (1.20) correspond to the expansion of the input
= object) signal in a series of sinusoidal components each of which is denoted
by its space frequency f and its amplitude s,(f). The vector f with the com-
ponents fz and f; denotes the direction of the sinusoidal component (plane
wave) associated with each Fourier component. The vector f is perpendicular
to the wave fronts of this plane wave, and its length |f] is the inverse of the
repeat of the sinusoidal component.

Using the concept of the transfer function, the linear relation between the
input and output signal can be described by the following diagram.

Input Signal

Solrg)
A

l«— Fourier Transform

Input Spectrum

so( f)
Transfer 1
Function >
T(f) !
Output Spectrum
50

A

<— Fourier Transform
L

Qutput Signal
Sy(ry)

If the transfer function or the impulsive response of a system is known, the
relation between S, and S, is uniquely defined, and one can conclude on S
if Sy is known and vice versa. If, on the other hand, the relation between .S,
and S; were known empirically by taking a great number of micrographs of
different objects with known properties, one would be able to determine the
transfer function 7(f).
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2. Amplitude transfer and contrast transfer function.

In the general theory we have derived relations between input and output
signals in linear transmission systems but we have not specified what the
physical nature of these signals is in electron microscopy. Since the image
is transferred by means of electrons and since the propagation of these elec-
trons in space can be described by a linear wave equation such as Schridinger’s,
an obvious definition would be to identify the input signal with the wave
amplitude in the object plane and the output signal with the wave amplitude
in the image plane. The condition of linearity is exactly fulfilled in this case.
The transfer function can be derived from a study of the propagation of the
electron wave through the lenses and apertures of the electron optical imaging
system.

The input signal depends on the conditions of illumination and on the
interaction of the illuminating beam with the object. Let us first assume
the illumination to be coherent in direction of the optical axis which we
identify with the z axis of a Cartesian or cylindrical system of co-ordinates
The wave amplitude of the incoming primary wave from the condenser, before
it enters the object, would be a plane wave exp [2nikz] with a wave number k
depending on the acceleration voltage U

it o a2 20
i A igila ) ek ; 25
k i V2em,,U ( 1 2t cz) 7 V2emoU (2.1

In eq. (2.1), i denotes Planck’s constant., In high-resolution transmission
microscopy the object can be considered as nonabsorbing. Practically all
electrons entering the object from the condenser side leave it again on the
image side because the probability for all interactions removing electrons
from the beam, such as backscattering or bremsstrahlung production close
to the short wavelength limit, is very small. The interaction between the
primary electron beam and a thin object can therefore be understood as a
local distortion of the electron wavefronts due to the local variations of the
electrostatic potential within and between the atoms. Within an atom the
potential is more positive than in the surrounding vacuum, and consequently
the local wavelength is shorter than the vacuum wavelength. The resulting
distortion of the wavefronts may be referred to as phase-shifting, diffraction
or scattering, three different names for the same physical process.
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Tt -I';
| i L i
ncoming plane wave Outgoing distorted wave

Fig. 1. - Interaction of atom and electron wave.

.Thc a.mplitude of the distorted wave after passing through the object
which, without this interaction, would be a constant, is now ,

So(X0» vo) = exp [m(x5, yo)l,  Sylry) = exp [in(ry)] (2.2)

a cornp_lex function of the co-ordinates Xg, ¥p in the object plane. Sy is the
input signal, and #(r,) is the phase shift. The fact that the object is treated
as nonabsorbing is expressed by the constance of object current density

Jrg)~ 'Su("'o)'2 =1 (2.3)

immediately behind the object.

For weak phase objects, i.e. if 7(ro) is small compared with 27 for all ¢
we have -

t

1 1
'r](r)=2nf(m-—————) 7
g A, Yo, 2) 2o .

0
; : ¢ t
_ 2mem 2me
----Té-—fm(xﬂ, Yo, 2)dz = b frp(x“, Vs 2)dzi: (2.4)

o 0

The integration in eq. (2.4) is extended over the thickness t of the object.
Equation (2.4) is relativistically correct if the relativistic expressions for m, A
and v are used.

All information about the object which the electron wave is carrying is
contained in Sy(r,) or n(r,), respectively. In order to calculate the corresponding

Transfer of image information in the electron microscope 551

output signal Sy(r,), i.e. the wave amplitude in the image plane, we have to
know the transfer function T or its Fourier transform, the impulsive response.
The impulsive response G is the response of the imaging system to a point
source in the object, i.e. the image wave amplitude in the diffraction disk
which forms the image of an object point. The classical method of deter-
mining the wave amplitude in the diffraction disk is the application of Kirch-
hoff’s integral formula. If the surface of integration in Kirchhoff’s integral
is the back focal plane of the objective lens, the evaluation of the integral is
equivalent to the Fourier transform leading from the output spectrum s, to
the output signal §;. Kirchhofl’s integration is extended only over the trans-
parent part of the objective aperture. It has further to take into account the
phase shift due to aberrations and defocusing. This phase shift is closely
related to the wave aberration which is defined as the local distance between
the real wave front and an ideal wave front, i.e. a sphere around the geo-
metrical image point.

Each point in the back focal plane of the objective lens corresponds to
one space frequency f. If the object were a periodic structure whose object
signal contained only one or a small number of space frequencies, then the
wave function in the back focal plane would be zero except for steep local
intensity maxima, one for each space frequency. In other words, the wave
function in the back focal plane is the diffraction pattern of the object with
a diffraction length equal to the focal length of the objective lens. Each space
frequency f in the object (input signal) corresponds to one Bragg angle, i.e. one
direction of a diffracted wave in object space. Each direction in object space
corresponds to one point in the back focal plane. These two statements
can be combined into one, saying that each space frequency f corresponds to
one point r, in the back focal plane

ry=1f. (2.5)

In eq. (2.5) / denotes the focal length of the objective lens (the letter f being
reserved for space frequencies). Equation (2.5) should look familiar to people
who have worked with electron diffraction of crystals where the position
vector r of an intensity maximum in the diffraction diagram is equal to the
product of the diffraction length /, the wavelength 4 and the reciprocal lattice
vector f denoting a space frequency (inverse of the spacing of lattice planes)
in the periodic structure of the crystal. The effect of the aberrations is to shift
the phase of the wave function in the back focal plane where the phase shift
depends on ry, which, according to eq, (2.5) can be interpreted as a phase
shift depending on space frequency.



552 F. A. Lenz

Ideal
Real wave front

. Geometrical
RS -m—-—_“iﬁk"ﬁ_rii
e §
// Image point
A
/
Fig. 2.

The first Fourier transformation transforming the input signal S)(r,) into
the input spectrum sy(f) corresponds to the formation of the diffraction pattern
of the object neglecting lens aberrations and apertures. These are taken
into account by the transfer function

2ni

100 = o0 [ Wi | B, @6)

which describes the phase shift 2zW/4, and the effect of an aperture by the
aperture function B(f). W is the wave aberration introduced by aberrations
and defocusing. B(f) is assumed to equal 1 in the transparent parts of the
aperture, and to vanish for the opaque parts. If the lens suffers from spherical
aberration, axial astigmatism and defocusing the wave aberration can be
writlen as

Cs S @
Wiry) = 373 05 + 32 + 35 (3 + 0D — 55 63— )
2.7
e A e &
O A e e O e L

In eq. (2.7), C, is the third-order spherical aberration coefficient. Its defini-
tion is the usual one, ie. it implies that a geometrical electron trajectory
leaving the axis point of the object plane under an angle x against the axis

|
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intersects the image plane in a point at a distance C,|M[o® 4 O(e®) from the
axis. Az stands for defocusing in object space. It is counted negative if the
object is closer to the objective lens than the plane conjugated to the
recording plane (screen or photographic plate). C, is the coefficient of
astigmatism. Its definition implies that the geometrical astigmatic lines, referred
to object space have a distance of 2C , from each other and a distance of C,
from the geometrical disk of least confusion. Figure 3 shows the dependence
of wave aberration on spherical aberration and defocusing for zero astigmatism.

Knowing the wave aberration W(f) and the aperture function B(f) we
can use the transfer function T(f) to calculate the image wave amplitude
S,(r,) if we know the object wave amplitude Sy(ry), i.e. we can conclude from
a given object on the corresponding image and vice versa. But unfortunately,
wave amplitudes are not observable quantities. What we can observe in the
image are such quantities as current density, contrast, optical density, etc.,
and they are not linearly related to any property of the object. It can, how-

Fig. 3.

ever, be shown that the contrast in the image of a weak phase object is at
least approximately a linear function of the phase shift n. To show this, let
us treat the amplitude transfer of a weak phase object. For < 27, eq. (2.2)



554 F.d. Lenz

can be written as
Solre) = exp [in(re)] = 1 + in(ry) + O@®). (2.8)

The object spectrum follows by Fourier transformation, neglecting second
and higher-order terms in #,

5o(f) = | Solro) exp EEﬁfﬁ‘u]dru=!ﬁ(f)-t—ffn(ro)e)ip [2znifrg]ldr,.  (2.9)

so(f) describes the angular distribution of the wave behind the object. The
delta function stands for the undiffracted primary beam in axial direction.
The second term on the right-hand side is the complex scattering amplitude
of the object. If 5(r,) in eq. (2.9) is replaced by the expression in eq. (2.4)
one obtains

30 =30 + 4o [[ [0, 30,2 exp il axyrgdz.  @.10)

We see that the second term on the right-hand side is a three-dimensional
Fourier transform of the potential distribution . within the scatterer. The
integral on the right-hand side is known as the: scattering amplitude of the
scatterer. In the special case that the scatterer'is an atom, it is called the
atom form amplitude. Its absolute square is the differential scattering cross-
section. Let us introduce an abbreviation A(f) for this quantity:

A(f) = 7(ry) exp [2xifirg]dry, .11
so that eq. (2.9) can be written as

so(f) = 6(f) + id(f). (2.12)

According to eq. (1.24), the image (output) spectrum s;(f) follows from the
object (input) spectrum by multiplication with the amplitude transfer function

51(f) = T(f)so(f) = T(©0) 6(f) + iA(FIT(S). (2.13)

Performing the inverse Fourier transformation we obtain the output signal
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(the image wave amplitude)
Sy(ry) = T(O) + i) A(S)T(f) exp [m 2ﬂrf%] df. (2.14)

In bright field microscopy, B(0) =1, and it follows from eq. (2.6) that
T(0) = 1/M. The first term on the right-hand side of eq. (2.14) describes the
bright background of the bright field image whose current density is M2
times the primary current density in the object. The second term describes
a small modulation of this background. It is small because we have assumed
the phase shift » is small and because 4 is defined as the Fourier transform
of this phase shift. In dark field microscopy, B(0)=T7(0)=0, and the
background is dark. It is evident from eq. (2.14) that the contrast in a dark
field image of a weak phase object exceeds that of the bright field image.
Let us define contrast C in the bright field image by

|S;(r) 2 — 1/ M2 L =
Clry) = '"Lll,:"m” - = M2|Sy(r)R—1. (2.15)

Replacing S; in eq. (2.15) from eq. (2.14) and neglecting second order terms
we obtain

Cry) = i [ AN LT — TH=f)] exp [_ 2mﬁf%] dn o ole

If the aperture function B(f)= B(— f), i.e. if B(f) has two-fold symmetry
around the optical axis and if further W(f)= W(— f) then we have

C(r) = ZJ‘A(f)B[f) S.in(%;—z W(f)) exp [m 2mf}%—] dr. (2.17)

Equations (2.17) and (2.11) define a linear relation between the real con-
trast C(r,) and the real phase shift n(r;). If we define a contrast transfer func-
tion

K(f) = 2B(f) sin (2j—r H-”(f)), (2.18)

L

this relation can be interpreted as follows: The input signal for contrast
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transfer is now #(ry). Its input spectrum A(f) is multiplied by the contrast
transfer function K(f) to obtain the output spectrum. The inverse Fourier
transform (2.17) then generates the output signal, i.e. the image contrast.
This is explained in the following diagrams.

Object Wave Object Phase
Function S, Shift n
A A
Fourier Transform Fourier Transform
Y Y
Object Amplitude Object Phase
Spectrum s, Shift Spectrum A
)
Amplitude Contrast i
< Transfer Transfer >
v Function T(f) Function K
Image Amplitude Image Contrast
Spectrum s, Spectrum KA
A
Fourier Transform Fourier Transform
& A
Image Wave Image Contrast
Function §; e

While phase contrast can be understood and explained only using wave
optical aspects, another type of contrast has been discussed since the early
days of electron microscopy, the so-called scattering absorption or amplitude
contrast. It can be explained without using wave-optical concepts by saying
that the atoms in the object scatter a fraction of the incoming electron cur-
rent by scattering angles large enough to be intercepted by the objective aper-
ture. The characteristic features of this type of contrast can also be explained
in terms of the amplitude transfer theory. Let us suppose that the phase shift
7(ry) is so large that it makes sense to continue the expansion (2.8) by an
additional second-order term:

1(ro)
2

Solr) = exp [in(ry)] = 1+ in(re) — +0@p) . (2.19)

Let us, for the sake of simplicity, consider a sinusoidal variation of phase
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shift 5(ry) with the space frequency fx =/fy; fy = 0:
7(ry) = 1 €08 (27foXo) - (2.20)

Then the object wave function is

Sylrg) =1+ %710 [exp [27ifyxo] + exp [— 23"5'%3(0]] 5

1 ;s :
e gn% [exp [4nifyxo] + 2 + exp [ 4aifyxo]] + OGR) . (2.21)
The corresponding object spectrum is

5 = 0) + S OO + 40 + 0 fa—Fo)l =

2
IR + 2+ 200 + Ofa— 2]+ 06D . (222)

Let us now assume that the space frequency is so high, and the objective
aperture is so narrow that T(fg, 0) and T(2f;, 0) both vanish. In this case
we have an image spectrum

0 = TN = 3700 1=53) (223)
and

1
Sy(ry) = % (1 wznﬁ) : (2.24)

The effect is a uniform reduced background intensity, and the space frequency
fy is not resolved. An example is a thin foil of some amorphous material
imaged under conditions at which the atoms or other local variations of
potential are not resolved. Then regions containing many such atoms or
potential variations appear darker in the image than regions containing less
scatterers. This type of «area » contrast is compared with phase contrast in
the following table.
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Space frequencies Ay
[y and 2f, intercepted 2fo m.tercep(ed, fo and 2, not
by aperture Jfu not intercepted intercepted

Ty — Tfy —0 | TUD#05 T =0 | T(f) # 0; T2fy) # 0

1 small No contrast Phase contrast linear | Phase contrast linear
sinn < 1 in 7, f, resolved in 7, f; resolved
7Ly
n larger Amplitude contrast Nonlinear phase con-
proportional with 7*, | trast containing higher
fy not resolved harmonics.  T.oss  in

background intensiiy, |
Jo resolved

Example: Image of a phase edge.

Let us assume that an object consists of two half-planes each of which
is homogeneous, but because of a difference in thickness or in mean inner
potential they produce different phase shifts:

exp [—ip/2], for x,< 0,

Solrg) =
0 exp [ip/2], for x> 0. (2-29)
In order to simplify the problem let us assume that
T(f) { i S
= 2.26
0. dor| i1 &)

This corresponds to a circular objective aperture within which the wave
aberration is negligible.
The object spectrum is

() = f Sy(ry) exp [R2rifiyldry = 5(fy)[5(fx) cos?— % sin%} L)

Multiplication with the contrast transfer function (2.26) and Fourier transfor-
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mation yields the image wave function
) 2. 3 i 21 ‘.
S,(ry) = cos (%) + EI sin (g) Si (—-2%3) i (2.28)

u
Si(u) = f ﬂ? dv (2.29)

0

where

is the «sine integral ». For the image contrast we obtain
! 3 42X
S b 2 [ “THot
C(r,) = sin (Z)LﬁSl ( ) l]. (2.30)

-2
+1 1c(x1JS|n (f%)

1 for [fi <k
~0 for {f|>F,

Fig. 4. — Contrast in the image of a phasc edge.

3. Zonal plates and other interventions in the back focal plane of the objective.

Let us apply the contrast transfer theory to the case of a phase shifting
point in the object, and let us ask the question how the aperture function
B(f) must be chosen if we want to achieve maximum bright field contrast in
the image of this point. If the phase shifting interaction in the object is as-
sumed to be localized in a point we have

7(ry) = 19 0(rrg) - (3.1)

The corresponding phase spectrum is

A(f) = |nry) exp [27ifiry)dre = - (3.2)
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Multiplying by the transfer function we obtain the image contrast spectrum
e
AR = 210800 s (Z 1) (33)
By Fourier transform we obtain the image contrast
o Dy S
C(ry) = 2, | B(f) sin = W(f)| exp —2mf-/ﬁ dff. (3.4)

The contrast C(0) in the center of the image disk is

o) — ZnUfB(f) sin (27” W(f)) af. (3.5)

When the integration over the space frequencies f is performed, which is
equivalent to an integration over the back focal plane where the objective
aperture is arranged, there will be positive and negative contributions from
different bands of space frequencies. Space frequencies for which the sine

2nwW

2sin

Fig. 5. — Contrast transfer function without aperture, B .

function in the integrand has a positive value, add to C(0). For other space
frequencies the sine function has a negative sign, and they will cancel at
least part of the contrast. Hoppe’s idea of using annular ring systems to
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improve the electron microscopical image amounts to dimensioning th
apertures so that either all negative contributions or all positive contribu
tions to C(0) are intercepted by the aperture stop. Figures 5--7 show the con

2r— el

2 4 -6 8 1.0 152 1.4 1.6
4 C X

5

B (f)

Aperture Function ( , H
O,,

Fig. 6. — Contrast transfer function for maximum positive contrast, B(0)=1.

trast transfer functions K and the aperture functions B for the case that the
wave aberration is given by eq. (2.7) with C, =0 and Az =—24/C,1.
Figure 5 shows the contrast transfer function K if no aperture is used (B =1),
Fig. 6 for an aperture which leaves through all positive contributions to con-
trast, and Fig. 7 the same for negative contributions. The aperture system
which helps to image an object point with maximum contrast is not neces-
sarily ideal for all other types of objects. Apertures consisting of a system of
concentric rings leave through some bands of space frequencies and intercept
others. If an observer is interested in properties of an object which are mainly
in some fixed space frequency region, then it would be unwise to intercept
a frequency band in this region. For example, if an observer is interested in
atomic distances of the order of 1 A, his objective aperture should be trans-
parent in the region of space frequencies around 1 A-! which corresponds
to an aperture radius of r, = /2 A1 according to eq. (2:5).

36



Aperture function

Fig. 7. — Contrast transfer function for maximum negative contrast, B(0)=1.

As we have seen, the Hoppe zonal plate is the aperture which optimizes
the contrast of a point object in a bright field image. Let us now consider
the effect of zonal plates on a dark field image. According to eq. (2.14) the
wave amplitude ) in dark field is

s =ifannp exo[- 2 . (36)

According to eq. (3.2) we have for a point object 4 =5,. In the geometrical
image r; =0 of this point we have

(0) [ TC 4y = o [ [— o W(f)} B G

As in eq. (3.5) we have again an integrand whose real and imaginary parts
are changing their signs. If different space frequency intervals are not to
cancel each other’s contributions to the absolute value of S,(0), B(f) must
again be chosen so that only ring-shaped areas of the objective aperture are
transparent for which

W 1 : :
n+4c< 7 e +5 S n integer, ¢ arbitrary . (3.8)
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For ¢ =0, this is the same condition as for maximum positive bright field
contrast. For ¢ = } it coincides with the condition for maximum negative
bright field contrast. Since in dark field microscopy the phase relation of the
diffracted electrons with respect to the primary electrons does not matter,
any other value of ¢ in the condition for the ring radii would also be accept-
able. The most important conclusion is, however, that a Hoppe zone plate
designed for maximum contrast in the bright field image of a point object
will also maximize the intensity in the center of the dark field image of the
same point object.

Most other interventions in the back focal plane such as a filament across
the center intercepting the primary beam or narrow circular apertures sur-
rounded by a phase shifting ring may have the effect of increasing contrast
in the image of an object but not necessarily in the space frequency region
in which the observer is interested. In order to design an optimum aperture
one must know the space frequency region of main interest. Then one can
design an aperture which produces a maximum of the amplitude or contrast
transfer function around this space frequency of main interest. Having done
this, one may expect to find this space frequency in all image areas cor-
responding to object areas in which this space frequency occurs, even if it
does so only as a second or higher harmonic of a lower space frequency.

4. The effects of illumination on image transfer.

We have so far restricted ourselves to coherent illumination in the direc-
tion of the optical axis. Even when dark field images were discussed, it was
assumed that the primary beam had axial direction, and the aperture was
symmetric with respect to the axis. In practical dark field microscopy, how-
ever, conditions are often different: The primary beam is inclined with
respect to the axis so that it does not intersect the back focal plane of the

Fig. 8. - Oblique coherent illumination.
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objective lens in its axis point but in another one. If the objective aperture
is opaque in this point, the primary beam is intercepted, and a dark field
image results. It is obvious that oblique illumination introduces a preferential
direction in the image. In this case the transfer function is not a function
of only the absolute value of the space frequency f but it also depends on its
direction.

The oblique coherent illumination produces an additional phase shift
2zkry in excess of the one given in eq. (2.4) describing the interaction of pri-
mary beam and object. If we assume that the object is so thin that its thickness
times the angle between k and the axis is smaller than the smallest details we
want to observe we may treat the object as infinitely thin, and we have in-
stead of eq. (2.4)

y(k, 1y) = 27kry + 4(0, ry) . 4.1)

In eq. (4.1) and in the following we may treat k as a vector with two com-
ponents k; and ky only, because #, lies in the object plane which we have as-
sumed to be perpendicular to the axis. This is because 5(k, r,) contains all
information about the object which enters the transfer system, and because
1(k, ry) does not depend on k,. We can now apply the transfer theory to
determine the image contrast, replacing 7(r,) by n(k,r,). Equation (2.8)
reads now, in the case of oblique coherent illumination

Solk, ry) = exp [in(k, rg)] = (1 + in(0, ry)) exp [2rikry] . (4.2)

The object spectrum becomes

syt )= [Su(k, 1) exp [2zifryldry =

=0(k + f) + i|5(0, ry) exp [27wi(k + f)rgldr,. (4.3)
Using the abbreviation (2.11) we have now

solk, ) =0(k + f) + id(k + f) . (4.4)

The physical meaning of thisequation is that each point in the diffraction pat-
tern of the object in the back focal plane has been shifted from r, = /ik to
rp = 1Ak |+ f). The primary beam (f= 0) no longer corresponds (o the axis

Transfer of image information in the electron microscope 56

point in the back focal plane but to [2k. The axis point (r, = 0) corresponc
now to the space frequency f=—=k. If we now multiply the object spec
trum sy(k, f) by the amplitude transfer function 7(f) we find the image spec
trum

sk, ) =T(—k) o(k + f) + id(k + )T(f). (4.

Performing the inverse Fourier transform we obtain the image wave amplitud
27 i
Sy(k, ry) = T(— k) exp [% krl] i if Ak + £)T(f) exp [— 2?5{}"—;—}] dr. @

If B(—k) =0, i.e. if the primary beam is intercepted by the aperture stoy
we have dark field imaging with a preferential direction, and the image wav
amplitude becomes

Sy(k, 1) = r'fA(k + TS exp[— 2nif }é] df. (4.7

If, on the other hand, B(— k) = | we have a bright field image with a wav
amplitude

Syk, ry) = le4 exp [w z—j[—r W(— k)] exp [%;; krl] -+
o f Ak + £)T(f) exp [m Zm)';_}] df. (4.8

It is not self-evident that coherent illumination always yields the best images
It can be shown that even for an arbitrary incoherent illurhination a con
trast transfer function can be defined as long as weak phase objects are imagec
and the isoplanatic approximation holds. The illumination is called in
coherent if the condenser aperture « is large so that the beam can no longe:
be called parallel. If the variation in wave vector & within the primary bean
is so large that the phase differences 2wkr, (compare eq. (4.1)) vary by ai
amount comparable to or larger than 2, then the phase relations betwee:
two points in a distance |ry| from each other are destroyed, and two sucl
points are «incoherently illuminated ». 1If, on the other hand, the variatior
of k is so small that the phase differences 2nkr, vary by less than 4 /2
then two points at a distance |r,| from each other are « coherently illuminated »
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Whether some illumination is coherent or not, depends not only on the con-
denser aperture but also on the size |ry| of the object details one wants to ob-
serve.

According to eq. (4.2), the object wave function for an incoming electron
with wave vector k can be written as

Solk, rg) = Sy(0, ro) exp [2mikr,] . (4.9)
According to eq. (1.10), the corresponding image wave function can be writ-

ten as

"

Sy(k, r,) ff 5,0, )G ( -

—r") exp [2mikry]dr, . (4.10)

The image current density is, apart from an irrelevant constant factor

IS, (K, 12 = f f 5,0, 1) Si (0, 1)) G (1'1—14— rﬂ) G* (fﬂj-[_ ,-;,) .
-exp [2rik(r,— rg)] drydry . (4.11)

For incoherent illumination, all the current densities corresponding to dif-

ferent k vectors occurring in the primary beam are superimposed upon each
other incoherently. The image current density becomes

) = f 1y, ry)[2 F(k) ke — f f f 540, 7) S0, £5)-

i (;_/1[— ru) G* (% o rg) F(k) exp [2mik(r,— rg)] drydrl dk . (4.12)

F(k) is a distribution function describing the angular distribution of the primary
beam from the condenser. It is defined so that F(k)dk = F(k,, k) dk, dk,
is the probability that an incident electron has a direction such that the x
and y components of its wave vector lie within the intervals {k,, k, + dk,}
and {ky, ky + dk,}. This distribution function is assumed to be normalized
so that

JF(k)dk =1. (4.13)

The integration over k in eq. (4.12) can be performed if we introduce the
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Fourier transform of the distribution function F(k):

D(ry) = f F(k) exp [2nikry)dk . (4.14)

Then we have

j(r) = U 5,00, 1) S5(0, 1) G (% — rﬂ) (3 (% — |",) Drg—rg)drodrg . (4.15)

Let us now assume that we have a weak phase object, i.e. that Sy(0, ry) can

be expressed by eq. (2.8)
SG(Os ro) =1+ fl'-'?(ro)- (4]6)

Replacing S, from (4.16) in (4.15) and neglecting second-order terms iny we
obtain for the image current density

0 =y 1 [te @y i) 6 5= ) G (1) o —
1y ﬁ;(ﬁg Dir,—r)G (%—ro) G* (%—r:]) drdr). (4.17)
In eq. (4.17), j, is an abbreviation for the background current density
e [ [GJ(r(,—rf,)G (”T}I—ru) G* (-{"L}—rg) drydrg . (4.18)

If we again define contrast C(r,) by

C(r,) :j(rl)._.jii : (.19)
‘ JB
we have
C(r) :.J.?;(ro) Ly vp) Ay (4.20)
where the impulsive response [’ is given by
e L (R 1) — @03 =)
Iz M
! r r
e (.%ﬂu) G* (;}‘fu)] . @420)
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Substituting a new variable of integration
- H—r{,, (4.22)

it can be shown that the impulsive response " is a function not of r; and ry
separately but only of the combination ry/M —r,. In other words: The iso-
planacy condition is not destroyed by incoherent illumination. (4.20) can
now be written as

Clry) = f () I’ (%— r,,) dry . (4.23)

This is again a convolution integral so that we can define a transfer func-
tion for the Fourier transform of I". If the impulsive response G(ry/M — ry)
for coherent amplitude transfer is known, I" can be calculated from eq. (4.21)
for any arbitrary angular distribution F(k) of the illuminating beam. The
Fourier transform of I takes into account not only the clectron optical
properties of the imaging system behind the object but also the conditions of
illumination. C, 5 and [I" are real functions. It should, however, be noted
that, in the case of partial coherence, the linear terms in » may not be large
compared to the second order terms.
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