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1. Amplitude and phase objects.

If we "illuminate" a crystal with a parallel (not convergent) monochromatic electron beam at the exit surface
of our sample the electron wave function can be described as

¥(x, )= Alx, y)expl- ig(x, y)] )
where x and y are the coordinates on the surface. The exit wave function is not a plane wave but instead it
has an amplitude and a phase that are different in different points of the surface. The fact that the amplitude
of the wave has changed and it is not constant over the surface, it is due to a non homogeneous absorption
inside the crystal. From quantum mechanics it is known that the wave function is not an observable quantity,
but it is its square modulus that gives the probability density of finding the electron in the correspondent
position. Therefore the intensity of an ideal' image is given by

I(x,y)=[¥(x, y)’ = dlx,y) @
and the contrast is dominated by the absorption effects. In this case the crystal can be considered mainly an .
"amplitude object" since the contrast in the image is due to the amplitude variation of the exit wave. When
the crystal is very thin instead ( i.e. near the edge), the absorption can be neglected. The effect of the
interaction of the electron beam with the matter results only in a phase change dependent on the position

¥(x, )= expl-ig(x, y)] 3)
This approximation is called "phase object" approximation. It is worth to note that if our imaging system is
ideal a phase object doesn't give contrast in the image

I(x,y)=¥(xy)" =1 @)
A phase object is invisible if the optical system is perfectly in focus! We will see in the following how in a
real optical system, like the electron microscope, we can exploit the aberrations (that are defects of our
imaging systems!) to obtain contrast from a phase object.

2. Phase object approximation for electrons.

The phase object approximation for electrons is very useful since there is a simple relation between the
phase shift ¢(x, y) and the electrostatic potential inside the crystal. From quantum mechanics it is known
that a particle having momentum p behaves® like a wave with wave length given by the famous De Broglie
equation

A= _;’?. (3)

p
where h is the Plank constant. An electron accelerated in the gun of an electron microscope by an
accelerating voltage -V, has a total energy of E=eV, if e is the absolute value of the electron charge. Before
reaching the crystal this energy is completely kinetic. Inside the crystal the energy splits into kinetic T and
potential energy -eV(r) since the nuclei and the electronic clouds of the atoms produce an electrical field that
scatters the incoming electron beam. Using the conservation of the energy we can derive the momentum p
before and inside the crystal.

! With ideal optical system we mean a system without aberration that reproduces, in its image plane, a perfect copy of
the exit wave function. In an electron microscope the exit wave function is the analogous of the object in a conventional
optical system. .

% 'The wave behavior is described by a probability wave having this wave length.
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p=+2mT =J2meVo m[7 RN
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T=E+eV(r)y=eV,+eV(F) = r

p=2mT =\2m(eV, +eV (7))

In terms of wave length using the De Broglie formula we have

= B
A’bcfore /lzme Vo
A =h
i \/ 2me(V (F) + VD

Since the wave length is different inside the crystal the electron wave function undergoes a phase shift that
for a crystal of infinitesimal thickness dz is given by

d¢=[ S ]dz= - ( 1+V(r)—1)dz=————” V({F)dz+...
/I{’im'ide )“bqfore j’before VO /lbefore VO

The approximation of considering V(’% small is reasonable since the crystal potential involves energy of
0

(6)

several eV whereas the accelerating voltage is around 10° Volts.
In order to obtain the total phase shift for a thickness t we have to integrate the last equation

¢(x }’)_O'IV(X y,z)a'z ON . IV(x y,z)a'z ON ¥ o (x J’) (7

unit cell

where o = is called interaction constant and N,y is the number of unit cells crossed by the beam.

hZ
Consequently, if the crystal is thin enough that can be considered a phase object the wave function of a
monochromatic plane wave at the exit surface becomes

\P(x’ y) & expl. ioN, cell proj (x y)_l (8)

As can be seen the phase of the exit wave function carries a lot of information on the crystal structure since it
is proportional to the projected electrostatic potential. It is a two-dimensional map of the structure projected
along the electron beam. Unfortunately, as pointed out in the previous section, a perfect image of this wave
function doesn't show any contrast and the phase of the wave is lost!
It must be notlced that whereas in crystallography the word phase is always referred to the phase of the
structure factor,” in electron microscopy it can have different meanings. The reader must always check if the
phase means the structure factor phase or the phase of the exit wave function, like in this case. In particular
the reconstruction of the phase of the exit wave function is not the phase problem in crystallography that is
the recovering of the structure factor phases. Even if these two tasks give both information about the crystal
structure they are separate problems in different spaces, the first one in direct space the second in reciprocal
space.

3. Weak phase object approximation and phase contrast.

The expression (8) can be further simplified. If the crystal is so thin that the phase shift is small compared to
2m, we can consider only the first two terms of the Taylor series of the exponential

‘{’(x’ y) =1- iONcell proj (x y) (9)
This formula is known as the weak phase object approximation for obvious reasons. If we calculate in this

approximation the contrast of a perfect image, we still obtain a uniform contrast since terms of second order
must be neglected. In Fourier space the same equation becomes (see mathematical appendix)

* The structure factor is the Fourier transform of the quantity responsible for the scattering. In x-ray diffraction is the
Fourier transform of the electronic density, in electron diffraction is the Fourier transform of the elctrostatic potential.
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7(u) = 5()—ioN 7 (u) = 5(u)- ia%% F(u)=5(u)- igF(u) (10)

where the Dirac delta function 0 (u) represents the intense direct beam, F(u) is the structure factor, t is the

thickness and S is the area of one unit cell projected along the incident beam direction. Since the structure
factor amplitudes are proportional to the scattered beam amplitudes®, from (9) and (10) we can conclude that
we don't see the effects of the scattering in the image because they give a pure imaginary contribution to the
wave function. If we are able to rotate in the complex plane (see complex number in the appendix) the phase
of the scattered beams (i.e. the phase of the structure factors) £90 degrees with respect to the direct beam we
can see contrast arising from the scattered electrons. In fact neglecting the second order terms we have

1- io_Ncell proj (x y)exp(+l _) =1z 2O-]v(_ell proj (x y) | (1 1)

This was first noticed for photons by Zernike in 1935, that also proposed a way of realizing such a phase
contrast in an usual optical microscope. Zernike exploited the fact that in the back focal plane (BFP) of the
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Fig. 1 Parallel rays coming from different points of the object are focused in the same points in the back focal
plane.

objective lens we can find the Fourier transform of the exit wave function. In fact from geometrical optics we
know that parallel rays arising from different points of the object are focused in the same point of the BFP
and the position of this point depends only on the direction of the parallel rays. Consequently in the BFP
there is a one to one correspondence between its points P and directions u of the incoming rays: P=P(u). In

electron optics a set of parallel rays represents a set of plane waves. The Fourier transform l//(ll) of the exit
wave function is a decomposition in plane waves and it says that the plane wave exp[27zz(u . x)] is present

with a weight 1/7(u) in the exit wave. This plane wave is focused in the BFP in a point P(u) and since it has a

weight equal to y7(u), a picture of the BFP gives in that point an intensity proportional to |!/7(u12 . Thus the

lens forms in the BFP the Fourier transform of the exit wave function and its squared amplitude can be
recorded in a photographic plate: this is what we do every time we record a diffraction pattern.

Zernike proposed to used the fact that in the BFP of an optical microscope only the unscattered photons’ are
focused on the optical axis. He suggested to put in the BFP a phase-changing plate made of a glass substrate
on which a small transparent dielectric dot has been deposited. The dot is centered on the optical axis and has
a thickness and an index of refraction such that it retards the phase of the focused light by either n/2 radians
or 37/2 radians (90 or 270 degrees). The unscattedred particles are intercepted by the shifting filter and their

* This is true only if the phase object approximation is valid and it is false if dynamical effect are relevant.
5 The same argument can be applied both to photons in an optical microscope and to electrons in and electron
microscope. In the last case, as it is explained later, the phase shift must be obtained using different methods.
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phase is shifted. The result is a phase contrast image in the image plane, as already discussed for the electron
case in the formula (11). The question is how to do this for electrons? How to produce this phase shift on the
central beam or on the scattered beams? Surely we can't put something inside the column, electrons are not
photons! To answer this question we have to describe how a general optical system transfers the information
from the object plane to the image plane. What we will discover is that both the focus and the spherical
aberration introduce phase shifts in the back focal plane that are a continuous function of the distance from
perfect focus and of the scattering vector u. There is a special focus called Shertzer for which a shifting close
to 270 degrees (-n/2 in radians) is applied to all the scattered beams inside the resolution limit of the
microscope.

4. Point spread function.

An optical system is a device that transfers information from an object plane to an image plane with a certain
magnification. The better is the system the smaller are the deformations induced by the system during the
transfer process. An ideal optical system would reproduce the object exactly as it is but on a different scale.
A real optical system instead introduces errors and the final image is always slightly blurred and distorted
with respect to the object. There is a very elegant and practical way to describe the imaging properties of an
optical system. It is enough to know how the system transfers to the image plane a point object. If we know
this we can calculate and predict the image of every object. A point object in ro is represented
mathematically by a Dirac delta function 8(r-ro). Its image h(r-Mry) is the point spread function of the
optical system and it is centered around the point Mr,, M being the magnification of the system. Every object
can be described by an object function f(r) that for electrons is the exit wave function. The mathematical
properties of the Dirac delta function tell us that we can write f(r) as a convolution with 8(r-ro)

f@)= [f@)o-r)r=(f ®5)(r) (12)

Thus, since the electron microscope is a linear optical system, if we indicate with S the operator that
transform the object function into the image function we have

fu®)=SLFO)]= [rarslot v = [ram(y;, - )ir=(r&h )(ﬁ) (13)

This is a very nice result! In order to obtain the wave function in the image plane it suffices to calculate the
convolution of the exit wave function with the point spread function of the microscope. The equation (13)
says that the point spread function is the way in which the optical system is sampling the object and every
point r of the image receives a contribution from all the points r' of the object for which h(r/M-r') is
different from zero. As we have seen in the previous chapter if we pass in Fourier space sometimes the
equations become simpler and they can be easily interpreted. Furthermore in an optical system the Fourier
space coincides with the BFP and it can be observed directly. The convolution that appears in equation (13)
is not an intuitive operation but if we calculate the Fourier transform it becomes a product®. We can then
summarize the effect of our microscope on the image as a product of the Fourier transform of the point

spread function H(u) with the Fourier transform of the exit wave l"I"(u) . If we call q’im (u) the Fourier
transform of the wave function in the image plane we have

?,,()=F@H@) (14)
The function H(u) is usually called amplitude transfer function

5. The amplitude transfer function: the effect of spherical aberration and defocus

The amplitude transfer function of an electron microscope is made by the product of three terms
H(u) = A(u)E(u)B(u) (15)
O  A(u): the aperture function. It is a cut off function due to the objective diaphragm that we put in the back
focal plane in order to eliminate the contributions of high spatial frequencies. It is a step function equal
to 1 for those values of the scattering vector u that fall inside the aperture and to 0 elsewhere.
o E(u): the envelope function. It is 2 damping function that attenuates the effect of the higher spatial
frequencies. It is due mainly to the fact that the incoming electrons don't have the same energy

§ This is a beautiful property of Fourier transform. By passing in Fourier space convolution becomes product and

product becomes convolution FT' [f ® g] =F T[f]FT [g] and FT [fg] =F T[f]@ FT [g] '
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(chromatic aberration) and the beam is not perfectly parallel but it is slightly convergent. Therefore the
sample it is not "illuminated" by a monochromatic plane wave and the resulting image is moderately
blurred.
0 B(u): the aberration function. It is a complex exponential
B(w) = expliz(u)] (16)
that produces a phase shift (u) in the Fourier space. It is due to the spherical aberration of the system
and to the focus conditions.
The spherical aberration is a defect of an optical system caused by an inhomogeneous deflection of the off
axis rays. The further off axis the electron is, the more strongly is bent back towards the axis. To take into
account this effect we have to consider that in the equations describing the motion of the electron in the
magnetic field of the lenses the inclination B of the trajectories with respect to the optical axis always
appears as sin(p) which can be expanded in Taylor series as

sin(B) = 'B_%+%+

In the paraxial theory where sin(B)~f it can be shown that it exists a plane (image plane) in which a faithful
image can be obtained. However if the aperture of our optical system is quite large, the cubic term cannot be
ignored and third order aberrations must be considered. The result of the cubic term is that an area
surrounding a certain object point can contribute to the same point in the image giving raise to a disk of
confusion in the object plane of radius

r,=C,p° (17
The maximum path difference between rays coming from this confusion disk (see fig. 2) is
A= rcsin(ﬂ) ~r,f
that in differential form gives
—t object plane dA=r.dp=C,p*dp

- e ——— The corresponding phase shift is
dy (ﬂ)=—dA=7Cﬂ dp (18)
Taking into account the Bragg law
2sin(9,)~ 26, = B = Au

: and integrating (18) between 0 and B we obtain the total
lens plane  phase shift

2(w)= %C“_fu" (19)

This is not a rigorous derivation of y(u). If the reader is not
satisfied he can consult the Spence's book quoted in the
references.

The effect of the focus can be calculated in an analogous
way. In fact if we underfocus or over focus the objective
lens we obtain a disk of confusion in the object plane
having radius

|mage plane rp=¢&f
LI PRSI e S i e T where € is the distance of the object plane from the plane
that is in focus. € is positive for overfocus (strengthening of
Fig. 2 Ray geometry due to spherical aberration  the lens) and negative for underfocus (weakening of the
lens). € is usually known as defocus since high resolution
images are taken underfocused. Following the same procedure adopted for spherical aberration with r.
replaced by r¢ we obtain the following phase shift

2w)=7eru?

The total phase shift due to B(u) is then
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z(u)=7te/1u2 +—72£CS}»3u4 (20)

This phase shift ¢(u) can play the role of the phase-changing plate of the Zernike's microscope. Furthermore
x(u) can be tuned by changing the defocus €. Unfortunately the optimal condition of a phase shift constant
over the reciprocal space and equal to n/2 radians or 37/2 radians cannot be achieved exactly since x(u) is a
varying function of u. However we have optimal defocus values for which we are close to this condition.

Summarising we have found a way to obtain a phase contrast image with electrons using the imaging
properties of an optical system. In order to obtain the same phase shift obtained by Zernike in an optical
microscope with the phase-changing plate we have to underfocus the electron microscope. It is astonishing
that to see with electrons we exploit the spherical aberration which is a defect of the lens and we record
images not in focus! '

6. Contrast transfer function

In order to see how the transfer function directly influenses the image we calculate the Fourier transform of
the square modulus of the wave function in the image plane

1, @)= Fr(#, ()’ )= FT(2( )@ 1 y) )= 2, (@)@ (FT(%,," (5. 7) = o (0) @ T - w)

(21)

This is an experimental quantity. It can be easily obtained by most of the image processing software directly
from the recorded image. From equations (14), (15) and (16) we obtain , for ‘T’im (u) , the expression

‘T’,.m (u)= ‘T’(u)A(u)E (u)(cosb((u)]+ i sin[;_/(u)]) (22)

If we substitute in (22) the weak phase object approximation (10), since both A(0) and B(0) are equal to 1
and %(0)=0 we obtain

P, (u)=5(u)+ g— F(u)4(u)E() sz'n[)((u)] —i cos[;((u)])
P (-u)=5(u)+ %F (w)A()E@) sin[z )]+ cos[x(u)])

We have used the property that the structure factor is the Fourier transform of a real quantity so
F*(u) = F(—u). These expressions must be inserted in the convolution (21) to calculate the Fourier
transform of the image and apparently the result seems to be quite complicated. Although only the first order
terms in F(u) must be taken into account since we are considering a weak phase object approximation. The
first order terms arise only from the convolution of the delta function with the second addendum of equations
(23). Furthermore the cos[y(u)] terms cancel out because they appear with different sings in eq (23). The
final result is

(23)

I (u)=5(u)+ZgF(u)A(u)E(u)sin[Z(u)] @4)
This equation is usually written as
1, ()= 5(a) + S 7(@)F(u) @5

and

T (u) = 2A(u)E(u)sin[;((u)] (26)
is called the contrast transfer function (CTF). Examples of this function for a modern field emission
microscope of 200 kV are shown in fig. 3. The envelop part E(u) has a damping effect and it limits the
maximum frequency transferred by the microscope. The cut off value u, imposed by this function is called
the information limit, since 1/u, gives the size of the smallest detail detectable in the image (see fig. 3b). It is
misleading to relate u, directly to the resolution since the information transferred by T(u) beyond its first
zero is distorted by the change of sign. For this reason it is more common to consider the resolution of the
microscope (at a certain defocus) fixed by the first zero u, of T(u) (see fig. 3b). By looking at equation (23)
and (26) we see that sin[y(u)] is transferring the information to our image, whereas the cos[y(u)] transfers
information to the imaginary part of ‘¥, (x,y) that gives contribution only to the second order in the
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Fig. 3 Contrast transfer functions calculated for a 200kV Philips Tecnai F20
field emission gun microscope at different defocus. The C;of the lens is 1.2mm.
a) Positive defocus e=70nm. b) Scherzer defocus €=-70nm. ¢) e=-130nm

calculation of the square modulus I, (x, y) = [‘Pm (x, yxz . Consequently, as already worked out by following

Zenike's considerations, the best conditions are reached when the sin[(u)] remains close to -1 or 1 for the
widest possible interval in Fourier space. The form of 7(u) written in (20) implies that if the spherical
aberration term is not compensated by a negative defocus €, the sin[y(u)] oscillates too fast and the
resolution is compromised (see fig 3a). Therefore the sin[(u)] must be negative for small u and the optimal
shape is obtained for a negative defocus. This defocus is called Scherzer defocus and it is a function only of
the C; and the accelerating voltage of the microscope

gsch = _“{%C\/’{’ (27)

For this value the sin[y(u)] is negative and close to -1 for a wide range of u (see fig. 3b). The first zero is
3

1 ==
u,, =151C,34° (28)
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Inverting the (28) we obtain the resolution
1 2
r, =——-~C.1 (29)
151
From this last formula it is quite obvious in which way we can increase the performance of the microscope as
a high resolution instrument. We have two possibilities either we decrease the electron wave length by
increasing the accelerating voltage or we reduce the spherical aberration.

A. Mathematical appendix on Fourier transform

A.1 Complex numbers

Before starting to discuss the Fourier transform and its properties we must become familiar with several
mathematical concepts. First of all we must know what complex numbers are, because the Fourier transforms
are complex functions of real variables. A complex number is defined as

Z=X+iy ¢))
where x and y are real numbers and i is the imaginary unit. We can treat these numbers as ordinary numbers
with the only caution that i* = —1. For example if we want to sum z, with z, we have:

z) + = xt% T i (y1ty2) (2)
whereas if we multiply them we obtain
212;=X1X2 - Y1y2 i (X1y2 + Xoy1)

Another way of representing a complex number is as a 2D-vector having components (x,y). The x and y axes
are called real and imaginary axis respectively. In fact if y=0, z is real while, if x=0, z is purely imaginary. In
this case the sum (2) can be represented using the parallelogram rule for summing two vectors (see fig. 1b).

Im a) Im 242 b)

X He Re

Figl.a) Representation of a complex number as a vector. b) Sum of complex
numbers using the parallelogram law.

We can identify this vector also using its length p (called modulus or amplitude) and the angle 6 (called
phase) formed with the positive direction of the x axis (see fig. 1a). In this case we can write

z=p cos(6) + i p sin(0)(3)

where

p=+x>+y>, 0= arctan(lj

X

The eq. (3) can be rewritten in a compact form as:
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“4)

This is the most compact and useful form of writing a complex number and consequently the most common.
This is also the form in which structure factors are usually written and every crystallographer should be
familiar with it. We can think of the amplitude as the magnitude of the complex number and the phase as its
sign. This is 0 for positive real numbers, 90 degrees for positive imaginary numbers, 180 degrees for
negative real numbers, 270 (or -90) degrees for negative imaginary numbers and something in between for
ordinary complex numbers. A final remark: if the exponential of i0 sounds you strange I suggest you to
consider it just as an algebraic expression useful for calculation, keeping always in mind that 6 is an angle
consequently it is periodic with period 360° (or 27 if you measure it in radians).

A.2 Periodic functions in 2 and 3 dimensions.

In electron crystallography we are dealing with periodic functions of two and three variables like for
example the contrast in an HREM image or the crystal potential, then we must have clear how to describe the
periodicity in more then one dimension. As reference function we chose the cosine wave. A periodic
function in one dimension is a function that repeats itself after a certain interval called period. To define it
you have to specify the period, the shape of the function inside the period and the value of the function in the
origin.

Fig 2 . Graph of the function (5) where u = (1,1)

For the cosine the period is 27, the shape is the cosine wave and the value in the origin is 1”. It is worth to
recall that if we consider the cosine function as the real part of a complex number (see eq. 3) a shift of the
origin corresponds to a shift of the phase 6 ®. In two or more dimensions things are more complex because
we have more degrees of freedom. We can understand easily that we need something more by looking at the
waves on the surface of a lake. We can describe them in an approximate way as two dimensional cosine
waves, but in this case beside the period, the shape and the origin we need to specify also the direction of the
wind! Then, when we are in more then one dimension, a periodic wave is characterised also by a direction of
propagation identified by a vector u.’ In the case of our cosine wave we have:

f(r) =cos (27r u- r) ©))

In fig. 2 to clarify this concept we display the graph of a two-dimensional cosine wave having direction
u=(1,1). The length of u is the frequency of the wave (the inverse of the period). Along lines perpendicular

" There is no difference between cosine and sine function except for the choice of the origin.

8 This will be very important when one has to fix the structure factor phases on the basis of symmetry. (See Sven
Hovmoller lecture on “Symmetry in real and reciprocal space.”)

° In this lecture notes we are going to write vectors with bold letters.
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to u the cosine has the same value, therefore u identifies lines where the phase of the wave is the same'® (see
fig. 3). In three dimensions the situation is exactly the same except that u has three components instead of 2
and consequently it identifies equal phase planes instead of lines.

Fig .3 Gray scale map of the cosine function (5). The equal phase lines © and
the vector u are indicated by a segment and an arrow respectively.

A. 3 Fourier transform

The cosine waves are the fundamental periodic functions but a general periodic function in two dimensions"’
is more complicated. Instead of having one definite period the function is repeated regularly in the same way
inside an area. This area is called unit cell and it tiles the space identifying with its sides a lattice A'>. An
example of such a function is given in fig. 4.

Fig. 4 Example of two dimensional periodic function. On the left a grey scale
map is displayed and the unit cell is drawn. On the right an enlargement of
the motif inside the unit cell is shown.

Suppose we want to know which fundamental periodicity of the form (5) are hidden in a function like that
one displayed. The Fourier transform gives us exactly this information. It is defined in the following way:

' In this case I call phase the argument of the cosine function, but I suggest to the reader to think always about our
cosine wave as the real part of a complex number. In this way the phase we are speaking about is the phase of the
complex number.

' We are going to analyse the 2D case for simplicity but in principle there is no difference between 2D and 3D Fourier
transform, you have just to add one variable. What is really different is the crystallographic symmetry that in 3D is
much more rich.

"2 In 3D this is the Bravias lattice of the crystal.

10
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f(u)= FT[f(r)]sé Lf(r) exp2mi(u-r)fir  (6)

where S is the area of the unit cell (in 3D is the volume of the unit cell), and the integral is calculated inside
the unit cell. To understand the meaning of the f (u) we have to recall that (Fourier inversion formula) the

periodic function f(r) can be written as

f(r)= F(u)exp[— 27i(u - r)fu 7
Sinceithe function f(r) is real F(— u) =f (u) If we call ¢(u) the phase of F(u) we have
f(r)= .ﬂf(uj cos[27ti(u ‘T)— ¢(u)}iu ®)

where the integration is carried out over half of the frequency space. This formula is very interesting and tells
us that the function f(r) can be viewed as a superposition of cosine waves each one weighted by the
amplitude and shifted by the phase of the Fourier transform calculated in the corresponding frequency vector

u.

8
1
<
2
4
=3
é

Fig.5: Fourier transform of the 2D periodic function displayed in fig. 4. On the right the digital map around the origin is
displayed. Both the phase and the amplitude of the transform are printed.

As an example in fig. 5 the Fourier transform of fig.4 is displayed. As can be seen in the digital map shown
on the right we must always taking into account that a Fourier transform is in general a complex function and
what is usually represented on the screen is just its amplitude! Another important fact we can learn from fig.
5 is that, apart effects due to numerical problems, for a periodic function the amplitude of its Fourier
transform is different from zero only on a discrete set of frequencies. These frequencies form a lattice called
the reciprocal lattice”. This could be expected, in fact from one dimensional signal theory we know that a
signal with a certain periodicity can be described as a superposition of cosine waves that are harmonics of
this periodicity. Then the integrals (7) and (8) become series and if we indicate the reciprocal lattice with A*

we have:

1(r) = Zl?(ux cos[2i(u - r) — o(u)] (9)

ueA

A.4 Crystal structure, crystal potential and structure factors

In an electron microscope, electrons are scattered by the electrostatic potential within the crystal. The
potential is created by both the nuclei and electrons of the atoms in the crystal and it is a periodic 3D

'3 This is another way of seeing the crystallographic reciprocal lattice.
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function. The potential V(r) at any position r = (x y z) within a unit cell depends on the types of atoms and
their positions. V(r), is the sum of contributions from all the atoms in the crystal:

' N
V(@)=Y Vr-r;+R) (in Vol (10)
ReA j=1
where V; is the potential contributed by an atom j at position r; = (x; y; z)) = x;a + y;jb + zjc (a, b and c are
the basic vectors of the unit cell) R is a vector of the Bravais lattice A and N is the number of atoms in the
unit cell. The Fourier components of the crystal potential are, by definition:

=~ | :
V(@) =FT[V(r)]= = LZ V;(r —r;)exp[2mi(u-r)Hr (11)

= -
where FT is the Fourier transform operator, Q = a (b x ¢) is the volume of the unit cell and the integration
is over a whole unit cell. With the change of variable W = r —r; this can be simplified as

~ N
7u) = expiu-r, )]-glS |7, (w)exp2ri(w -u)law (in Volt)
J=l Q
that can be rewritten in a more compact and readable form as
~ N ~
7) =37 (wexplriu-r,)] (12a)
Jj=1

Since the potential of a crystal is periodic, its Fourier components I7(u) are discrete. I7(u) is different from
zero ifu=(hkl)=ha" + kb* + Ic” is a discrete reciprocal-space vector belonging to the reciprocal lattice
A* (@', b* and ¢ are the basic vectors of A*). The structure factor F(u) differ from I7(u) only by a
multiplying constant which is related to the unit cell volume Q (Spence and Zuo, 1992)

h? A
Sy F(u) = O_—QF(“) (13)

where 4 is Planck's constant, m and e the electron relativistic mass and charge, A the electron wavelength and
c the interaction constant

V(u)=

2mme\

hZ
Taking into account equation (12a) and the relation (13) we can understand why the structure factor is
usually written as

6= (in V'A™
F(u) = i f;(u)exp2mi(u-r;) (in A) (12b)

f,(u), called atomic scattering factor, is just the Fourier transform of the crystal potential produced by the j"
atom and the exponential term is coming from the change of variable W =r —r; we have done during the

calculation of the Fourier integral. The f; values for all atoms and some ions are listed in the International
Tables for Crystallography, Vol. C (1995). The crystal structure factors F(u) are measured in A while the

Fourier components V(u) of the crystal potential are measured in Volt.

The structure factor F(u) is the sum of all vectors (each with an amplitude fj(u) and a phase 2nu-r;) for all the
atoms in the unit cell, as shown in Fig. 6. F(u) is complex and contains an amplitude part |[F(u)| and a phase
part ¢(u) _

F(u) = [F(u)|exp[i¢(u)] (14)
The phase ¢(u) of the structure factor, unlike the amplitude, does not have a fixed value. It depends on where

the origin is chosen in the unit cell. If the origin is shifted by a vector ry= (X,¥.2,), the new phase is related to
the old phase by

¢new(u) = ¢old(“) + 2nu- Io (15 )
12
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For centrosymmetric structures, the origin is always chosen at a centre of symmetry, and then F(u) becomes
a real number, i.e. the phase ¢(u) can only be either 0° or 180° (see Fig. 6b).

a) b)

f1 f*1

f1 f2 f2 f*2

F(u)
Re Re

F(u) fa A/
3 3

f*
fa ¢ fa

Fig. 6 Fourier synthesis of the crystal structure factor F(u) presented in an amplitude-phase diagram. (a) A
noncentrosymmetric crystal with 4 atoms in the unit cell. The atomic number increases with j and so does the scattering
power f;. Note that the structure factor phase ¢(u) is close to the phase 27u-r,. This shows that heavier atoms play more
important roles on the phase ¢(u) than lighter atoms. (b) A centrosymmetric crystal with 4 unique atoms in the unit cell.
For each atom pair, one at rj = (x; y; z) and the other at -r; = (-x; -y; -z, the amplitudes are the same (= f;) while the
phases are 2mu-r; and -27u-r;, respectively. The sum of all vectors is always a real number, which means that the phase
is either 0° or 180° for centrosymmetric crystals.

Normally, heavy atoms scatter electrons more strongly than light atoms. Thus, the vector sum of only the
heavy atoms in a unit cell has a phase close to the phase of the total structure factor, coming from all the
atoms in the unit cell, as shown in Fig. 6.

The potential V(r) is a continuous three dimensional function in real space. On the other hand, the structure
factors F(u) are discrete points in reciprocal space. They can be represented by a list of amplitudes and
phases columns F(hkl) and ¢p(hkl). The potential V(r) can be calculated from the structure factors F(u) by
inverse Fourier transformation:

V) = ;%Z F(u) exp[- 27i(u-1)] (16)
h

The potential at any point in the crystal can be calculated by adding the vectors F(u)exp[-2wi(u-r)] for all the
structure factors F(u), i.e. by Fourier synthesis. In fact, each vector of reflection u, together with that of its
Friedel pair -u, generate a cosine wave (see Patterson, 1935):

F(u)exp[-2ni(u-r)] + F(-u)exp[-2ni(-u-r)] = 2|F(u)|cos[¢p(u)-2n(u-r)] an

If both the amplitudes |F(u)| and the phases ¢(u) of the structure factors for all reflections u are known, the
potential V(r) can be obtained by adding a series of such cosine waves. Each cosine wave is a set of parallel
planes (Bragg planes) of alternating high and low potential.

13
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