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Procedures for three-dimensional reconstruction of spherical viruses by
Fourier synthesis from electron micrographs

' , By R. A. CRowTHER
Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge

[Plates 43 and 4;4]

An account is given of 2 method which has been developed for computing three-dimensional density
maps from transmission electron micrographs using Fourier transforms, The reconstructions objectively

1. INTRODUCGTION

Conventional electron microscopes possess a large depth of focus. Consequently a transmission
electron micrograph repr.céents a projection of the scattering density in the specimen onto

a plane normal to the direction of the electron beam. Knowledge of three-dimensional relation-
‘ ships between the various parts of the specimen must therefore be obtained from one or more
of these projected views of the object. A general method involving the use of Fourier transforms
has been proposed (DeRosier & Klug 1968). It has been applied (DeRosier & Klug 1968;
Moore, Huxley & DeRosier 1970; Finch & Gibbs 1970) to biological assemblies with helical
symrhetry, for which special case a single view of the particle may provide sufficient information
to reconstruct the object at least to limited resolution, since the two-dimensional transform
obtained directly from one image can be used in a Fourier—Bessel inversion, F or non-helical
particles it is necessary to combine data from a number of different projected views and this, in
turn, requires data reduction and interpolation (Crowther, DeRosier & Klug 1970). We have
developed mathematical and computational procedures for implementing the method and have
applied these to reconstructions of spherical viruses, where a number of different views are
required. A brief account of this work has been given by Crowther, Amos, Finch, DeRosier &
Klug (1970). In this paper we describe in detail the actual procedures used.

In spherical viruses the coat protein molecules are arranged with icosahedral symmetry
(Caspar & Klug 1962) to form a protective covering for the nucleic acid. This kind of particle
is well preserved in negatively stained preparations, and the high symmetry and possibility of
recognizing the orientation of certain special views make it a natural choice for testing' the
extended system of reconstruction. Above all, the presence of high symmetry means that in
principle only a small number of distinct views are required for their reconstruction.

We now describe the method and then discuss its application to tomato bushy stunt virus.

2. Tue METHOD OF RECONSTRUCTION

The method of reconstruction is based on the projection theorem, which states that the two-
dimensional Fourier transform of a plane projection of a three-dimensional density distribution
is identical with the corresponding central section of the three-dimensional transform normal
to the direction of view. The three-dimensional transform can therefore be built up section by
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section using transforms of different views of the object, and the three-dimensional reconstruc-
tion then produced by Fourier inversion. The approach is similar to conventional X-ray
crystallography, except that the phases of the X-ray diffraction pattern cannot be measured
directly, whereas in electron microscopy they can be computed from an image.

The different views may be collected either from a single particle by using a tilting stage in

the microscope, or from a number of particles in different but identifiable orientations. In -

general, it is desirable to combine data from different particles so that imperfections can be
averaged out. When different particles are viewed from different angles their absolute orienta-
tion must first be found; we have developed a method for identifying the direction of view,
which is based upon the symmetry known (or thought) to be possessed by the particle.

The reconstruction method is straightforward in principle. The area of interest.on the micro-
graph is converted to an array of optical density values by means of a computer-controlled film
scanner (Arndt, Crowther & Mallett 1968). All further operations required for the reconstruc-
tion are performed by a digital computer. The digitized densities are transformed by computa-
tion into a set of Fourier amplitudes and phases. Each view of the particle provides a central
section of Fourier space and the symmetry of the particle can be used to generate further central
sections related to the first by the symmetry. By inserting data from views of the same particle
in different orientations, or from different particles in independent orientations, and by making
use of the symmetry, Fourier space is ‘filled up’ to enable the reconstruction to be carried out
to a given degree of resolution. We consider later how to decide when the degree of filling up is
sufficient for a valid reconstruction to be produced.

In order to be able to compute a correct Fourier inversion of the three-dimensional data so
collected, the values of the transform must be available at regularly spaced points throughout
its volume. Otherwise, an undistorted representation of the required density will not be obtained
(formally, this happens because the result of a Fourier inversion of a sampled transform is the
convolution of the required density with the transform of the sampling function). In general,
however, the planes of collected data will contain relatively few of the regularly spaced trans-
form points. To use them efficiently, the values of the transform at points where they happen
to be available must somehow be interpolated to convert them to the values at the regularly

spaced points required for the Fourier inversion.
We have developed several procedures, described in detail elsewhere (Crowther, DeRosier

& Klug 1970), for carrying out this interpolation. Two types of grid system commend them- -
selves. If normal Fourier inversion in Cartesian coordinates is used, the transform values must

be available at points of a three-dimensional lattice and the Whittaker—Shanrion formula is
used to perform the interpolation. For Fourier-Bessel inversion in cylindrical polar coordinates

the transform values are required on the grid formed by the intersection of the R, @ and Z

surfaces, in which case the interpolation is done by cylindrical expansion. According to the
‘symmetry of the object, and the way in which the data have been collected, one or other of these
representations may be particularly appropriate. In either case thegrid spacings are determined
by the limited extent of the original object. In the reconstructions described here we have used
a cylindrical grid with Fourier-Bessel inversion, since this is computationally convenient.
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3. INTERPOLATION BY CYLINDRICAL EXPANSION

' We choose cylindrical polar coordinates (1, §, 2) in the particle and (R, ®, Z) in the trans-
form (figure 1). We expand the density p(r, ¢, z) in cylinder functions (Klug, Crick & Wyckoff

1958) : . o [=3)
PInd2) = B | g,(r, Z) exp (ing) exp (2mizZ) dZ. (1)
n=—owJ —w
- The Fourier transform F(R, &, Z) is then expressible in the form
F(R, @, Z) = % G,(R, Z)exp (in( D +}w)), (2)
i
VA

Figure 1. A cylindrical polar coordinate system is used to describe the transform,
constant Z and on annuli of constant R within each Z plane. It is shown sche
corresponding to some view of the object cuts the various annuli,

where G, (R, Z) is the Fourier-Bessel transform of g,(r, Z)

which is sampled on planes of
matically how a central plane

Gl 2) = [ .1, 2) (e 2y, )

and conversely & 2Z) = f N G.(R, Z) J,(2mRr) 2wRdR. (4)
0

We consider the three-dimensional transform to be sampled on a series of equally spaced
planes of constant Z and each Z plane to be divided into a number of equally spaced concentric
annuli, as shown schematically in figure 1. The form of equation (2) then implies that around
an annulus of fixed R and Z the transform F is a known function of
of the central sections of the transform computed from the given
intersect any particular annulus at points @; whose positions are de
parameters of the views. The transform values F;
annulus we may write (2) as

®. In general some or all
views of the particle will
termined by the angular
at these points are then known. On each
- F; = 3 B,6, ()

where B, = exp (in( B, + §m)).

We have one set of linear equations (5) for each annulus.
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On each annulus we may therefore attempt to solve equations (5) for the G, (&, Z). In this
way we approximate each of the functions G,(R, Z) by its values at a discrete set of equally
spaced values in R and Z. The functions g,(r, Z) can then be computed from (4), where the
infinite integral is replaced by a finite summation over discrete points. The three-dimensional
density is then computed by summing Fourier series (1), where again the infinite integral will
be replaced by a finite summation over discrete Z values. Replacement of infinite integrals by
finite summations is equivalent to truncating the Fourier series and fixes the resolution of the
reconstruction. Inversion of the sampled, as opposed to the continuous, Fourier transform leads
to a reconstruction in which the required density is repeated periodically with period equal to
the inverse of the sample spacing. To avoid overlap of neighbouring images of the particle in
the periodic reconstruction the sample spacing must therefore be smaller than the reciprocal of
the diameter of the particle.

The number of G,, that can contribute on any annulus is fixed by the radius R of that annulus
and by the radius of the particle. The Bessel function J,(x) is effectively zero for 0 < » < || —2.
It follows from (3) that the maximum order of Bessel function that can contribute on annulus &
for a particle of radius a is npg,, = (2TRa+2).

A necessary condition for equations (5) to be soluble is that on each annulus there should be
as many measured transform values F; as unknowns G,. However this is not a sufficient condi-
tion, since the points @, at which the transform is available may be very unfavourably spaced,
so that the G, are poorly determined.

In practice one must introduce extra views of the particle to give rather more data points
than unknowns in each interpolation problem. We then solve these extended sets of equations
by the method of least squares. We write (5) in matrix form as observational equations:

F = BG. (6)
We then form the normal equations:
B'F = B'BG,

which give a least squares solution of (6) as
G = (B'B)-1B'F.

4, THE NUMBER OF VIEWS REQUIRED

To produce a valid reconstruction to a given resolution, each sct of normal equations corre-
sponding to an annulus within the appropriate Fourier cut~oﬁ' sphere must be soluble. We may
investigate whether any of the normal matrices are singular by computing their elgenvalue
spectra. Although in principle the normal matrix is invertible provided none of its elgenvalues

is actually zero, in practice there is a lower limit for smallest eigenvalue, below which one _

cannot usefully invert the normal matrix. This is because solution of the equations by inversion
of a normal matrix with very small eigenvalues effectively amplifies any errors in the data by
a factor proportional to the mean inverse eigenvalue (Crowther, DeRosier & Klug 1970) and so
may lead to a very inaccurate determination of the required G,. For our problems we find that

the method produces consistent solutions if the mean inverse eigenvalue of every normal matrix. E
is less than unity. In practice this means that on most annuli the mean inverse eigenvalue is’

considerably less than umty, as we shall see later.
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The number of views that must be included in order to satisfy this condition depends on
which views are available and also on the size of the object and the degree of resolution desired,
since these fix the number of terms to be included in the Fourier inversion and therefore the
number of unknowns in each least squares problem. It also depends on the symmetry of the
object, since this may be used to reduce the size of the least squares problems by a suitable

.choice of coordinate system. We give an example of this use of symmetry later. Finally the
" number of views required depends on which method of interpolation is used. The relative power

of various interpolation schemes is assessed elsewhere (Crowther, DeRosier & Klug 1970). It is
shown there. that although Whittaker—Shannon interpolation in a Cartesian system uses data
more efficiently than the cylindrical expansion scheme described here, the computational con-
venience of the latter more than outweighs this at present,

5. REFINEMENT OF PARTIGLE ORIENTATION AND ORIGIN POSITION

To use the symmetry of the spherical viruses and also to relate different particles, we must
know the orientation relative to the symmetry axes of any view that we Ppropose to include in
the reconstruction. This can be determined by a method which depends on the existence of a set
of pairs of ‘common lines’ in the two-dimensional transform of any view of a symmetrical
particle. These arise as follows. An observed section of the transform intersects an identical
symmetry related section in a line, along which the transform must have the same value in both
sections. The common line lies in the original section. However, regarded as lying in the sym-
metry related section it must have been generated by the symmetry operation from some other
line in the original section. We therefore have a pair of lines in the original transform plane
along which the transform must have identical values. A similar pair of lines will be generated
by each possible choice of pairs of symmetry operations. The angular positions of these lines are
dependent on the orientation of the particle.

Since the disposition of the various pairs of common lines in the transform of a particle cannot
be recognized directly it is necessary to search for them computationally. We compare the
differences in the observed values of the transform along the set of common lines corresponding
to a particular choice of orientation parameters. The minimum value of the sum of these
differences will occur when the angular parameters correspond to the true orientation of the
particle. The orientation of an unknown view of a particle can be determined by searching
a complete asymmetric unit of rotation space. The search can be restricted to a small range if
a preliminary estimate of the orientation of the view is available (from, say, comparison of the
image with a trial model), in which case the method serves for refinement.

The common lines may also be used to determine the translational position of the centre of
the particle, defined as the projected point of intersection of all the symmetry axes. It is vital
that the phases of the various two-dimensional Fourier transforms and of the three-dimensional
Fourier transform should all be referred to this common point as origin. For a given orientation
the positions of the common lines are fixed and changes in the position of the phase origin affect
only the phases of the transform. Although in theory one ought to perform a five-dimensional
search-for three angles and two translations simultaneously, in practice it is possible to choose
the initial phase origin close enough to the particle centre for the phase errors introduced to
have little effect on the determination of the orientation. Thus the orientation is determined by
a three-dimensional search using phases computed relative to a slightly incorrect phase origin.
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Taking the orientation so determined one does a two-dimensional search to refine the position
of the phase origin. If a new angular search is now made using transform phases computed
relative to the refined phase origin, the value of the sum of differences at the minimum will be
smaller, although in general the position of the minimum will be unaltered. The computational
advantages of splitting the search in this way are considerable.

The value of the sum of differences at the point given by the program for the solution of the
five-dimensional search provides a measure of the degree of preservation of the icosahedral
symmetry in the particular particle whose image is being investigated. Since we can compule
the residual to various limits in Fourier space, it is possible to decide to what degree of resolution
the details in a particle image arc related by icosahedral symmetry. Clearly, data should be

included only if they show some degree of icosahedral correlation: beyond this limit any trans-

form data are contributing only noise to the final reconstruction.

We have so far considered common lines occurring in the transform of a single image. If,
however, we have two independent views coming from two particles in different orientations,
the transforms of these two images must also contain a set of pairs of common lines, where now
one member of each pair lies in one transform while the other lies in the other transform. It
would clearly be possible to use these ‘cross common lines’ to determine the relative orientation
of the two views. However, it is more useful in this particular problem to determine the orienta-
tion of each view independently by self-refinement in the way already described and then to use
the cross common lines to ensure that the two transforms are on the same linear scale and that
the magnitudes of the two transforms along the common lines agree as well as possible. We fit
an overall radial scale factor and an amplitude scale factor as a function of radius. The latter is
analogous to a crystauographlc temperature factor and ensures that when Fourier components
corresponding to a particular spatial frequency are obtained from different i images, they are
combined with the correct relative weights.

‘The cross common lines are also used to ensure that the various images are combined with
a consistent handedness. Any one image may derive from a projection either of a right-handed
particle or of a left-handed particle in the same direction. The only difference in the two cases
and one that is not detectable without tilting, is that the azimuthal orientation of the image in
its own plane differs by 180°. Once one of these two possible orientations has been arbitrarily
assigned to an image possessing a noncentrosymmetric component, the handedness of the
reconstruction is fixed. As assignment of orientation to a further view consistent with this
choice of hand can be made, by examination of the two sets of common lines arising from the
first view and from the two possible orientations of the added view and by choice of that

orientation which gives the lower residual. Although this leads to a consistent hand, the correct |

absolute hand must be determined by t1lt1ng experiments (Klug & Finch x968)

6, COMPUTATIONAL PROGEDURE .

In neither cylindrical nor Cartesian coordinates is it possible to express in the underlying

mathematical representation the complete 532-point group symmetry of the icosahedral -

viruses. In cylindrical coordinates the most economical method is to choose the polar axis to

coincide with a fivefold axis of the particle, so that only those G,(R, Z) for which n is a multiplé
of 5 need be included. If in addition we choose the origin of @ to lic midway betwéen two of the

twofold axes normal to this fivefold axis, the interpolation equations can be separated into real
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and imaginary parts, in a way convenient for computation (Crowther, DeRosier & K
We have in this way chosen a representation for the problem which possesses
The additional symmetry of the 532-point group must be used by explicitly g
any given view those icosahedrally related planes which are not already imp
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Froure 2, Part of a two-dimensional Fourier transform of a particle of tomato bushy stunt virus viewed along

a twofold axis (particle B in figure 4). The map, which shows log, |F|, is a photograph of contoured computer

output and is distorted because of unequal line printer spacings in the two principal directions. The inner
and outer dotted semicircles indicate F ourier spacings of approximately 7 and 3.5 nm respectively. Those

[ ' H
90
%ﬂ = 10
5 L
[}
B
£ 6ol
g
[5]
§ -
jan
30/
0 1 1 | ! 1 ]

] I
137 8.2 59 4.5 37 32 27 24
Fourier spacing/nm

Fieurz 3. Plots for tomato bushy stunt virus particles B, F and H (figure 4) showing for each particle how the

common lines residual, computed for the orientation and position patameters corresponding to the minimum
value when using all the data, behaves when computed from data lying in a series of bands of increasing
radius ini the transform. For convenience the residual is expressed as a mean difference in the Phase of the
transform along the pairs of common lines and a value close to 90° indicates no icosahedral correlation,
B and F are relatively good particles while H is rather poor.
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within the 522 symmetry of the representation. The final reconstruction must have exact
522 symmetry since only functions having this symmetry are admitted. It will possess 532
symmetry only if the images included really do arise from an object with 532 symmetry and if
their orientations have been correctly determined. This provides an added check on the results.

We thus adopt the following procedure. A number of particles are densitometered and their
two-dimensional Fourier transforms are computed choosing a phase origin as close as possible
to the centre of each particle. Fast Fourier transform methods are used (Cooley & Tukey 1965),
as implemented by DeRosier & Moore (1970). Figure 2 shows an example of the amplitude part
of such a transform obtained from a particle of tomato bushy stunt virus. The orientation of each
particle and the position of its centre are determined accurately by the common lines technique,
which also enables us to estimate how well the icosahedral symmetry has been preserved.
Figure 3 shows for a number of tomato bushy stunt virus particles how the common lines
residual at the point with minimwm value behaves as a function of increasing radius in the
transform. The results are plotted in terms of mean phase differences, where a value of 90°
indicates zero icosahedral correlation. The cross common lines are then used to put the various
images on the same scale and to choose a consistent hand.

Taking the best particles, as judged by their common lines residuals, we compute where each
transform plane, together with the symmetry related planes, intersects the various annuli and
extract the information required for setting up the normal equations. We then combine the
information from a number of particles and attempt to solve the normal equations on each
annulus for the G, (R, Z). We go on including extra views until the normal equations become
soluble on every annulus, as judged by their eigenvalues.

Typically in our problems we must include three or four views to satisfy the criterion, given,
in § 4, that the mean inverse eigenvalue of each normal matrix should be less than one. Speci-
fically for tomato bushy stunt virus with diameter 32 nm, if we make the separation of the
Z planes and the annuli within each Z plane both equal to ¢ nm~! and solve out to a Fourier
cut-off of 2.3 nm there are 613 annuli within the cut-off sphere. On each annulus we solve two
sets of normal equations, one for real parts and one for imaginary parts. When we include the
four particles B, D, F, G (see figure 4, plate 43), whose orientations are given by spherical polar
angles (90°, 0°), (94°, 76.5°), (88.5°, 81°) and (95°, 15°) and which thus span the asymmetric

unit in Fourier space fairly well, of the 1226 sets of equations 944 have a mean inverse eigen-

value between 102 and 10! and the remaining 282 have a mean inverse eigenvalue between

10~1 and 1. .

Having solved the normal equations we convert each G,(R, Z) to the corresponding g,(r, Z)
by a Fourier-Bessel transform (4) and then produce the three-dimensional density map by
summing Fourier series (1). The results are plotted section by section either as contour or

density maps, using a general plotting program (Gossling 1967).

7. APPLICATION TO TOMATO BUSHY STUNT VIRUS

Tomato bushy stunt virus (TBSV) has a maximum diameter of 33 nm and a spherically -

averaged diameter of 31 nm (Review by Klug & Caspar 1960). The major component of the
coat protein is arranged on a T = 3 icosahedral surface lattice, the 180 quasi-equivalent
structural units being clustered in dimers to form ninety morphological units (Finch, Klug &

Leberman 1970). Of these ninety morphological units, thirty lie on the strict twofold axes of the.

|
|
|
[
|
l
|

Crowther

Ficurr 4. A fis



et B TR
Lo fie Pl v,

S -

PHORSEES

netry and if :

i the resnlis,
sl aned their
: as possible
Mukoy 1963,
plitude part
viiomn of cach .
g techmigue, j
U preserved.

o Hn

adiug in the
calue ol on”

s the vartous

sywhere cach
voanmndn and
soanbre e
or ol Gk
1one becone

IO, Ve

|

L oTw. Bpeci-

ationr of the
e o Fourier

e Lwo

N

»include the

biericnl polar

yronnmetric




ol oty Bagsioe sione v, (a0

. - . . o i :
Lot o / Wi Ditnlene

Pescn e ol i, ETRRTSRNPITY BN IRTIE

Pnibiewd b

. .
Frowpr o A stervaepatr ol il g bl e prliot od e THSY pegrnsin
Predisutes e sbwenes b staing Boe Mol e dids disnsonr sost be sened with Tt STCPTCHOO C Vel

aodensin, aon, i which Gugle densin

s o virns

Frvwe 3. Comparison of peojectios i diffirent direetions of the recanstred density with nua
particles inthe eoveesponicling m"rf"zai;slii.ms. Vhe gond agrecment Between the two sets of pictares extends G
tlan

fe ddeiadll even thongh the velbee waindits of some featares aee ot cuite cirrect since te yeconstrs
wins it Tembededed nonegacioe siain® heloee ¢ Hll:]ﬂl!ll;" its projeciions. The spherieal polar .mwlx s spueeilying
the views are: (b (07, 003 particle By (b (i, 10T e (000, 25 (4 1980, ‘ o particle I3
N particle T

woned partic
resolution o

Four ol
to i ot

|
HE O sierooe

Botween inyg
(& f'l'i'é“'ﬂptﬂldia }
larly ws the y
sor that the v
As EAPCEH
local twolplc
Those marph ;
conires of 1
tell whether
minor protei
a much sma
stracture
The recon
torming rings
five-pointed
the rings of s
Lo, This
(Harrison 1t
Fl'n;z‘”/\-' the
mately hetwe

This suggests

regions.



1, plate 44

5b

otographed
1. Contours
wofold axes
ositions are

gh density
riewer,

res of virus
extends to
anstruction
i specifying
particle D;

B e T g e T o

AP U *&_N\,_—‘er\,—\ﬂjhw D > s CPLR ,—\*_m___,;:___«_\ ,,,,_-: o

e~

e

THREE-DIMENSIONAL RECONSTRUCTION OF VIRUSES 229

: suffa(':é’ﬂiétfiicﬂé, éncisn&; on the local twofold axes. These sixty are arranged in twelve rings of

five, whose centres partially exclude the stain, indicating the presence of protein.

Until recently, no simple correlation could be made between the morphology and the
published physico-chemic‘al data for this virus or for the very similar turnip crinkle virus
(Harrison 1967; Finch e al. 1970). Recent work on both viruses has established the molecular

- mass of the major protein subunit as about 40 000 (Butler 1g70; Weber, Rosenbusch & Harrison
' '1970), consistent with a total of 180 in the particle. Each of the ninety morphological units

would therefore correspond to a pair-of protein subunits, in agreement with the expected
symmetry. Butler’s work has also revealed the presence of a minor protein component in a suit-
able amount to account for the matter observed at the fivefold positions of the surface lattice.

For the reconstruction we chose a particularly favourable micrograph, where particles are
embedded in negative stain over a hole in the carbon substrate, as shown in figure 4. Experi-
mental details of virus preparation and electron microscopy are given by Finch et al. (1970).
The particles in this field have shrunk by about 10 %, from their normal diameter in solution,
‘but this shrinkage is in many cases isometric and preserves the icosahedral symmetry, as judged
by the common lines technique. Icosahedral correlation appears to extend to at least 2.5 nm for
good particles (figure 8), showing that detailed symmetry is preserved almost to the limiting
resolution of the negative staining technique.

Four of the best particles (B, D, F, G) indicated in figure 4 were combined including data out
to a cut-off of 2.3 nm. The reconstruction is shown as a contour map in figure 5, plate 44, and
as a stereo-pair of a density plot in figure 6, plate 44. Figure 7, plate 44, shows comparisons
between images from electron micrographs and projections of the reconstructed density in the
corresponding directions. The agreement between the two sets is remarkably good, particu-
larly as the reconstructed particle has not been ‘embedded in negative stain’ before projecting,
so that the relative weights of the various parts of the projections may not be quite correct.

As expected, the main concentrations of density in the reconstruction are on the strict and
local twofold axes of the surface lattice so that the morphological units are presumably dimers.
These morphological units are arranged in rings of six and five, and there is also density at the
centres of the rings of five, giving them the appearance of five-pointed stars. We cannot yet
tell whether this density arises from the shape of the principal structure unit itself or from the
minor protein component mentioned above. Density also appears in the rings of six, but at
a much smaller radius, and probably represents a coming together of the inner parts of the
structure units, possibly in association with the nucleic acid.

The reconstruction also shows that the dimers on the local twofold axes (i.e. those dimers
forming rings of five) lie at a greater radius than those dimers on strict twofold axes, so that the
five-pointed ‘stars’ stand out from the surface. This effect also shows itself as a puckering of
the rings of six, which is visible in figure 6. We estimate the difference in radius to be about
Inm. This observation confirms the results of X-ray crystallographic studies of TBSV
(Harrison 1967).

Finally there is 2 marked absence of density at the local threefold positions, that is approxi-
mately between the points of the ‘star’, indicating deep penetration of stain into these places.
This suggests that the nucleic acid is folded within the particle in such a way as to avoid these
regions.
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8. CONCLUSIONS

‘The reconstruction described here demonstrates that it is in practice possible to combine data
from a number of different particles. Using fast Fourier transform methods for computing the
two-dimensional transforms, the total time needed to compute a reconstruction from four views
starting from raw densitometer data and ending with a computer display suitable for contouring
is about 1§ h on an IBM 360/44 computer. Although in the case of spherical viruses with their
high symmetry the number of views necded is small, there is in principle no reason why the
method should not be extended to systems with lower symmetry for which many more views
must be combined to achieve the same degree of resolution. For successful implementation it
will be necessary to improve methods of specimen preservation during a tilting series in the
electron microscope and to use larger and faster computers to process the large volume of data
that will be needed.

I am grateful to Mrs Linda Amos for writing computer programs to carry out the procedures -

described in this paper. The electron micrographs were kindly supplied by Dr J. T. Finch.
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