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ABSTRACT Small-angle x-ray solution scattering (SAXS) is analyzed with a new method to retrieve convergent model
structures that fit the scattering profiles. An arbitrary hexagonal packing of several hundred beads containing the problem
object is defined. Instead of attempting to compute the Debye formula for all of the possible mass distributions, a genetic
algorithm is employed that efficiently searches the configurational space and evolves best-fit bead models. Models from
different runs of the algorithm have similar or identical structures. The modeling resolution is increased by reducing the bead
radius together with the search space in successive cycles of refinement. The method has been tested with protein SAXS
(0.001 , S , 0.06 Å21) calculated from x-ray crystal structures, adding noise to the profiles. The models obtained closely
approach the volumes and radii of gyration of the known structures, and faithfully reproduce the dimensions and shape of
each of them. This includes finding the active site cavity of lysozyme, the bilobed structure of g-crystallin, two domains
connected by a stalk in bb2-crystallin, and the horseshoe shape of pancreatic ribonuclease inhibitor. The low-resolution
solution structure of lysozyme has been directly modeled from its experimental SAXS profile (0.003 , S , 0.03 Å21). The
model describes lysozyme size and shape to the resolution of the measurement. The method may be applied to other
proteins, to the analysis of domain movements, to the comparison of solution and crystal structures, as well as to large
macromolecular assemblies.

INTRODUCTION

Small-angle x-ray scattering (SAXS) data of proteins and
other macromolecules in solution can give valuable infor-
mation on their size and shape parameters. SAXS using
synchrotron radiation gives access to time-resolved low-
resolution macromolecular structure and permits the study
of structural changes from the experimental data, by mod-
eling procedures. In principle, any structure can be approx-
imated at any resolution by a set of spheres of small enough
diameter, and the solution scattering pattern of such a model
structure can be calculated using the Debye formula (Debye,
1915). The procedure has been widely used in the past to
derive the scattering profiles of many simulated structures
(Witz et al., 1964; Cantor and Schimmel, 1980; Glatter and
Kratky, 1982), and there are now CPU-efficient algorithms
for the speedy computation of the scattering profile of
structures of even tens of thousands of scattering elements
(Pantos et al., 1996).

This work focuses on the inverse scattering problem,
which consists of deducing the possible structure(s) or
shape(s) or structural changes of a macromolecule from its
x-ray scattering profile to a given resolution. Contrary to the
direct scattering calculation, the inverse problem cannot be
solved analytically, i.e., no “inverse Debye” formula can be
constructed to yield 3D position coordinates from scattering

data. Moreover, different models can present practically
identical profiles to a given resolution, that is, in principle
the inverse scattering problem has no unique solution. We
will show how this ambiguity can be reduced. Several
methods have been developed to date for extracting struc-
tural information (shape) other than what classical SAXS
parameters offer (e.g., radius of gyration,Rg). These proce-
dures rely on an expert (human) modeler who generates and
refines models compatible with experimental data by trial
and error through an educated guess (Curmi et al., 1988;
Pilz et al., 1990; Garrigos et al., 1992; Wakabayashi et al.,
1992; Dı́az et al., 1994; Pantos and Bordas, 1994; Fujiwara
et al., 1995). This manual procedure is severely limited in its
scope by the large number of configurations that need to be
manually constructed and tested. It has frequently been used
in comparing experimental data with profiles obtained from
models derived from crystallographic structures, mainly for
detecting changes between biological macromolecules in
the crystalline state and in solution (Grossmann et al., 1992,
1997; Evans et al., 1994; Perkins et al., 1991, 1993; Mayans
et al., 1995; Beavil et al., 1995). The quality of the results
relies critically on the use of a priori reasoning and user
expertise. In all of these cases the solution of the inverse
scattering problem is indirect, that is, they are based on the
calculation of profiles of known structures that are com-
pared to the experimental SAXS data, or model structures
manually built by the user, one at a time, or also generated
automatically by the computer program from a prescribed
set of configurations. A Monte Carlo algorithm has recently
been developed for rapid computation of scattering profiles
of models made from a variety of building blocks such as
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prisms, ellipsoids, cylinders, and helices (Henderson, 1996).
The presence of an expert user is an intrinsic assumption of
the algorithm.

A direct approach is based on expanding the shape func-
tion in terms of spherical harmonics (Stuhrmann, 1970;
Svergun and Stuhrmann, 1991; Grossmann et al., 1993,
1997; Svergun et al., 1994a,b). It is a powerful method for
fitting the SAXS profiles of structures with shapes that can
be described by a low number of spherical harmonics, but it
is rather limiting when more complex shapes are to be fitted.
An elegant related method using icosahedral harmonics has
been applied to the study of viral structures (Zheng et al.,
1995). Ingenious as they are, and despite the excellent
results obtained in specific cases, these methods are limited
in the scope of their applicability.

To a first approximation, the inverse scattering problem
can be reduced to the search for a model compatible with
the scattering profile in a predefined region of space dis-
cretized in finite particles (typically spheres). This proce-
dure consists of two steps: 1) the computation of the scat-
tering profile for each possible combination of these
elements, and 2) the selection of the one that best fits the
experimental profile.

An exhaustive search approach using a CPU-efficient
computational method has been employed in a variant of the
program DALAI (Pantos, unpublished observations) to
characterize the low-resolution structures of tubulin micro-
tubules (Andreu et al., 1992) and tubulin rings (Dı´az et al.,
1994) in solution. This method selects the best available
configuration from a large set of candidates within a con-
figurational space. This direct procedure is limited in scope
because the exploration of all configurations becomes suc-
cessively more difficult as the resolution, i.e., the number of
spheres in a configurational space of given extent, increases
beyond reasonable limits in computer memory and process-
ing time. For example, the number of possible configura-
tions in a space discretized into 79 elements is close to
Avogadro’s number (279 5 6.044 3 1023), a number too
huge to be contemplated. Even if unsuitable configurations
(e.g., symmetry-related ones or those with too few or too
many spheres) are excluded from the computation of the
Debye formula, those remaining to be examined are still too
many, even to count, never mind processing them. In fact,
the exhaustive search with built-in criteria for avoiding
computation of unsuitable configurations (radius of gyration
rejection test), using parallel implementation of the DALAI
code (Dean et al., 1994), has only been attempted with
configuration spaces not exceeding 31 spheres in total (the
32-bit positive integer limit gives 231 2 1 5 2,147,483,647
possible configurations). This limit can only be exceeded by
including a “hard core” of spheres that are always present in
the model, and consequently not counting toward the num-
ber of configurations generated, but allowing the use of
models with larger volumes than that of 31 spheres.

The number of iterations that can be performed to provide
a sufficient level of confidence in the solution is limited by
practical considerations for the reasons explained above. To

overcome this problem, it is necessary to apply an efficient
search procedure. To this end, we have combined the Debye
formula algorithm used in DALAI (Pantos and Bordas,
1994) with an optimization tool: a genetic algorithm (GA).
GAs are search and optimization tools based on natural
evolution and genetic mechanisms (Goldberg, 1989; Davis,
1991). In other words, the GA is a general optimization
procedure with a wide scope of application, including the
solution of several biological problems (Forrest, 1993; Wil-
let, 1995). Fruitful results in molecular modeling problems
have been obtained recently using these techniques, such as
in protein folding (Dandekar and Argos, 1992, 1994, 1995;
Sun, 1995; Pedersen and Moult, 1995, 1997), RNA folding
and secondary structure prediction (Van Batenburg et al.,
1995; Gultyaev et al., 1995; Ogata et al., 1995), docking and
molecular recognition (Jones et al., 1995, 1997), and refine-
ment of NMR solution structure (Li et al., 1997).

The most important advantage of the GA approach is that
the algorithm and its implementation are intrinsically very
simple. There are no complicated mathematical formulae to
be coded and no CPU-expensive functions to be computed.
No problem-specific information about the solution needs to
be predefined or identified, although a priori knowledge of
maximum size can be used to great advantage. The only
requirements are 1) to be able to codify (map) the problem
into bit strings (spheres in a predetermined grid, bit on/off
signifies the presence/absence of a sphere), and 2) to define
an objective goodness-of-fit function (in our case the recip-
rocal square root of the sum of squared differences between
experimental and calculated profiles).

The use of random choice in guiding the search is a
built-in advantage of the GA approach guaranteeing objec-
tivity. The stochastic character of the GA allows the reso-
lution of ambiguities, because each run of the algorithm is
an independent sampling of the configurational space, and,
consequently, it is possible to obtain different, in principle
uncorrelated, structures resulting in a good fit. Finally,
genetic algorithms have proved to be highly robust under
varying parameter values and problem variables. This work
was aimed at building and testing a genetic algorithm
method of x-ray scattering simulation and at demonstrating
the feasibility of numerically solving the inverse scattering
problem in general terms. We present the results and per-
formance achieved, using as input simulated scattering pro-
files calculated from known protein structures of diverse
shapes, as well as the experimental SAXS profile of ly-
sozyme, to validate the general applicability of the algo-
rithm. We show that the low-resolution structure of proteins
in solution can be retrieved, in principle, from their x-ray
scattering profiles.

MATERIALS AND METHODS

The x-ray scattering analysis method developed is based on the combina-
tion of the fast calculation of scattering intensities and of searching for the
mass distribution that bests fits the scattering profile using a genetic
algorithm. The Debye calculation of x-ray scattering and the approximation
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using the algorithm of Pantos and Bordas (1994) will first be outlined.
Then the GA implementation of the inverse scattering problem will be
described, followed by the method of applying the procedure.

X-ray solution scattering

In SAXS measurements of monodisperse systems, the normalized intensity
distribution,I(S), is only determined by the structure of the object.S is the
scattering vector modulus,S5 2(sinu)/l, where 2u is the scattering angle
andl is the x-ray wavelength. Using numerical and, in some special cases,
analytical methods, it is possible to calculateI(S) from the 3D structure of
a given macromolecule. This can be addressed through calculation of the
pair distance distribution functionp(r) or by direct calculation of scattered
intensities (for reviews on SAXS theory, see Pessen et al., 1973; Pilz et al.,
1979; Glatter and Kratky, 1982).

One of the simpler (and therefore more frequently used) methods for
calculating the scattered intensities consists of the approximation of a given
molecular structure by a finite number of homogeneous spheres. Consid-
ering a structure of homogeneous electron density to the resolution of the
measurement, theI(S) for a model formed byn beads can be calculated by
the Debye formula (Debye, 1915), which reduces to

I~S! 5 Io~S!Fn 1 2 O
i51

n O
j51

n sin~2pSrij!

2pSrij G (1)

where the constantI0(S) is the intensity scattered by each identical sphere,
and r ij is the distance between pairs of beads (Pantos et al., 1996). The
double summation in Eq. 1 results in a long calculation time that depends
on the number of beads. To increase the efficiency of this calculus, we can
write the intensity as

I~S! 5 Io~S!SN 1 2 O
i51

Nbins

g~r i!
sin~2pSri!

2pSri D (2)

where the functiong(r i) is the pair-distance histogram generated by sorting
the distance-distance matrix inNbins clusters (for details see Pantos and
Bordas, 1994; Pantos et al., 1996). Now the calculation of the summation
is done only forNbins terms, which can be on the order of a few thousand,
which is rather less thann(n 2 1) in the Debye formula. This adds
significant computational advantages over the direct method presented in
Eq. 1. For this purpose we have used as a reference the program DALAI
(Pantos and Bordas, 1994), which implements this approximation.

The inverse x-ray scattering problem consists of deducing the structure
of an object from its solution scattering profile. One usual modeling
method consists of using Eq. 2 to estimate the scattering profile from a
model distribution of beads at a given resolution and comparing it with the
experimental data. If the two profiles do not match, then the model is
redefined (i.e., a new distribution of beads is generated) and tested again
until a good approximation is obtained. Several methods have been devel-
oped following this approach. The more successful applications are those
that take advantage of crystal structural information or those that use a
fixed geometry. A common characteristic of all of them is the need to test
all possible conformations at a given resolution. This approach is obviously
constrained both in resolution and in applicability. Models with high
resolution require a large amount of beads, which in turn result in a huge
number of different combinations (each one corresponding to one mass
distribution) that are eventually impossible to compute. This problem
belongs to the class of Np-complete problems for which it is impossible to
evaluate all of the possible solutions, and some optimization method must
be used instead of the exhaustive exploration. Taking into account the
nature of the problem (with a presumably rugged error landscape), we have
applied a genetic algorithm to iterative fitting of SAXS data. As will be
shown below, this method allows the search for a satisfactory solution in
the huge number of different combinations.

Genetic algorithm implementation of the inverse
scattering problem

A GA (Goldberg, 1989) essentially consists of a population of elements
(calledchromosomes, by analogy to the function of cellular chromosomes)
and some rules for reproduction and selection according to a given fitness
criterium. These population members evolve under selection pressure
conditions and replicate following genetics rules. Each chromosome rep-
resents one point in the search space and hence a possible solution of the
problem.

It must be emphasized that there are many ways in which a GA can be
implemented. In this work we have used a basic implementation that is
schematically shown in Fig. 1. First of all, a suitable representation for the
inverse scattering problem must be devised. We define an appropriate
initial object formed by spheres with reasonable dimensions (in accordance
with the desired resolution) and codify it into a binary array forming the
chromosome. Theith chromosome bit describes the presence (binary value
1) or absence (binary value 0) of a bead in the corresponding spatial
position of this object. With this, each different chromosome represents
one possible mass distribution, that is a potential solution. In terms of the
GA, the objective will be to find the structure with the scattering profile
closest to the target one.

The initial chromosome population is randomly generated, within some
restrictions applied to reduce the initial search space. Starting from this
initial population, each chromosome is assigned a fitness value according
to how well it solves the problem. To achieve this, each chromosome is
decoded into the corresponding spatial coordinates set, and the resulting
model is processed by the SAXS simulation procedure to obtain a theo-
retical scattering profile. These calculated profiles are compared with the
experimental data to determine the fitness value. The chromosomes are
combined using genetic operators (crossover and mutation) in such a way
that the structures with better fits have a higher probability of reproducing
(selection pressure). The repeated application of genetic operators to the
fittest chromosomes increases the average fitness of the population with
time and, accordingly, the generation of better models. This process, which
mimics natural evolution, is repeated until the system converges, or a good

FIGURE 1 Scheme of implementation of the genetic algorithm method
of SAXS simulation to numerically solve the inverse scattering problem.
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enough solution is found. In the present case, the result of this optimization
process yields a population formed by chromosomes (i.e., models) whose
corresponding theoretical profiles are very close to experimental ones. In
the following sections, we describe in more detail the different elements of
the algorithm employed, such as generation of the initial population,
evaluation, selection, and reproduction mechanisms.

a) Generating the initial conditions

The genetic algorithm starts with the a priori definition of the configura-
tional search space and the initialization of the population. The definition
of the search space is crucial both for overcoming possible ambiguity
problems and having a safe and efficient search. We have chosen a search
space model with a fixed geometry formed by a uniform hexagonal
packing of beads. The number of beads and its radius are selected accord-
ing to the resolution of the profile and taking into account the dimension of
the initial search object. Obviously, this dimension must be large enough to
contain the target structure and small enough to constitute a reasonable
search space. Two complementary ways of estimating the dimension of the
initial model have been developed. On the one hand, it is possible to have
a good approximation by a process of trial and error. In fact, when the
algorithm is run with a large object with large spheres, its size can be
progressively reduced in an iterative process, until a good enough result is
obtained, as indicated by higher fitness values. This process is independent
of the geometry of the initial model (although most of the first initial
models were ellipsoids, other shapes, such as cubic boxes, spheres, etc.,
may be used). On the other hand, a useful method of estimating the
approximate dimensions of the object of study is given by the classical
SAXS theory. The maximum particle distance,Dmax, can be calculated
through the pair-distance distribution, becauser(r) tends to zero forr .
Dmax. With this information, the dimension of the configurational search
space, consisting of a hexagonal packing of beads within an envelope, can
be defined. Experience has shown that the optimum size is the smallest
possible giving a volume of the search model;2–10 times the result model
volume. It is also necessary to set the diameter of the beads in this initial
pack to the desirable modeling resolution compatible with a reasonable
number of beads. Note that for an accurate simulation of the scattering
profile, the maximum dimension of the particles employed should be well
below 1/(2Smax) (Glatter and Kratky, 1982, pp. 136–137), that is, 8.3 Å for
a Smax of 0.06 Å21. The resolution of the model is limited by the experi-
mental resolution and the bead size commensurate with that resolution.

After the search scenario has been defined, a population of 400 chro-
mosomes, each of them codifying a given mass distribution of the start
model, is randomly generated by filling the starting space with different
number of spheres. One restriction imposed on this initial mass distribution
is connectivity, that is, the spheres must be relatively near one another. This
is easily implemented during the generation of the initial mass distribution
only, introducing a proximity weight in the process of selecting random
spheres, in such a way that once a bead has been selected, the next one has
a 0.95 probability of occupying one of the positions that are at a distance
of less than 2R in the initial model.

b) Evaluation and fitness criterion

The information contained in each chromosome is decoded to obtain the
corresponding mass distribution. The scattering profile of the correspond-
ing beads model is then calculated using the Debye formula. At this point,
each population member has a theoretical SAXS profile that can be
compared to the problem or reference profile. The evaluation function to be
optimized in the GA, the fitness function, is based on this comparison. First
of all, to compare different scattering profiles, a normalization procedure is
necessary. This is made by dividing the scattering intensityI(S) by the
value of the intensity at the originI(0). In the case of experimental data, the
later can be obtained by extrapolation within the Guiner region (Glatter and
Kratky, 1982), or substituted by the value at a very small angle. This results
in a normalization of every scattering profile to unitary dimensionless
intensity at the origin.

We explored different fitness functions to compare the input and the
calculated profiles. The algorithm gave better results by comparing inten-
sities on a logarithmic scale than on a linear scale. Among several fitness
functions tested, two stand out: the reciprocal of an R-factor (Rf; see
footnote to Table 1) andF, the reciprocal of the square root of the sum of
square distances between calculated and input profiles:

F 5 SO
i

~log~Iexp~Si!! 2 log~Imodel~Si!!!
2D21/2

(3)

Results from both functions were examined in detail, and in general we
obtained relatively lower convergence with Rf21. In this work we will use
F as the optimization parameter. Once this fitness value has been calculated
for each profile, chromosomes are classified as a function of their prox-
imity to the problem profile. The resulting ranked population is used as a
basis for selection, in such a way that those chromosomes situated in the
first positions (i.e., with better fitness) of the population have a higher
probability of being combined for reproduction.

c) Reproduction

One fraction (Pelite) of the total population (Ptot), that with higher fitness,
is preserved for the next generation. Then the resting members are deleted
to make room for the new chromosomes. We have obtained good results by
preserving one-half of the population and discarding the other half (Pelite 5
0.5Ptot). The regeneration of the population is made by the application of
two genetic operators: mutation, which introduces new information in the
population; and crossover, which combines the information of the fittest
chromosomes. The chromosomes used to create the new generation by
application of these operators are selected randomly between the best
members (the default value is 0.4Ptot first elements). The genetic operators
are chosen probabilistically according to predefined weights. Typical
weight values are 0.4 and 0.6 for the mutation and crossover, respectively.
This parent selection avoids premature convergence (trapping into local min-
ima) of the search. The implementation of the two operators is as follows.

Crossover.The crossover operator proceeds to exchange the informa-
tion of both parent chromosomes to obtain two offspring. For this purpose,
we use a uniform crossover (Davis, 1991). This kind of crossover implies
that the degree of exchange is fixed to a crossover rate, and the precedence
of each bit in the offspring is chosen randomly from the two bits situated in the
corresponding position in the parents. In general we have used a crossover rate
of 0.2. That is, on average, the offspring has 20% of the bits (genes) from
one parent and 80% from the other, and the distribution is random.

Mutation.With this operator a new element is created, copying bit to bit
a single parent with a certain error rate, which consists of changing its
binary value. As in most GAs, the mutation rate value is small. In this work
mutation has been introduced with a probability less than or equal to 0.01.

In addition, to increase the performance of the method, any duplicated
chromosome is discarded. With this we maintain the diversity in the
population, and by extension reduce premature convergence.

d) Population update

Finally, after mutation, crossover, and rejection of duplicates, the newly
generated offspring replaces the fraction (12 Pelite) of the population with
the worst fitness values.

The above process (steps b–d) is cyclically repeated until the maximum
fitness does not improve for a certain number of iterations (convergence).
The complete GA is schematically represented in Fig. 1. Most of the
parameters in the algorithm are user-defined. For example, the population
size (Ptot), the corresponding parts of the population that are recombined,
the genetic operator weights, and the crossover and mutation rates are the
result of previous parameterization. In terms of robustness, the default
values give the best results for models starting with a size no larger than
1000 beads. Obviously, for a given model, the values of the parameters
could be improved according to its characteristics. For example, if the
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problem needs more exploration, it might be necessary to increment the
weight of the mutation rate in the search process.

The program was written in FORTRAN and compiled for Silicon
Graphics workstations. As pointed out above, the computer time depends
critically on the number of spheres involved (resolution) and on the
dimension of the initial model. In a standard run with a starting model of
300 beads, the average time employed was;3 h on a dedicated SG Indigo
2 workstation with R4400 at 150 Mhz and 32 MB of RAM.

e) Increasing resolution

The higher the resolution, the longer the computing time. A procedure was
devised to increase the resolution and to prevent and detect possible local
minima. This procedure, referred to as mask strategy, consists of progres-
sive reduction of the search space and the size of the bead by creating an
envelope or mask from the resulting model of a previous search (see Fig.

2 B). In practice, the model formed by beads with radiusR1 is placed within
an hexagonal packing of beads of radiusR2 , R1. The smaller beads at a
center-to-center distance smaller than 2R1 from the larger initial beads
constitute the search space for the next run of the genetic algorithm. This
yields two advantages: it overcomes problems of convergence and permits
working with smaller models, and with the corresponding reduction in the
search space, it saves calculation time. This strategy is also useful when the
dimension of the initial object is unknown. In such cases, the search can be
started with large models that are progressively reduced, with a minimum
cost in computing time.

Performance of the genetic algorithm with
simple objects

To tune up the parameters of GA and evaluate its performance, several tests
were carried out with the scattering profiles calculated for simple beaded

TABLE 1 Results of modeling calculated SAXS profiles*

Protein

Search space Model

R (Å) N
Maximum

dimensions (Å) N Rg (Å) r.m.s. Rf Vmodel/Vpdb

bb2-Crystallin 6 62 483 343 29 23 21.29 5.283 1022 4.87 1.61
2bb2.pdb 6 736 1183 1083 108 23 24.23 1.283 1022 1.30 1.61

Rg(pdb) 5 24.7 Å 6 254 963 833 88 23 24.38 6.953 1023 0.69 1.61
max. dimensions 6 154 903 553 48 23 24.38 6.953 1023 0.69 1.61
5 76 3 45 3 38 6 102 843 493 48 23 24.38 6.953 1023 0.69 1.61
Vpdb 5 12,879 Å3 4 235 843 483 45# 63 24.63 1.273 1023 0.07 1.31

2 676 763 603 55# 381 24.72 3.653 1024 0.03 1.01

g-Crystallin 6 236 723 763 68 22 15.93 1.263 1023 1.19 1.52
g2c.pdb 6 92 603 483 48 22 15.93 1.263 1023 1.19 1.52
Rg(pdb) 5 16.65 Å 4 194 603 463 41# 68 16.53 9.313 1024 0.07 1.40
max. dimensions 2 637 563 413 43# 423 16.69 1.833 1024 0.02 1.09
5 54 3 40 3 34
Vpdb 5 13,051 Å3

Ribonuclease In. 6 340 963 833 88 54 24.81 8.973 1023 1.20 1.60
lbnh.pdb 6 168 723 693 68 55 24.73 7.513 1023 0.84 1.63
Rg(pdb) 5 24.94 Å 4 441 803 723 60# 150 24.85 2.133 1023 0.18 1.20
max. dimensions
5 70 3 61 3 60
Vpdb 5 30,475 Å3

Lysozyme 6 236 763 723 68 16 13.73 1.583 1023 1.29 1.36
6lyz.pdb 6 92 603 483 48 16 13.73 1.583 1023 1.29 1.36
Rg(pdb) 5 14.03 Å 4 155 483 463 45# 46 13.76 8.673 1024 0.07 1.16
max. dimensions 2 823 503 483 35# 316 14.05 5.133 1024 0.03 1.00
5 44 3 39 3 34
Vpdb 5 10,655 Å3

2xLysozyme 6 340 963 883 83 32 20.38 8.613 1023 0.83 1.36
lrcm.pdb 6 236 763 723 68 32 20.08 6.773 1023 0.54 1.36
Rg(pdb) 5 20.6 Å 4 275 723 583 46# 94 20.27 9.903 1024 0.10 1.18
max. dimensions 2 921 683 583 45# 651 20.58 3.423 1024 0.03 1.02
5 62 3 58 3 44
Vpdb 5 21,353 Å3

*R is the bead radius,N is the number of beads. The radius of gyration (Rg) was calculated asRg 5 ((iziRi/(izi)
1/2, wherezi is the atomic number of atom

i and Ri is the atomic distance from the center of the electron charge distribution in the molecule (the hydrogens are not taken into account). In the case
of the models of identical beads, the computation is simpler, becausezi is constant. The goodness of fit was measured using the root mean squared deviation,
r.m.s.5 ((i(log(Iexp(Si)) 2 log(Imodel(si)))

2/N)22, and an R factor,

Rf5O
i

I log~Iexp(Si!) 2 log~Imodel~Si!!

log~Iexp~si!!
I .

#the search space is within an envelope generated from the preceding model with a large bead radius (see Materials and Methods).
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objects (such as hexagons, cubes, and letters) manually built with the
program LEGO (Pantos, unpublished), and letting the algorithm find the
shape of the object. In these examples the main difficulty of the inverse

scattering problem arises: with different runs of the algorithm, it is possible
to obtain different model structures. In practice the models converge; they
are consistently similar to one another and to the shape object of the test
(Chacón et al., 1998). Occasionally the algorithm fell into a local minimum
with the simple examples, resulting in a model with a good profile fit, but
away from the global optimum that characterizes the structural shape. This
convergence/ambiguity problem is directly related to the resolution and the
configurational space dimension. In fact, these first results showed how the
ambiguity decreased with increasing resolution and decreasing model size.
Ideally, to reduce this problem it is necessary to work with the maximum
resolution and the smallest possible configurational space. In practice,
defining the initial configurational space following the rules given above
and making different runs to accumulate statistics is enough to get a
successful result. Because of the stochastic character of the GA, 10 differ-
ent runs are found to be sufficient in each test to safeguard the convergence
and confidence in the result. In these preliminary tests the usefulness of the
stepwise reduction of resolution and search space (the mask strategy) was
corroborated.

X-ray solution scattering profiles

We used the simulation program DALAI (Pantos and Bordas, 1994) to
generate the theoretical SAXS profiles from the atomic coordinates of test
proteins taken from the Protein Data Bank (Abola et al., 1988). The
scattering vector range taken for the calculation of the profile was 0.001–
0.06 Å21, by analogy with the experimental range that can be practically
achieved with SAXS measurements employing synchrotron radiation. It is
worth mentioning that the program CRYSOL (Svergun et al., 1995) could
also be used to obtain the theoretical profiles of test models from the
atomic coordinates of proteins with known tertiary structures. To better
reproduce an experimental scattering spectrum, noise has been added to
these profiles. The noise introduced follows a Gaussian distribution (Press
et al., 1989) with an amplitude approximately equal to the magnitude of the
intensity at the highest angle values.

The experimental x-ray solution scattering data of lysozyme (from hen
egg white; Sigma) in 50 mM sodium phosphate buffer (pH 7) were
collected at station 2.1 of the Daresbury Laboratory Synchrotron Radiation
Source. Data acquisition and processing were performed as previously
described (Dı´az et al., 1994; Andreu et al., 1992). Absolute values of the
scattering vector were calibrated using all of the observable diffraction
orders of the 67-nm repeat in wet tail collagen. A 3-m camera was
employed, effectively covering anS range from 0.003 to 0.035.

RESULTS

To evaluate whether it is possible to objectively retrieve the
low-resolution structure of a protein from its x-ray solution
scattering profile, the performance of the genetic algorithm
method has been tested with synthetic scattering profiles,
with an S range from 0.001 to 0.06 Å21, calculated for
proteins of known atomic structures. In the set of test
proteins some representative shapes are included to check
the ability of the search procedure to find different models
compatible with both SAXS and shape. To better reproduce
the experimental scattering spectra, noise has been added to
the profiles. In the following sections we will analyze how
the genetic algorithm operates (Fig. 2), analyze the signif-
icance of results obtained for each model protein structure,
and finally present initial results of modeling an experimen-
tal scattering profile with this method. For each example,
the problem SAXS profile, the best model profiles, and the
corresponding bead models are collected in Fig. 3,A–E. For
comparison, Fig. 4 shows three different orthogonal views

FIGURE 2 (A) Representation of the search performance with different
dimensions of the initial object, for thebb2-crystallin fragment. The fitness
parameterF (see Materials and Methods) of the best member of the
population is plotted versus the number of generations of the genetic
algorithm. Solid line, performance of the method with an initial search
model formed by 102 beads. Dashed line, 154 beads; dotted line, 254
beads; long dashed line, 736 beads; dash-dotted line, 64 beads. Note that as
the dimension increases, the performance of the search decreases. Note as
well how with the 64 bead search space there is no optimization, because
the search space does not contain the problem structure. The bead model I
corresponds to the best start model in the randomly generated initial
population, and model II is the local minimum in which the algorithm falls
with an initial object formed by 736 beads. Model III is the same final
best-fit model at which the algorithm arrived with initial models made of
102, 154, or 254 beads. (B) An example of mask strategy with the same test
object. The result of successively increasing resolution by creating a new
search space with smaller beads (an envelope to the previous best-fit
model) can be observed.N is the number of beads of each initial object for
each of the three runs of the algorithm, andR is the bead radius.
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FIGURE 3 Calculated and fitted scattering profiles for the known protein structures of (A) bb2-crystallin (2bb2.pdb), (B) g-crystallin (4grc.pdb), (C)
ribonuclease inhibitor (1bnh.pdb), (D) lysozyme (6lyz.pdb), and (E) two molecules of lysozyme (1rcm.pdb). Solid lines: synthetic profiles calculated from
each pdb file with the program DALAI (Pantos et al., 1996; hydrogen atoms and water molecules have not been taken into account). Points (circles),
DALAI_GA simulated profiles. Dotted lines, synthetic profiles with added noise. Dashed lines, corresponding simulated profiles. A CPK view of the
problem structure is shown in the upper right part of each panel, and the best fitted bead models are shown below it. (F) The numbers of beadsN in models
with different bead radii are plotted versus the anhydrous molecular masses of the problem structures. The corresponding linear regression parameters (N 5
a 1 bMr) area 5 0.497,b 5 1.133 1023, r 5 0.998;a 5 1.151,b 5 3.0 3 1023, r 5 0.996;a 5 28.70,b 5 20.663 1023, r 5 0.974 for bead radii
of 6, 4, and 2 Å, respectively. Data include those from the models derived from scattering profiles with and without noise (A–F) and similar experiments
with lactoferrin (1lfd.pdb,Mr 76,000).
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FIGURE 4 Bead models obtained from synthetic SAXS solution profiles in comparison with the known protein x-ray crystal structures. To get a
reasonably good comparative display, the PDB structures are in a ribbon peptide chain and wireframe side-chain representation (yellow), and the models
are displayed as a dotted Connolly surface (blue; probe radius 4.00 Å) generated from the sphere model with Insight II (version 95.0). Note that the
comparison of each pair of high-low-resolution structures is not a simple task, and has to be made using graphic tools for molecular representation. In this
work we have manually overlaid the structures; the automation of this procedure is an open problem. The proteins modeled are (A) the bb2-crystallin
fragment and (B) the same with noise added to the SAXS profile; (C) g-crystallin and (D) the same with noise; (E) pancreatic ribonuclease inhibitor and
(F) the same with noise. In each panel the left view has been rotated 90° in thex andy axes to generate the center and right views, respectively. The bars
indicate 20 Å.
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of a 3D overlay of the corresponding problem structure (in
yellow ribbon and side chain representations) and the fitted
structure (as a dotted blue surface of the bead model). The
results are summarized in Table 1 (without noise) and Table
2 (with noise). Note that the r.m.s. deviation and R factor
are not directly comparable between the two tables, because
the noise in the problem profile obviously increases their
values. As a reference, the corresponding r.m.s. and Rf
values between the original problem profile and the same
with noise, for each test protein, are indicated in the first
column of Table 2, providing an approximate indication of
the lowest limit range that each fit could achieve. To be
confident about the convergence of the results, and because
of the stochastic character of the method, 10 different initial
simulations with spheres of radius 6 Å were repeated for
each test protein. All of these bead models had converging
sizes and shapes; actually the majority of the runs at this
resolution resulted in practically the same best-fit solution.
The resolution was increased by employing this initial so-
lution to constrain the starting configurational space for
additional search cycles with decreasing bead radius.

Performance of the genetic algorithm method of
x-ray scattering simulation

bb2-Crystallin

The SAXS pattern was calculated from the atomic coordi-
nates of the 2bb2 PDB entry (Bax et al., 1990). The struc-
ture of thisbb2-crystallin fragment shows two linked but
separated globular domains, one of them with a protuber-
ance (approximately residues 168–175) outside the globular
shape. Although this structure is not properly representative
of a real SAXS experiment, because the link between do-
mains may be flexible in solution, it is a good illustrative
example for showing the performance of the method pro-
posed here. It will be used to illustrate how to define the
initial conditions, and how the search space influences the
behavior of the genetic algorithm.

A set of ellipsoids of different sizes, all of them formed
by a hexagonal packing of 6-Å-radius beads, was employed
as initial searching spaces. The results of a set of represen-
tative runs are shown in Fig. 2A. The best fit evolves over
successive generations in such a way that the fitness value

TABLE 2 Results of modeling calculated SAXS profiles with added noise*

Protein

Search space Model

R (Å) N
Maximum

dimensions (Å) N Rg (Å) r.m.s. Rf Vmodel/Vpdb

bb2-Crystallin 6 154 903 553 48 23 24.68 9.073 1022 7.45 1.62
Rg(pdb) 5 24.7 Å 6 102 843 493 48 23 24.89 9.063 1022 7.43 1.62
max. dimensions 4 241 843 463 45# 57 25.07 8.973 1022 7.24 1.19
5 76 3 45 3 38 2 623 763 443 39# 350 24.99 8.963 1022 7.16 0.91
r.m.s.5 9.57 1022

Rf 5 7.50

g-Crystallin 6 236 723 763 68 23 16.73 5.353 1022 5.35 1.59
Rg(pdb) 5 16.65 Å 6 92 603 483 48 23 16.53 5.053 1022 5.05 1.59
max. dimensions 4 198 603 463 42# 56 16.64 4.713 1022 4.71 1.15
5 54 3 40 3 34 2 566 523 493 46# 374 16.79 4.693 1022 4.69 0.96
r.m.s.5 5.82 1022

Rf5 4.63
Ribonuclease Inc. 6 340 963 833 88 55 26.42 7.713 1022 7.71 1.63

Rg(pdb) 5 24.94 Å 6 168 723 693 68 57 25.30 7.243 1022 7.24 1.69
max. dimensions 4 525 723 713 58# 147 24.79 6.303 1022 6.30 1.29
5 70 3 61 3 60
r.m.s.5 5.641022

Rf 5 6.90
Lysozyme 6 236 763 723 68 15 13.00 4.063 1022 3.19 1.27

Rg(pdb) 5 14.04 Å 6 92 603 483 48 15 13.00 4.063 1022 3.19 1.27
max. dimensions 4 141 483 423 40# 49 13.98 3.673 1022 2.56 1.23
544 3 39 3 34 2 480 523 433 41# 309 14.08 3.663 1022 2.56 0.97
r.m.s.5 3.79 1022

Rf5 2.56
2xLysozyme 6 340 963 833 88 32 20.53 5.353 1022 4.03 1.36

Rg(pdb) 5 20.6 Å 6 236 763 723 68 32 20.38 5.053 1022 4.12 1.36
max. dimensions 4 281 783 523 44# 93 20.59 4.713 1022 3.89 1.17
562 3 58 3 44 2 915 693 563 48# 595 20.69 3.863 1022 3.86 0.93
r.m.s.5 4.71 1022

Rf 5 3.75

*Symbols and definitions are as in Table 1.
#The search space is within an envelope generated from the preceding model with a larger bead radius (see Materials and Methods).
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improves until the system converges (the same occurs with
the average fitness of the population; not shown). Note that
to have a fully unbiased search, the program assigns no
penalty for unconnected structures. The results show how
the dimension of the starting model influences the search
process, and how it is possible to estimate an appropriate
dimension by a simple process of trial and error. For in-
stance, starting with model dimensions progressively larger
than the real structure (the models made of 102, 154, and
254 beads) decreases the performance of the search. As the
conformational space size increases the search becomes
more difficult, and thus the time needed to get the maximum
fitness values increases. This behavior is clearly illustrated
in the evolution trajectories, in which the convergence to
maximum fitness is slower for the larger start models. In an
extreme case, if the conformational space becomes too
large, the system gets to a local minimum, as exemplified
with the model formed by 736 spheres. On the other hand,
if the dimension of the search space is too small, the fitness
value remains continuously low (model of 62 spheres in Fig.
2). This is because the solution structure does not fit into the
configurational space searched (the optimization has no
sense). It is possible therefore to guess the approximate size
of the input model by using successive start models and by
monitoring the evolution of the fit value. A similar conclu-
sion can be derived by examining the similarity of shapes
between model and real structures. In all of the cases
(except for the insufficient search space), the model repro-
duces the two domain shape of thebb2-crystallin fragment.
The models of 102, 154, and 254 spheres yield the same
best fit shape (model III in Fig. 2B and Table 1). Even in
the case of 736 beads, the fitting results in a model with
characteristics that resemble the two-domain input shape
(Fig. 2, model II). Similar results have been obtained in the
case of profiles with added noise (not shown).

Following the initial search, it is possible to improve the
resolution by progressively decreasing the radius of the
model beads from 6 Å to 4 Å and 2 Å andemploying a mask
strategy (Fig. 2B). The best structure resulting from the
previous fit is used as a mask to define the next start model
with a smaller bead radius. The benefits of this strategy can
be noticed in the progressive resemblance of the models to
the scattering profile of the problem molecule, as can be
seen in Table 1. TheRg of the model gradually converges to
that calculated for the known structure, 24.70 Å (from 24.38
at 6 Å to 24.72 at 2 Å). The value of the r.m.s. deviation
between the input and the calculated scattering patterns falls
from 6.93 1023 to 3.63 1024. The volume of the model
also converges to the one of the problem structure, as can be
seen by the ratioVmodel/Vpdb, which changes from 1.61 to
1.01. It can be appreciated in Fig. 3A how the SAXS
scattering pattern of the calculated model is indistinguish-
able from that of the input structure. The structure of the
final beads model is also shown; the similarity between
them is clear from a visual comparison of the corresponding
bead models. A more precise comparison is presented in
Fig. 4 A, where the GA obtained solution (blue surface) is

superimposed on the crystal structure (yellow ribbon). As
can be observed, not only are the two domains correctly
modeled, but the protrusion in one of the domains is also
predicted and the link between the domains emerges. The
overall resemblance is considered to be very good. Even
though the crystal structure has a resolution of 2.1 Å and the
simulated solution scattering data extend only to 16.6 Å, the
later contains enough information to closely define the
volume and overall structure of this protein.

The results of fitting the synthetic SAXS profile with
added noise are summarized in Table 2. The noise pertur-
bation introduced in the synthetic SAXS spectrum results in
an r.m.s. deviation near 1021, and an Rf of 7.5, obviously
restricting any possible improvement of the numerical fit
below this limit (order of magnitude). The decrease in the
size of the beads does not exert much influence on the fit
values, reflecting this limiting effect. Nevertheless, the vol-
ume of the model, compared with the real one, presents a
noticeable improvement (the ratioVmodel/Vpdb varies from
1.62 to 0.91 with decreasing bead size). The final fit (Fig. 4
B) is a less accurate solution than that obtained without
noise (Fig. 4A). However, the resulting model is still fully
compatible with the crystal structure of thebb2-crystallin
fragment shape, showing an acceptable overall resem-
blance. In particular, it reproduces the two-domain struc-
ture, the projection in one of the domains still can be found,
and, interestingly, it locates the connecting arm, even if it is
slightly misplaced.

g-Crystallin

The next test structure used wasg-crystallin, also a protein
from the eye lens. The atomic coordinates were taken from
the 4gcr entry of PDB (Wistow et al., 1983). The shape of
the protein can be described as a “kidney shape” formed by
two adjacent lobes (Figs. 3B, 4 C, and 4D). As in the case
of bb2-crystallin, a small protrusion can be distinguished
between the two lobes. The calculated scattering profiles are
displayed together with the corresponding modeling results
in Fig. 3 B. As in all of the cases examined, the profiles
modeled without noise are practically indistinguishable
from the reference profiles. The results of different fits of
increasing resolution are presented in Tables 1 and 2. The
overlay of the fitted models on the crystal structure reveals
a good similarity (Fig. 4C), even in the case of the SAXS
profile with noise (Fig. 4D). The “kidney shape” is reason-
ably reproduced in both cases. Notice that in the case with
noise, the projection is represented by a small set of beads
separated from the rest of the model structure.

Ribonuclease inhibitor

Porcine pancreatic ribonuclease inhibitor is a cytoplasmic
protein with a “horseshoe-like” shape. The crystal structure
at 2.5-Å resolution was taken from the 1bnh PDB entry
(Kobe and Deisenhofer, 1993). This is the larger of the
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protein structures used to test the method (Table 1). The
problem SAXS profile can also be well fitted, and the
correct size and shape are deduced (Fig. 3C). In the overlay
of the bead model and the crystal structure, it can be
observed that there is a small lack of mass in one of the arms
(see Fig. 4E). Nevertheless, in all 10 runs, the models
converged to the characteristic horseshoe shape with little
difference from those displayed in Fig. 4E. The same
behavior occurs when the profiles with added noise are
used. As can be seen in Fig. 4F, the model horseshoe has
a small torsion, yet curiously the contours of the arms are
better defined than in Fig. 4E. Because of the large size of
the problem structure, this model was only refined up to a
bead radius of 4 Å, because the huge number of beads
required beyond this resolution exceeds the capabilities of
the current implementation of the algorithm.

Monomer and dimer structures. Size of models

Among the structures of lysozyme available in the database,
we have used two different crystal structures: 1) native
chicken egg white lysozyme (Diamond, 1974; 6lyz PDB
entry) and 2) two molecules of Cys-6-,Cys-127-carboxy-
methylated lysozyme in one unit cell (Hill et al., 1993; 1rcm
PDB entry). The shape of the two-domain structure can be
roughly described as globular, containing a small hole that
corresponds to the active site (Figs. 3D and 6). The im-
provement produced by the successive radius reduction can
be regarded in Table 1. In the first step of refinement, in
which the bead radius decreases from 6 Å to 4 Å, thefitting
presents a significant improvement. In the second refine-
ment step, using the 2-Å radius bead model, the fitted SAXS
is indistinguishable from the reference profile (Fig. 3D),
with a Rg difference of only 0.02 Å. The volumes of the
bead models deduced from the scattering profiles with and
without noise are, respectively, 3% and,1% smaller than
the van der Waals volumes calculated from atomic coordi-
nates (Tables 1 and 2).

Whereas the globular shape of the structure is correctly
deduced independently of the bead size, the characteristic
hole cannot be noticed with models made of 6-Å-radius
beads, and it shows up in the successive refinements of the
initial model using the mask strategy. In Fig. 6,A andB, the
2-Å bead radius models of lysozyme are superimposed on
the crystallographic structure. The differences with the ref-
erence structure are somewhat more pronounced when the
input has noise (Fig. 6B, note one single bead off the 309
bead model structure). In any event, the cleft is correctly
located in both cases.

To test the correspondence of monomeric and dimeric
models, two molecules of lysozyme from a unit cell were
analyzed as a dimer. After refinement, the final models
resemble the real structure quite well (Fig. 3E). As can been
seen in Tables 1 and 2, the resulting fit values for the
lysozyme crystal dimer are comparable to those obtained for
a single molecule, and the models have double mass (double

number of beads) within a few percent error, irrespective of
the addition of noise to the problem scattering profiles. In
fact, the number of beads in the models is proportional to
the molecular mass of the problem structure, for all of the
structures tested (Fig. 3F).

Modeling an experimental scattering
profile: lysozyme

To make a first test of the applicability and effectiveness of
the procedure with real experimental SAXS data, the scat-
tering profile of lysozyme in theSrange from 0.003 to 0.03
Å21 has been employed. This has been compared with
synthetic data in the sameSrange. The experimental SAXS
pattern is plotted together with the fitted model profile in
Fig. 5. The differences between them are quite small, and
the two profiles maintain identical shapes. The results of
both experiments, with real and synthetic data, are summa-
rized in Table 3. As in previous cases, 10 runs of the genetic
algorithm proved sufficient to ensure convergence. It can be
observed that the volume ratio in the theoretical case is
close to unity, whereas it is slightly larger in the experi-
mental case (the volume of the model derived from exper-
imental data is somewhat larger than the volume of the
anhydrous crystal structure). The predicted radii of gyration
are close to the respective reference values.

The low-resolution bead models of lysozyme obtained
from its synthetic and experimental SAXS profiles are com-
pared with the crystal structure in Fig. 6,C andD, respec-
tively (in the later case six different views have been rep-

FIGURE 5 Experimental (solid line) and simulated SAXS profile (dots)
of lysozyme. The best fit bead model (2-Å bead radius) is shown. The
molecular mass values estimated for lysozyme from models with 6, 4, and
2 Å bead radius, employing the linear regression shown in Fig. 3F, are
15,400, 18,200, and 17,500, respectively.
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resented). In both cases the resolution employed is not
enough to identify the cleft previously characterized with an
S range twice as large (Fig. 6,A andB), but is clearly good
enough to identify the globular structure and correct size of
lysozyme.

DISCUSSION

A general method for retrieving the low-resolution structure
of macromolecules in solution from their SAXS profiles has
been presented. The method consists of fitting a theoretical
scattering profile to the target experimental profile. The
theoretical profile is obtained by Debye calculation of
beaded models. The models are optimized by means of a
genetic algorithm that searches the huge space of possible
mass distributions. With this method, it is possible to de-
termine the best distribution of mass units that generate a
profile that fits the target. The spatial distribution of the
spherical beads simulates the structure of the protein at the
resolution given by the size of the spheres, as well as its
radius of gyration, volume, and mass. This has been tested
with scattering profiles calculated from known crystallo-
graphic protein structures with and without added noise, and
with the experimental profile of lysozyme. The reliability of
the method has been verified using protein structures with
different sizes and shapes: globular, dimeric, bilobed, horse-
shoe shaped, and one consisting of two domains connected
by a stalk.

Performance of the genetic algorithm method
used to numerically explore the inverse x-ray
scattering problem and retrieve the low-
resolution structure

The algorithm simulates very accurately theoretical x-ray
solution scattering profiles in the absence of noise. When
noise is included in the problem profiles, the fitting goes to
the limit allowed by the deviation induced by the noise
(reflected in the r.m.s values presented in Table 2). Because
of its stochastic nature, it might be expected in principle

that, for a given structure, different model structures would
appear in different runs of the algorithm. In practice the
method is robust enough to yield, after 10 runs, 10 different
structures that can only be distinguished by the disposition
of a few beads. This set of solutions characterizes a concrete
structural shape and dimensions of the particle. In other
words, the method yields good reproducibility. Another
potential problem is the intrinsic ambiguity of the inverse
scattering problem, that is, theoretically there is not a unique
model structure compatible with a given SAXS pattern at a
given resolution. The ambiguity is related to the resolution
and the model dimensions: the larger the resolution, the
smaller the ambiguity. The convergent results presented
indicate that this problem is overcome in practice by the
capabilities of the GA search combined with the reduction
of the search space implemented in the method.

In general terms, the application of the method to the
protein structures tested leads to fast convergence to a best
fitted model with a shape similar to that of the crystallo-
graphic structure. This is based on the dramatic reduction of
processing time required to reproducibly explore the whole
configurational space with the genetic algorithm, instead of
calculating every possible mass distribution at a given res-
olution. This optimization method opens a set of new pos-
sibilities for extracting information on the structure of pro-
teins in solution.

To increase the resolution of the models and to speed up
the convergence and reduce the calculation time, a parallel
computing version of the algorithm could be implemented,
because both Debye calculation and GA are very suitable
for parallel implementation. In addition, it may be possible
to improve the structure of the GA by introducing new
genetic operators.

Comparison of models with problem structures

The simulations were considered to describe size and shape
successfully, because only small differences could be iden-
tified by overlaying the test and simulated structures (Figs.
4 and 6). Note that the goodness of the fit has been quan-

TABLE 3 Results of modeling experimental and calculated SAXS profiles of lysozyme*

Search Space Model

Lysozyme R (Å) N
Maximum

dimensions (Å) N Rg r.m.s. Rf Vmodel/Vpdb

6lyz.pdb 6 92 603 483 48 14 13.51 6.373 1025 0.01 1.19
Rg(pdb) 5 14.03 Å 4 147 583 443 42# 45 13.81 5.533 1025 0.003 1.13
Vpdb 5 10655 2 810 443 423 41# 306 14.04 5.203 1025 0.003 0.96
S 5 0.0001–0.03

SAXS exp. 6 236 763 723 68 17 15.34 6.693 1023 0.48 1.44
Rg/exp) 5 15.85 Å§ 6 92 603 483 48 17 15.44 6.693 1023 0.48 1.44
S 5 0.0024–0.031 4 174 483 463 45# 56 15.54 6.693 1023 0.46 1.40

2 91 503 483 35# 352 15.74 6.673 1023 0.46 1.11

*Symbols and definitions are as in Table 1.
#The search space is within an envelope generated from the preceding model with a larger bead radius (see Materials and Methods).
§Rg value determined from the scattering pattern employing the Guinier approximation.
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titatively evaluated only in the reciprocal space (Tables 1
and 2). The average relative values of volume employing
beads of 2-Å radius give maximum deviations of 9% and

6%, with and without noise, respectively (Table 4). The
estimationRg values deviate by less than 1% from the
reference values. A good linear correlation has been found

FIGURE 6 Bead models (blue) obtained from SAXS solution data of lysozyme in comparison with the x-ray crystal structure (yellow). The structures
are represented as in Fig. 4. (A) Model derived from the calculated SAXS profile to 0.06 A21; (B) same with noise added to profile; (C) model obtained
from the calculated profile limited to 0.03 A21. D shows the model derived from the experimental SAXS profile of lysozyme to 0.03 A21 (Fig. 5), in six
different projections. The bar indicates 20 Å.
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between the number of beads of the models and the molec-
ular weight of the problem crystal structures (Fig. 4F).

A closer view of the model versus problem structures
reveals that in some regions there is a lack of mass, whereas
in others there is an excess of mass. We have observed an
apparent mass balance, that is, the resulting structure prac-
tically maintains the mass (or volume), even if slightly
misplaced. This effect of mass conservation may be inter-
preted as an inherent property of the algorithm, which in this
way finds the correct total mass of the problem protein. This
effect can be appreciated in the case ofbb2-crystallin (Fig.
4, A andB), in which the model distribution of mass in the
link between domains does not exactly fit the crystallo-
graphic structure. This is more noticeable in the model
obtained from the scattering profile with noise (Fig. 4B), in
which the link is displaced from its original position. Here
the effect of the fluctuations induced in the scattering profile
is translated into the structure, and the algorithm is able to
find a representative structure of the link, which resembles
an average of different possible positions of the chain be-
tween the two domains. In this same structure the projection
of the left domain is split into two adjacent projections in
the model. In another example (Fig. 4E), the left arm of the
modeled protein has a definite mass deficiency that is com-
pensated for by some extra beads in other parts of the
molecule, as can be observed in this and the other two views
of the molecule.

The effects of noise are clearly exemplified by the case of
lysozyme. It can be observed that in the absence of noise,
the method is able to locate the cavity of the active center of
the enzyme (Fig. 6A, left view). The input file with noise
results in a model in which the overall globular shape is
correctly predicted, but because of a small dispersion of
beads, the cavity is less accurately detected. This effect is
also present in the models obtained at lower resolution and
from experimental SAXS profile (Fig. 6,C andD). Never-
theless, the differences, like dispersion of mass in the hole
region and the presence of an isolated sphere, are small
enough for the models to have an acceptable overall
similarity.

Low-resolution protein structure deduced from
the x-ray solution scattering profile

The x-ray scattering simulation algorithm provides, in prin-
ciple, a new procedure for deducing the size and shape of
any protein or macromolecular assembly from its solution

scattering profile. To our knowledge, this is possible for the
first time for any kind of shape, and is applicable to any
size, spanning the range from that of smaller proteins to an
upper limit dictated only by the lower angle cutoff of the
scattering data. The method can operate solely from a scat-
tering profile without any other knowledge about the protein
size. The output is a scattering model of the protein, typi-
cally consisting of several hundred beads. Maximum infor-
mation content is extracted from the scattering curve, in
contrast to classical parametrical approaches such as radii of
gyration and other dimensions of the particle. The procedure
is applicable to homogeneous proteins, although currently it
is not convenient for the calculation of conformationally
flexible ensembles.

The results on the shape of several proteins from their
calculated scattering profiles (Figs. 4) offer a very good
prospect for doing the same from experimental x-ray solu-
tion scattering measurements of proteins to;0.06 Å21.
Nevertheless, the approach will have to be tested with a
representative set of experimental scattering profiles of pro-
teins with known crystal structures to prove its practical
effectiveness. The effects of possible experimental errors,
particularly at the higher angles, will have to be analyzed.

The first results obtained from the experimental scatter-
ing profile of lysozyme show that even at limited resolution,
the globular shape is correctly deduced, and the size of the
protein is very well defined in terms of the volume of the
scattering bead model, which includes that of the crystallo-
graphic structure (Fig. 6). Note that the size is modeled
directly from the normalized scattering profile; that is, it
does not require any instrumental calibration of the scatter-
ing intensity at the zero angle. The x-ray solution scattering
volume of lysozyme, measured from its 2-Å-radius bead
model, is 1.10 times that of the anhydrous crystal structure.
The effective molecular weight of lysozyme estimated from
the scattering model, employing the linear correlation for
anhydrous models (Fig. 4F; 2-, 4-, and 6-Å bead radius), is
17,0006 1500, which is larger than the chemical molecular
weight of lysozyme (14,300). These differences, to be sys-
tematically investigated, may correspond to a hydration of
0.19 6 0.10 gH2O

/gprotein, which is contained within the
estimated hydration of lysozyme, 0.33gH2O

/gprotein (Kuntz,
1971), or may also contain some measurement bias of the
modeling procedure.

Application to large protein assemblies is constrained
only by the CPU and memory available to handle the
number of spheres of a size commensurate with the resolu-
tion of the data. In the favorable cases of repetitive struc-
tures, related algorithms that search for the structure of the
subunits within a determined lattice may be implemented. It
is to be anticipated that the present method may be applied
to the accurate analysis of interdomain movements induced
by ligands and by protein-protein interactions in solution, as
well as by the different environments in crystal and in
solution.

TABLE 4 Summary of results of modeling calculated
SAXS profiles

Bead radius
(Å)

Rgmodel
/Rgpdb

Vmodel/Vpdb

Without noise With noise Without noise With noise

6 0.986 0.01 0.996 0.05 1.496 0.13 1.496 0.16
4 0.996 0.00 0.996 0.02 1.266 0.10 1.216 0.06
2 1.006 0.00 0.996 0.01 0.986 0.04 0.946 0.03
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