INTRODUCTION TO

CRYSTALLOGRAPHY

ALEXANDER McPHERSON

CHAPTER
5

EXAMINATION OF
DIFFRACTION PATTERNS

EWALD’S SPHERE AND BRAGG’S LAW

When you have mounted a protein crystal, or any crystal, for data collection, un-
less you have made an exhaustive survey of the morphology of the crystal using
special techniques and instruments, including polarized light, you may know
with certainty very little about the orientation of planes within the crystal. Even if
you have made such an optical investigation, you probably will still have only
limited information, particularly for macromolecular crystals because they have
such weak optical properties. Besides, protein crystallographers are seldom, if
ever, trained to do such things anymore, and virtually none of them any longer
know how (if you would like to be different, see the book by Wood, 1977). Let us
assume then, that, in general, when you enter into data collection from a crystal,
you don’t know the orientation of any of the families of planes, how to bring
them into diffraction position, that is, have them satisfy Bragg's law, or how to
manipulate the crystal to get from one set of planes to another.

Given these unknowns, it might appear that X-ray data collection would be a
very difficult process indeed. It is not, in fact. X-ray crystallographers only rarely
think about planes in the crystal, or their orientation. They use instead the dif-
fraction pattern to guide them when they orient and manipulate a crystal in the
X-ray beam. Recall that the net, or lattice, on which the X-ray diffraction reflec-
tions fall is the reciprocal lattice, and that every reciprocal lattice point, or diffrac-
tion intensity, arises from a specific family of planes having unique Miller indices
hkl

Thus, if we expose a crystal to a collimated beam of X rays, we will observe
on our film (or area detector, or image plate) a set of reflections corresponding to

some families of planes, which, by chance, happen to be in diffracting position.
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An example is shown in Figure 5.1. If we reorient the crystal in the beam through
some rotation, other planes are brought into diffract

serve their diffraction intensities, their reciprocal lattice points, and the distribu-

tion of those reciprocal lattice points with respect to any experimental, laboratory
coordinate system. We cannot discern the families of planes in the crystal, we
can’t see or detect them (they're imaginary anyway), but we can readily obserye
their reciprocal lattice vectors, or points. Remember that the orientation of the re-
ciprocal lattice is locked to that of the real lattice, hence to the families of planes
When the crystal lattice rotates, its reciprocal lattice rotates accordingly, and s;;
does its image on our film or detector. If we continuously reorient the crystal in a
systematic way, then we can observe the appearance of entire planes of diffrac-
tion intensities as in Figures 5.2 and 5.3.
Remember further that each reciprocal lattice point represents a vector

which is normal to the particular family of planes h k 1 (and of length 1/d,, )
drawn from the origin of reciprocal space. If we can identify the position in dki fl—
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FicURe 5.2 Diffraction photographs from a variety of protein crystals exhibiting a di-
versity of reciprocal lattice symmetries. With two images from a cryst_al, usually orthogo-
nal to one another, the entire symmetry of the three-dimensional lattice can generally be
deduced. The protein crystals and the symmetry of the diffraction patterns are () P2,2,2,
porcine a-amylase, the symmetry is mm (mirror-mirror); (b) triclinic (P1) glycerol-3PO;-
dehydrogenase, the symmetry is 1; (c) centered orthorhombic (C222) fructose 1,6-PO, de-
hydrogenase, the symmetry is mm; (d) cubic crystal of phaseolin viewed along body dlag-‘
onal, symmetry is 6 mm; (e) tetragonal 1422 lactate dehydrogenase, the symmetry is 4 mm;
(f) the same tetragonal crystal of lactate dehydrogenase rotated by 90°and viewed along a
twofold axis, symmetry is mm.

fraction space of a reciprocal lattice point, then, because of the defined relation-

ship to its family of planes, the reciprocal lattice point tells us the orientation of

that family. In practice, we usually ignore families of planes during data collec-

tion and use the reciprocal lattice to orient, impart motion to, and record the'
three-dimensional diffraction pattern from a crystal. Note, also, that if we identi-

fy the positions of only three reciprocal lattice points, that is, we can assign h k 1

indices to three reflections in diffraction space, then we have defined exactly the
orientation of both the reciprocal lattice and the real space crystal lattice.
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a b

FIGURE 5.3 There are numerous experimental geometries for and approaches to
recording diffraction intensities from crystals. Those seen in Figure 5.2 utilize the preces-
sion method. Here are two images from crystals of (a) Bence-Jones protein and (b) satellite
tobacco mosaic virus recorded using the rotation method, the method currently used for
virtually all rapid data collection. Rotation angles are generally 0.5-2°, depending princi-
pally on the unit cell dimensions and the mosaicity of the crystal. A complete, three-di-
mensional data set representing all possible orientations of the crystal may be comprised
of up to 100 diffraction images or more, depending primarily on the symmetry of the par-
ticular crystal and the unit cell dimensions.

You may now be convinced that the diffraction pattern and its underlying re-
ciprocal net reveal the dispositions of families of planes, but it is probably not at
all clear how this relationship can be used in the laboratory. Exactly how are the
reciprocal lattice vectors oriented with respect to the physical crystal? How do
we get from one family to another? How do we bring a particular family of
Planes into diffracting position so that we can observe its reflection? To assist us
in this, Ewald (1921) developed the construction shown in Figure 5.4.! This dia-
gram illustrates a family of Bragg planes, its corresponding reciprocal lattice, the
recording device (film), the X-ray beam, and an imaginary globe called the sphere
of reflection (now more commonly called Ewald’s sphere). The object of this con-
struction is to illustrate the relationship between the components of the diffrac-
tion experiment, and to serve as a guide to the crystallographer as to how he may

'Actually, he had no intention of helping us, because he invented his construction before the first X-
ray diffraction data was ever collected. He must have invented it for other uses, or he must have been
a man of almost supernatural vision.
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FIGURE 5.4 Ewald’s sphere, a construction relating B:rag‘g's law as it apdpi;fs in l:;a:
ce with .the reciprocal space requirement for constructive interference, and the exp

ed location of diffraction intensities. The origin of the crystal is at 1:icui.n§i)Ll:'t.het ;er;zzri orf;
sphere of radius 1/, The origin of reciprocal space is at g; Thefcahnc:;d Of* ] ;; Esel-‘ 5 11:5 e

. i ding to the set of planes h k1. Whena yofpla

cr:;IEct;;ce veaiotiro‘;? rgsfoogespgnding reciprgcal lattice point P lies on Ewa_ld s sphe;e.h'l_’h;
diffracte%lg:; is ex;ﬁtted along OP and will strike a film plane, placed a distance F behin
the crystal, at the point P'.

systematically alter the orientation of the crystal to record desired portions of the
wﬁl::t;?;uz:f: the h k 1 plane passing through O is a rr‘iember of a f:mily (:
planes with periodic spacing d, which makes an angle 6 with the X-ray efar::; .
sphere (Ewald’s sphere) is constructed of radius 1/\ centered at 0 T'he orig o
is chosen as the center of the crystal, and the point O* may be arblfTanly asmgn "
as the origin of reciprocal space. Remember that although the remlptrocal lalth;em
locked in terms of orientation to the real crystal, it bears no posmone?l re Eel Zld
ship, hence we can put the origin of reciprocal space anywhere Wl.e like. w -
liked O*. The chord AP is drawn parallel with the h k 1 planes forming ﬂ?e me; !
gle APO*. Because APO* is a triangle within a hemisphere having one side a 1:
ameter (see Euclid, 300 B.C.), it must be a right triangle and O*P must be perpenf
dicular to AP and, therefore, to the h k 1 planes. Bragg’s law states that a set ;l
planes is in reflecting position only when n\ = 2d sin 6. Therefore, when the t;
family of planes is in diffracting position, sin 8 = A/2d = (O*P) \/2, a;‘i the;;m‘;
the length of O+P = 1/d. Now O*P is normal to the h k 1 planes and has lengt
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1/d; hence, it is the reciprocal lattice vector corresponding to the set of planes,
and P is the corresponding reciprocal lattice pointh k1.

This demonstrates that when a family of planes is oriented with respect to the
X-ray beam so that Bragg’s law is satisfied, its reciprocal lattice point lies exactly
on (not inside) the sphere. The converse is also true: when a reciprocal lattice
point passes through the sphere, a diffracted ray is produced. Ewald’s sphere
provides an alternative conception of diffraction geometry based on bringing re-
ciprocal lattice points through the sphere of reflection, rather than bringing par-
ticular sets of crystal planes into diffracting position. Because the reciprocal
points fall on a regular lattice array that is clearly defined, the motions and orien-
tations required to observe particular reflections are more readily visualized. We
can more readily find reciprocal lattice points in diffraction space than we can
planes in a crystal.

Further examination of the diagram permits one to predict precisely where
the diffracted ray corresponding to a particular reciprocal lattice point, or family
of planes, will appear. The diffracted ray may be thought of as arising from the
origin of the crystal at O. It makes an angle of 2 § with the X-ray beam and inter-
sects the sphere at the position of the reciprocal lattice point P. If a film is placed
at some distance F behind the sphere so that it is parallel with O+P, the diffracted
ray will intercept the film at P’. The point P’ on the film is the projection of the re-
ciprocal lattice point P. A film containing a distribution of reflections is always
some kind of projection of a portion of the reciprocal lattice onto a plane. It is
common, though not strictly correct, to refer to a reflection on a film as a recipro-
cal lattice point.

Whereas the absolute distance between points in reciprocal space is a func-
tion of X and the reciprocal lattice parameters a*, b*, c¢*, o*, B*, and v*, the ab-
solute distances between maxima observed on the film will be expanded in pro-
portion to F, which acts as a constant magnification factor.

The axes of the reciprocal lattice, remember, maintain a fixed orientation with
respect to the real axes of the crystal by definition, regardless of the crystal’s ori-
entation. That is, if the crystal is rotated, the reciprocal lattice is rotated as well. If
the crystal is continuously reoriented in a specific manner about its center by
Some constant motion, all of the points on a single reciprocal lattice plane, or re-
gion of reciprocal Space, can be made to systematically pass through the sphere
of reflection. If the film is maintained constantly parallel with a reciprocal lattice
plane by mechanical linkage to the crystal, a magnified but otherwise undistorted
replica of the reciprocal lattice plane will be recorded on the film, This principle,
Proposed by de Jong and Bouman (1938), was the basis for some of the more
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: ; ; in
widely used film based data collection techniques, m‘cludmg the pﬁ::sno
method (Buerger, 1942, 1944) used to solve the first protein crystal struc s

CRYSTAL SYMMETRY AND THE SYMMETRY OF THE
DIFFRACTION PATTERN

An important property of Fourier transforms that we did not enﬂfph.a.siz::l m ie
ious chapter is that spatial relationships in one space are maintaine m‘ e
. i : transform space. That is, specific relationships between the orien-
mtl:e S: ;n‘:;:lgspace of the members of a set of objects are carried across into re.:-
tc:p:;::al space. This is particularly impo‘rtant .here hin tfvr-renzoc:s;r::t;ileoir:;i:;:
symmetry, and we will later encounter it again when
ar replacement.
mm;hnea::nniqeifnce oi:i: this property of tht:h Fou;er t:m-,fonti: ':S;:.:; ;ZE:;?E;
elements, that is, space group symmetry, that a’ra ‘enz.e gesnen
ic units in the crystal, also applies to the distribution of reﬂec.nons‘m Te-
:m tsr;cia?tvs\f’:‘mearﬁy this not only that the loca.tions of reflectilons u:: ﬂt::.;
diffraction pattern (the reciprocal lattice) mirror the unit cell syr;me:s L =
the distribution of the intensities also reflects the f.symmetry of objec S gl
cell. In a sense, then, the symmetry of the diffr;ch:;: 1:::;:&911;11 :f]:;i:gss befw); i
metry of the asymmetric objects in the crystal. fec ,a o: e
i the diffraction pattern, tell us the kind of unit cell .we a R
ﬂft?lnz;mensions (by t}I:eir reciprocals). Thus, the' distribution o{( ref]ezt;(:)ri
and their intensities in diffraction space tell us everything we need to know
% GVJ:;?MS been said here is true, but it ignores one other l"undamen:l pr;}::lr-
ty of the Fourier transform, one that complicates matters‘a blt,.but not o}i)ees aci
s0. The property is its failure to carry l'ranslationa.l relationships ;:?m r:eam}:hat
to another, in particular, from real space into recxproca'i spa.ce. 1.; i
the transform does not discriminate between asymmetric units based o
m.
tanc'i;:?:rizgit:ti relevance of this is that a set of asymmetric units‘rela’aa'ldS bZCZ
screw axis symmetry operator (which has translational componer.its) ;n rbeaa pmE
is transformed into diffraction space as though it were related s:;np y6 3; 5 Sp s
rotation axis. The translational components are lost. If our crystal :sza 51 ,e i
will see sixfold symmetry in the diffraction pattern. If we have 2,2,2, symm
in real space, the diffraction pattern will exhibit 2 2 2 symmetry. o
“Now vou tell us!” you might be thinking, but do not despair. It is
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the translational components of symmetry elements are lost during transforma-

tion into reciprocal space and simply appear as the corresponding rotational
symmetry element—that’s the bad news. The good news is that the translational

components of any symmetry element do leave cryptic evidence in the diffraction
pattern of their presence in the crystal. Furthermore, we know precisely the na-
ture and form of that evidence, it is distinct and clear to the eye of the crystallog-
rapher, and we know exactly where to look for it.

The evidence for the existence of screw axis symmetry is manifested in cer-
tain subclasses of reflections that are “systematically absent.” These systematic
absences, we will see, fall along axial lines (h 00, 0k 0, 00 1) in reciprocal space
and clearly signal not only whether an axis in real space is a screw axis or a pure
rotation axis, but what kind of a screw axis it is, for example, 4, or 4, 6 or 6.,
Thus, the inherent symmetry of the diffraction pattern, plus the systematic a}:;-
sences, allow us to unambiguously identify (except for just a few specific cases)
the space group of any crystal.

SYMMETRY AND SYSTEMATIC ABSENCES

Let us look at this question of diffraction pattern symmetry in a slightly different,
but no less correct way in the hope that we may gain some insight into the
sources of those “systematic absences.” Reflections that appear along any recip-
rocal lattice line which passes through the origin of reciprocal space, are identical
to those that would appear if the electron density of the crystal were projected
onto the corresponding line in real space and then transformed. For example, if
all of the electron density were projected onto the a axis in real space, and the
one-dimensional crystal’s diffraction pattern subsequently generated, then it
“'rould be identical to the h 0 0 line of reflections (along a*) in the three-dimen-
sional diffraction pattern. This is true of all corresponding lines in real and recip-
r.txral space, which pass through the origin. Transform of the h 0 0 line of reflec-
tions, the F, ;, alone, would in turn yield the distribution of electron density of
the unit cell projected onto the real a axis of the crystal.

: Similarly, if all of the electron density in the unit cell were projected onto a
Snjlgle Plane, let us say the a x b plane in real space, then the diffraction pattern of
tl:us two-dimensional crystal would be the h k 0 zone of reflections in the three-
dimensional diffraction pattern. As with line projections, this theorem holds true
for any and every plane passing through the origin.

This idea has some useful consequences in terms of interpreting diffraction
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patterns. For example, consider the case of a twofold axis in real space, perpen-
dicular to the a x ¢ plane, as we would have in a monoclinic crystal of space
group P2 or C2. The projection of all of the electron density in the unit cell, hav-
ing this dyad symmetry, onto the @ x € plane, would of course also have twofold
symmetry. Because this projection has dyad symmetry, then the corresponding
diffraction pattern, which is the h 01 plane of reflections in reciprocal space, also
has twofold symmetry, that is, reflection 1Fygq1 = IF 0.1

If, instead of a monoclinic crystal, we considered a tetragonal crystal having a
fourfold axis along ¢ and therefore perpendicular to the a x b plane, then the
plane projection would also have fourfold symmetry. So, too, would the corre-
sponding reflections on the h k 0 zone of reciprocal space, that is,

IFpsol = 1Egpal = | Fypal = |yl

Similar kinds of relationships would arise among equivalent reflections for
threefold or sixfold axes in the crystal as well.

This tells us that symmetry elements in real space, the crystal, may be identi-
fied by searching the appropriate zones, or planes, of reciprocal space for sym-
metrical patterns of diffraction spots. If we see fourfold or threefold or sixfold
distributions of reflections in the diffraction patterns, then they must imply corre-
sponding symmetry relationships in the crystal.

Consider now a 2, screw axis along b in real space, perpendicular to the a x €
plane. When the contents of the unit cell are projected onto this plane, the transla-
tional component of the 2, operator is lost, and the projection is identical to that
which would have been obtained simply from a twofold axis. Thus, we might ex-
pect the corresponding plane of reflections in reciprocal space, the h 0 1 zone of
reflections, to exhibit a twofold symmetrical distribution, whether a twofold axis
or a twofold screw axis were present, and indeed that is the case. The same logic
would apply for any rotation/screw axis choice. Because their projections in real
space are identical, the Fourier transforms of those projections must be as well,
and we cannot discriminate them. Thus, the presence of rotational symmetry on a
plane of reflections in the diffraction pattern can tell us that an operator is present
in the crystal, but not whether it is a pure rotational operator or a screw operator,

for example, we cannot tell the difference between a 2 and 2, axis, or a 4, or 4, or
4 fold axis, etc. |
In the case of symmetry operators containing translational components, that
is, screw operators or centering operations (and glide planes in crystals of con
ventional molecules), as discussed above, there is a saving grace. The evidence o
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a translation operator or component is not, in fact, lost upon transformation into
reciprocal space. If a symmetry axis is present along a certain direction in real
space, say along ¢, we may then consider the Projection of the entire content of
the unit cell onto the ¢ axis as described above. If the axis is a pure rotational op-
erator, then the projection on ¢ will have an arbitrary, nonrepetitive distribution
along its entire length from 0 to 1. If the symmetry axis contains a translational
component, however, this will not be true. There will be a repeat within the pro-
jected density between 0 and 1. It will be a double repeat for a 2, axis, triple re-
peat for a 3, axis, quadruple repeat for a 4, axis, and so on.

The subperiodicity of the axial projection within one unit cell in real space of
course has an effect in diffraction space. Recall the reciprocal relationship be-
tween the two. If a distance is halved in real space, it is doubled in reciprocal
space; if a periodicity is quartered in real space, it is multiplied fourfold in recip-
rocal space, etc. Thus, along the corresponding reciprocal space axis, ¢*, or the
0 01line of diffraction spots, reflection spacing must correspond to the increased
periodicity, or smaller repeat distance in real space. In reciprocal space, reflec-
tions will appear less frequently, at increased intervals. For a 2, axis, the appear-
ance of reflections will have double the normal periodic interval. For a 2, axis, re-
flections will occur along the 0 01 line of reciprocal lattice points only for 1 =2, 4,
6,8..., thatis, only for reflections where 1 is an even integer. For a 4, screw axis,
the normal interval will be quadrupled, and only reflections 1 =4, 8,12, 16 . . . will
be nonzero, that is, the only allowed reflections will be 0 01 = 4n.

Another way of looking at this is that, in certain projections, screw symmetry
Operators produce an apparent but precise subperiodicity, or subcell, within the
actual unit cell. Internal destructive interference of the waves produced by the
subperiodic structures with one another causes certain classes of reflections to al-
ways sum to zero. In the case of the 2, axis above, the class of reflections becom-
ing zero were those for which 1 was odd. These classes of missing reflections (sys-
tematic absences), are used in inspecting the diffraction pattern of a crystal to
discriminate between rotational and Screw symmetry operators, between twofold
and 2,, or threefold and 3, axes in real space. Figure 5.5 illustrates the appearance
of screw axis produced systematic absences for some real cases.

We arbitrarily chose in the example above to project the unit cell contents
onto the ¢ axis, but we might just as well have chosen the 2, axis to lie along a or
b—the outcome would have been the same. Thus, if a space group contains mul-
tiple 2, axes, such as P2, 2, 2,, with screw operators along all three directions,
then we would expect to find systematic absences along each of the three recipro-
cal lattice rows h 00,0k 0, and 0 0 I. The presence of one screw axis is indepen-
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FiGure 5.5 Shown here are planes of diffraction intensities for fc}}lr dlffe}';nt m;
thorhombic crystals characterized by twofold and 2, screw axes. Associated Wltﬁ :aac]:j )
are blowups of the relevant reciprocal lattice axes where the presence of system;n e
sences, that is, reflections with odd indices absent, might be e?xpected to occur. hn ﬂ:z
the h 01 plane from P2,2,2, a-amylase, which has 2, systematic ?bsences a!ong[ I:u)tf

h 0 0 line (vertical axis) and 0 0 1 line (horizontal ax:s)._ In (b) is ‘the Oklp an::alro;'l
P2,22, yeast phenylalanine tRNA. Absences consistent w1th.a 2 axis are apparend t0 E
the horizontal 0 0 1 line, but not along the vertical 0 k 0 line, which corresponds to .
twofold axis. In (¢) is P2,22, RNase B, the 0 k 1 zone, and in (d) the h 0 1 zone frorr_l a cr)ésd
tal of P2,2,2, RNase A plus d(pA)4 complex. In (c), alternate reflections (all havmngMt
indices) are absent only along the 0 0 1, horizontal line, whereas in (d) they are a
along both axial lines, the h 0 0 and the 0 0 1.
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dent of others in this regard. We would say, then, that space group P2; 2, 2, is
characterized by systematic absences such that the only permitted reflections are
h00=2n,0k0=2n,and 001=2n. Look in the International Tables for X-Ray Crys-
tallography, Vol. 1, and see whether this is correct.

Similarly, we might have considered a 3 12 @ 43, a 6, or any other kind of
screw axis as well as the 2,. Note, however, that the translational components for
these screw axes are not %, but %, %, and "%, respectively. Thus, we might expect
that not every other reflection will be present, but only every third (001 = 3n),
fourth (0 01 = 4n), or sixth (001 = 6n). A pure rotation axis, having no transla-
tional component, gives no systematic absences in the diffraction pattern. Ab-
sences produced by higher symmetry screw axes are shown in Figure 5.6.

The same idea pertains when there are pure translational operators within
the crystal, as when centering operations relate equivalent sets of asymmetric
units by translations of half of the unit cell (e.g., C centering: 0, 0, 0 and 1%,%,0,
etc.) Centering operations also produce subperiodicities within the unit cell, and,
as above, these subperiodicities in real space produce systematic absences in dif-
fraction space.

Because the subperiodicities produced in projections by centering operations
apply to two or three directions in real space, and are not simply confined to a
line in space, the systematic absences they produce are also much more extensive.
As we might expect, if entire additional sets of asymmetric units are produced by
centering operations, as they are for C or I or F centering, then half or more of the
expected reflections in reciprocal Space are systematically absent. This gives rise
to diffraction patterns that look like three-dimensional chessboards, with alter-
nate reflections absent along all rows and columns. Because of these very charac-
teristic, checkered patterns, centered crystal lattices can be immediately recog-
nized from their diffraction patterns. Some examples are shown in Figures 5.7
and 5.8. As for the screw symmetry operators, systematic absences for all kinds of
centering operations and for all Space groups are contained in the International
Tables for X-Ray Crystallography, Vol. 1.

ANALYSIS OF DIFFRACTION PATTERNS

Modern computer systems and their crystallographic programs can analyze X-
ray diffraction data collected on two-dimensional electronic detectors, such as
image plates or charge-coupled device (CCD) arrays, and immediately provide
Plausible alternatives for the likely crystallographic unit cell. Generally, however,
it remains to the crystallographer to refine the choices and select among them in
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FIGURE 5.6 In(g)isthehkOandin (b)theh01 zones of diffraction 1.r~etensmezl f]:ont;.l
crystal of concanavalin B having space group P6,. The sixfold symmetry pro?uce ¥ C}}" :
6, axis is clearly evident in the h k 0 zone, but the presence of only Feﬂechons or{; ;)
6n along the horizontal 0 0 1 axis shows the order of the screw axis. In (c) :]I_]._:f iy are .
h k 0 and h 01 zones, respectively, of reflections from a P6; crystal of canav 0.0 lg_auzn,4 p
sixfold symmetry is apparent in the h k 0, but only alternate even reflecthns ti —t r,m,ti
8..., etc.) are present along the horizontal 0 01 line. Note the difference in the syste

al;z;ta-nce pattern for P6,, concanavalin B and P6, canavalin crystals that allows discrimina
tion of the two space groups.

order to arrive at the correct unit cell, unit cell dimensions, space group of th
crystal, and other properties essential for the full three-dimensional structure d
termination. The machine usually cannot make all decisions independe:'ntly, anc'l
indeed, should not be allowed to do so. It must be remembered that if the um
cell dimensions are very much in error, or wrong, or the space group symmetry
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FiGURE 5.7 When the X-ray beam is i

u : . perpendicular to a twofold axis of an F

?m ::i;ystalr,ot:e dlffraf:tlon pattern in (a) is obtained. The systematic absences :ig tl:JO:;:

plicc ngp] dlf?:: Cfig r:r;;:’:sgl;:)egamcogmza’ Hrl:je checkerboard pattern of reflections. In
) . monaoclinic crystal of gene 5 DNA-unwindi -

tein having space group C2. Along both columns and rows, alternate reﬂec‘h;omngleji-lri Is);:—

tematically absent. The indi i
e ol ces of the reflections that are present correspond exclusively to

FIGURE 5.8 ; ;

dEhydrogenaselfl: (@) are the h 01 diffraction intensities from a crystal of fructose 1,6-PO4

PRI s om z:::“ 111_\'01‘1 hﬂ;m}% space group 1222, In (b) is the h k 0 plan(; of re-
! CZZ?-; valin. In both images, th : 5

systematic absences resulting from the I and C cent:ri‘:lgc z];fi?;:s I;?: :?(:;eix;oduced "

incorrect, then there is no way that the structure can ever be solved. Getting these
things initially correct is imperative.

In spite of the convenience, speed, and general precision offered by data
analysis programs, it is important for the crystallographer to know what is be-
ing sought, and what considerations are being made by the various computer
algorithms. That is, what features of the diffraction pattern are being investigat-
ed, how, and for what purpose? To address these questions, let us assume that
we have the necessary diffraction patterns in hand, or at least certain represen-
tative zones or planes or sectors of reciprocal space that contain sufficient data
for accurate judgments, particularly of symmetry relationships. This may be a
complete three-dimensional data set from which certain subsets can be selected
and examined, or it may simply be a set of films, from a precession camera, for
example (the classical instrument for conducting a preliminary X-ray diffraction
analysis), of the major zones (hk 0, h 01,0 k1) of the diffraction pattern. We
can pose the problem: if no computer were available to analyze the diffraction
pattern, how would we go about doing this ourselves, and what might we ex-
pect to learn?

We approach this systematically by asking a series of questions, and from
their answers, either fixing certain properties, or eliminating others as impossi-
ble. The questions we seek to answer, and the order of inquisition is as follows:

1. What is the crystal class (triclinic, monoclinic, orthorhombic, trigonal,
tetragonal, hexagonal or cubic)?

2. Is the crystal lattice primitive or centered? That is, is it primitive P, C face
centered, body centered I, or face centered F?

From (1) and (2) we determine the Bravais lattice

3. What are the unit cell dimensions? a, b, and ¢ and the unit cell angles o, B,
and v in angstroms and degrees?

4. What is the symmetry of the reciprocal lattice? That is, what are the symme-
try operators that relate sets of identical intensities? The symmetry group
that we observe for a crystal in reciprocal space, that is, the diffraction pat-
tern symmetry is called the Laue symmetry, or Laue group.

5. What systematic absences are present?

From (1) through (5) we obtain the crystal class, unit cell dimensions, Bravais
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lamc.e, and space group. All of these are essential crystal properties, but the dif-
fraction pattern also contains other useful information: ’

1. What is the resolution of the diffraction pattern, that is, what is the family of
Bragg planes in the crystal of smallest interplanar spa::ing that is represZnt-
ed by a measurable intensity in the diffraction pattern? Definition of “mea-
surable intensity” may here become a contentious issue.

2. Wh-at is the r.nosaic spread, or angular spread, of the diffraction intensities?
B.'fsmally, this means, “How large is the spot on the image,” and it, along
with the resolution limit, serve as measures of the order of the crystal.

3. How many molecules or chemical units are there in the crystallographic
mmemc unit? This is a question that is usually easily answerable, but in
ambiguous cases must be viewed with great caution, as it significantly af-
fects other phases of the analysis.

The first determination that must be made is the net, or lattice, upon which all
of the reflections in the diffraction pattern fall, that is, the reciprocal lattice. That is
we must s.iraw three axes through the origin of reciprocal space and choose thz;
three n-laxunum spacings so that lines drawn parallel to the axes and separated b
the assigned spacings include every reflection in the diffraction pattern. These wil};
be-come th.e h, kf and 1 axes in reciprocal space. Don’t worry about ge.tting them
gz;ed a1;113 in the uujcia]essi_gnme@ you can always switch their designations later.
Y erally, the choice is fairly evident for diffraction patterns of high symmetry,
3 :; S::;'us -b; izﬂh;neg:nﬂf for low-slymmetry triclinic and, to some extent, monoclinic
e g e conclusions drax.nm at this stage must be reevaluated later
ol of symmetry p.rop?rhes, which in the end supercede all others.

ples presented in Figures 5.9 and 5.10.
. l’;lto:: :h::;;?ie tl:e axes havcle been assigned, and knowing that their intersec-
o enﬂ er (l)f t}.'le dlffrac.tlon pattern defines the origin of reciprocal
o C); zdt-?chon in the entire fliffraction pattern has a unique set of co-
el Inates are always integral numbers of spacings along the
o s (fe axes, and the coordinates correspond to h k 1. Thus, we
¢ diffraction pattern and assign a name, a set of indices, to every spot.

As we hav i i
e seen, the reflection, or diffraction intensity found at any reciprocal

lattice point h k I re :
) presents the diffracted X-ravs from th )
family of planes in the crystal. ys e corresponding h k 1

What are the angles between the axes we have chosen, and what are the spac-

EXAMINATION OF D:rriii"c"i'?ow’.m!:‘?‘s . =

a b

FIGURE 5.9 In the diffraction pattern from triclinic, P1 crystals of glycerol-3-PO, dehy-
drogenase there is no symmetry other than the center of symmetry (1) produced by
Friedel’s law. The axes for reciprocal space may, therefore, be arbitrarily chosen. In gener-
al, the axes yielding the largest reciprocal unit cell are chosen, because this corresponds to
the smallest crystallographic unit cell. In (b), the photograph is from an orthorhombic crys-
tal of RNase A+ d(pA);. The reflections fall on an orthogonal net whose axes are along the
horizontal and vertical directions. More important, choice of these two axes as a* and b*
preserves the inherent mm symmetry of the diffraction intensity distribution. Axes and
unit cells are always chosen to express the highest possible symmetry of the diffraction
pattern. It is more important to preserve the highest symmetry than to have the smallest
possible crystallographic unit cell in terms of volume, and this may require adopting a
centered unit cell.

ings between reflections along lattice rows and columns in millimeters? If the
three axes are at right angles to one another, then & = B =y = 90° and we must
have an orthogonal system. In some cases, the best axes to choose for indexing
the reflections may have one angle 120°, in which case we likely have a trigonal
or hexagonal system. If axes are chosen so that two interaxial angles are 90°, but
the third is not, then we must have a monoclinic system. If the axes cannot be
chosen so that any angle is 90°, then the unit cell must be triclinic. If the spacings
between reflections along perpendicular rows and columns are the same, then
the cell may be tetragonal or cubic. If all three spacings aie different but all angles
are 90°, the system is probably orthorhombic.

Often one has several options for choosing the net, or reciprocal, lattice axes,
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EXAMINATION OF DIFFRAC e

a b

1ljll-:c;l URE 5.10 In () is the h k 0 diffraction plane of a P6; canavalin crystal having six-
;_ys t:;ym&.at?:}y,}b aft;d;:lgi the vni:; .';ll-long ﬂti'le unique axis of a rhombohedral cana%ralin
_ : ‘Ssymmetry. In neither case would one choose orth
w!:x:.ih 1:’ sziex the rgﬂechons. In (a), the natural choice would be the a* angg;’n:i:: ('euslgjrj
:; :‘ .an é il;*h];’:‘: choices of hexagonal axes are reasonable, but those indicated are chosen
ause they correspond with the real unit cell of smallest volume.

but the rule is that an axial system is always chosen that preserves the highest
symme'try of the .diffraction pattern. That is, it is chosen to be consistent with the
:;l m;n ceI'l of highest symmetry. Sometimes, before the diffraction symmetry is
- ):: :n ea}::, Incorrect axes may be -chosen. The axial system, or reciprocal lattice
net, can, however, always be reassigned and the h k 1 indices of the reflections re-
indexed at a later time. The choice of axes determines the crystal class.
Iatﬁ:(el);‘::.t fg;xesnon is whethe;: the reciprocal lattice arises from a primitive real
i i m a’cen.tered ?atuce, and if the latter, what kind of centering (C, I,
. a;)pear,a:: :r;chce, is ec!mval?nt to asking whether the diffraction pattern has
e g a three-dimensional chessboard or not, like those in Figures 5.7
> . ; » are half or more of the reflections in the diffraction pattern sys-
a ca y absent? If not, then the lattice is primitive and that is the end of that
. If it is a chessboard pattern, then some additional investigation may be :
quired. Though usually necessary to record two zero levels (reciproca?lr lattire“
planes that pass through the origin of reciprocal space) of the diffraction patt )
?on?eﬁmes an upper level (planes of reciprocal lattice points h k I, none O?Whem’
ndices are always zero) is necessary as well. Remember, triclinic, trigonal ;15;

hexagonal unit cells cannot be centered. Monoclinic unit cells can only be primi-
tive or C centered (centered on the C face, or a x b face), and tetragonal unit cells
may be only primitive and I centered (body centered). Thus, only orthorhombic
and cubic unit cells remain in question, and the latter can only be I or F centered.
The reader is referred back to Figure 2.14, where these are illustrated. The specif-
ic variety of centering, if it is present, can ultimately be determined by the pattern
of systematically absent reflections, the particular subsets of h k I indices with no
measurable intensity. All of these are detailed in the International Tables for X-Ray
Crystallography, Vol. 1, for every possible type of unit cell. From these considera-
tions, the Bravais lattice is chosen.

Once the reciprocal lattice net has been established, then it is straightforward
to determine the unit cell dimensions. One simply measures the distance between
reflections along the three axial directions (or where they would be if they are
systematically absent), takes the reciprocals, and multiplies them by the appro-
priate instrumental constants to get directly the unit cell dimensions. This is so
because the distance between reflections in diffraction space are exactly related to
distances in real space by the reciprocal relationships la*] = 1/1al, Ib*l =
1/1bl, and le*| =1/lc| for orthogonal axes. For nonorthogonal crystal sys-
tems, the calculation is somewhat more complicated because it includes trigono-
metric terms specific to the crystal class, but even so they are relatively simple to
calculate. Note the striking differences in the distances between reflections for
crystals having large and small unit cells in Figures 5.11and 5.12.

It must be remembered that the observed diffraction pattern on a film or im-
age plate or CCD detector is a magnified image of the reciprocal lattice, and this
magnification factor has to be taken into account. The magnification is usually
just the distance between the crystal and the film. This is evident in the Ewald
sphere construction in Figure 5.4. There is a simple formula that allows this to be
done (Buerger, 1944) and it is:

AA) x F(mm)
d(real space)(A) = dioe(mm)
where A (in angstroms) is the wavelength of X-rays used in obtaining the diffrac-
tion pattern, and F is the distance in millimeters between the crystal and the de-
tector. Thus, by simply measuring the distance in millimeters on the detector be-
tween intensities along the three reciprocal lattice axes, |a“|, Ib*|,and |c*|,and
applying the above formula, lal, Ibl, and lc| are obtained directly in
angstroms, If any angle between the reciprocal axes «*, p*, or y* is not 90°, as for
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a b

FIGURE 5.11 In (a) is a rotation method ima i
E E : ge of a protein crystal having mod
im: Ee;l;kunelnns;or.as, a Benf:e-Jones protein crystal (space group P3,21, a = 1533,?\ b : 23;39
gr,cu; . a. 2; 1) ;&s’ zli, rozt;??{\ method Aimage from a crystal of brome mosaic vin;s (space
,a= = , € =646 A. Note the relative spaci f i
the reciprocal lattice lines for the ¢ i el e 0
rystal having small i ions i

EER I it e ot ir o parametergs ; unit cell dimensions in contrast to

example the B* angle for a monoclinic lattice, then the real space angle B is simpl
the supplement, or 180° minus the reciprocal space angle. v
The.next question, with the objective of determining the space group of the
Zf::a-hz i\:tt\;t is the sy'mmet?y of the entire, three-dimensional diffraction pat-
5§ is. s e m.ost demanding aspect of the analysis and deserves some care.
greatly simplified for macromolecular crystallographers because there are
o‘nly 65 permitted space groups rather than the full 230. Only those lacking inver-
Sion symmetry need be considered. In addition, detailed descriptions of fll sym-
;rtl:l:':r ug;c;:lﬂps, their t'aqujvalent positions, associated systematic absences, and all
: pf'operhes are contained and described, as in Figures 5.13 and 5.14
in the International Tables for X-Ray Crystallography, Vol. 1. The process of deduc—’

ing t'he exact‘ Symmetry of the crystal from the symmetry of the diffraction pat-
tern is complicated somewhat by the following:

1. Because of Friedel’s law, diffraction patterns always contain g center of
symmetry at the origin of reciprocal space. This means that any plane of re-
ciprocal space that passes through the origin, in particular the h 0L0KkI, o

r 4 } ¥
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a

FIGURE 5.12 In the 0 k 1 diffraction image from a crystal of yeast phenylalanine tRNA
(P2,22,,a=33 A, b=56 A, ¢ =161 A), note the very close spacing of reflections along the ¢*
direction (along the vertical) corresponding to the long c axis in the crystallographic unit
cell, and the relatively wide spacing of reflections along the horizontal b* direction, corre-
sponding to the much shorter unit cell dimension. In (b) is the h 0 1 zone of diffraction in-
tensities from a tetragonal crystal of the complex between RNase B and d(pA), (P4,2,2,a =
445 A, b=445 A, c = 156.5 A). Again, note the difference in the distances between recip-
rocal lattice points corresponding to the long real ¢ axis (horizontal) and the relatively

shorter a axis.

h k 0 zones, will display 1 (centric) symmetry. When this is integrated with
the true symmetry of the crystal, it generally produces reciprocal lattice
symmetry arrangements (called Laue groups) having higher symmetry
than is really present in the crystal. One consequence of this is that a zero-
level (a level of reciprocal space where one index is always zero) photo-
graph of the diffraction pattern (and in some cases other zones) will always
exhibit an apparent twofold axis perpendicular to that reciprocal lattice
plane. This is so because projection along a twofold axis appears the same
as projection of a center of symmetry-related arrangement. You cannot
know, without other information, whether a twofold axis is really present
or if it is simply a manifestation of Friedel’s law. Additional photographs
will be necessary. This knot can, however, be unraveled.

2. Asnoted already, symmetry elements containing translational components,
such as screw axes, appear in reciprocal space as the pure rotational ele-
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hk0:

h00: h=2n

OkO: k=2n
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Symmetry of special projections
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(100) pgg; b'=b, ¢'=c (010) pgg; ¢'=c, a'=a

FIGURE 5.13 i
The diagram for space group P2,2,2; from Volume 1 of the Infernational

Tables for X-ray Cryst i
i ) ay Crystallography. Notations and symbols are explained at the beginning of

:nent.' The translational component, if it exists, must be deduced from sys-
€]

b ma!hc absences. These, however, are all explicitly described in the Interna-
tonal Tables for X-Ray Crystallography, Vol. 1, for each space group.

. At least two, and occasionally more, two-dimensional planes through the

diffraction pattern must be recorded and investigated in order to fix the
symmetry of the three-dimensional reciprocal lattice. The nearer these are
to orthogonal planes, the better. It is essential to know the spatial relatio

ships between symmetry elements as they are identified in different i N
ages, and, therefore, it is necessary to know precisely the angular relatilm-
ships between the images. The question to ask is, what unit cell, with w;z;

EXAMINATION OF DIFFRACTION PATTERNS
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FIGURE 5.14 The diagram for space group P6,22 from Volume 1 of the Internati
bles for X-ray Crystallography. The diagram of symmetry relationships also contains,
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a 3 x,0,0; 0,x,1/3; ¥,%.2/3; %,0,1/2; 0%5/6; xx,1/8. hho!: I=6n or 6n+1  or

onal Ta-
bek)w:-

the equivalent positions and the expected systematic absences.

space group symmetry is consistent with the observed diffraction images.
As one identifies features of the diffraction pattern in trying to find the cor-
rect unit cell and the correct space group, you are simultaneously eliminat-
ing those choices that are inconsistent with the evidence.

. Ina few cases, the space group cannot be determined uniquely from the sym-

metry of the reciprocal lattice and the systematic dosences. In these cases,
however, only a choice between two specific possibilities remains. The two
choices are usually enantiomorphic space groups, such as P6, and Pé6s.
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In Figures 5.15, 5.16, and 5.17 are presented pairs of diffraction intensity
planes for three different protein crystals. From two photographs such as these,
which are usually, but not always (e.g., Figure 5.17) orthogonal to one another,
the symmetry of the entire three-dimensional diffraction pattern may be de-
duced. In some cases, however, additional diffraction ima ges may be required for
unambiguous symmetry assignment, or they may prove useful for confirmation
of the assigned symmetry.

MORE THOUGHTS ON SPACE GROUPS

Inidentifying symmetry elements present in reciprocal space, we are seeking to es-
tablish symmetry relationships between intensities in various parts of the three-di-
mensional diffraction pattern. In doing so, it is necessary to remember that a sym-
metry relationship observed for a single plane of the diffraction pattern, because of
Friedel’s law, may or may not pertain to the entire pattern, and this can only be as-
certained by examining additional planes through reciprocal space.

In deducing the space group of a crystal, it cannot be overemphasized, one
works by the process of elimination. If, for example, the Bravais lattice is orthogo-

a

“IGURE i

i t}rthorﬁ. 1 sb In(a), theh 01, ar‘ld, in (b), the h k 0 planes of diffraction intensities from
3 twum i crystal of canavalin (space group €222,,a=136.5 A, b =150.3 A, ¢ = 1334
‘q;shlew o phomgraphi represent orthogonal views of the reciprocal lattice, that is, the
Tystal was rotated by 90° about the horizontal axis between the acquisition of (a) and (b).

EXAMINATION OF DIFFRACTION PATTERNS

—

thorhombic crystal of rabbit muscle creatine kinase (space group P2,2,2;,

a

FIGURE 5.16 In (a)is the h k 0, and in (b) the 0 k 1 zones of reciprocal space for an or-
a=47A,b=86

A, ¢ =125 A). Both images exhibit mm symmetry and systematic absences characteristic of
2, axes along both the vertical and horizontal axes. The rotation angle of the crystal be-

tween (a) and (b) is 90°.

a b

FIGURE 5.17 In (a) is the h k 0, and in (b) the 0 k 1 planes of Liffraction intensities from
a monoclinic crystal of the gene 5 DNA-unwinding protein from fd bacteriophage (space
group C2,a=765A, b =280 A, c =425 A, B = 103°). The angle of rotation of the crystal
between the image in (a) and in (b) was 103°, the B angle.




nal with a # b # ¢ then the real lattice must be orthorhombic. Thus, space groups

corresponding to other crystal classes can be immediately eliminated.
Examination of the International Tables for X-Ray Crystallography, Vol. 1, reveals that

there are only nine possible space groups for macromolecules in the orthorhombic
system and of these, four are primitive (P) and five are centered (C, I, or F). If the
Bravais lattice is monoclinic, then the International Tables for X-Ray Crystallography,
Vol. 1, show only three possible space groups for macromolecular crystals, two are'
in primitive cells, P2 and P2,, and there is only one centered space group, C2,

If threefold or sixfold symmetry is observed in the diffraction pattern, then a
trigonal or hexagonal space group is likely. Remember, however, that cubic crys-
tal systems also display threefold symmetry when viewed along their body diag-
onal (along the 11 1 direction). An example is shown in Figure 5.18. A threefold

FIGURE 5.18 The diffraction ima ibi

igtl ge seen here exhibits exact 6 mm s etry, which

- f:’l::;ﬂmh;lls);‘ ;uwgtghest a hexagonal or trigonal Bravais lattice. Further inv}tersntji;a:c})’n, how-

il atit corresponds to a view along the body diagonal, the threefold axis

e thr:e a cubic tRNA crystal. The 6 mm symmetry is a consequence of combin-
e fold crystallographic symmetry operator with Friedel symmetry.

axis, when combined with the center of symmetry produced by Friedel's law,
however, appears as sixfold symmetry when only the zero level of reciprocal
space perpendicular to the axis is examined. This is because threefold symmetry
becomes sixfold when a center of symmetry is added to it. Upper level images
(where h k 1 and —h —k -1 reflections do not both fall on the same plane of recip-
rocal space) must be recorded to determine if the sixfold axis persists or whether
it is in fact a threefold axis. This is done for a crystal of rhombohedral canavalin
in Figure 5.19, where a zero level photograph exhibits a sixfold axis, but the sec-
ond upper layer bears only threefold symmetry.

For macromolecular crystals, the entire symmetry of the diffraction pattern
(the Laue symmetry) must be generated by Friedel’s law plus the rotational com-
ponents of symmetry axes present in the crystal. Once the rotational elements
have been identified, then it is necessary to deduce whether they are, in fact, pure
rotational operators, or some sort of screw axes. For dyads, the question is
whether a twofold rotation axis exists, or whether it is a 2, screw axis. For three-,
four-, and sixfold axes, there are more extensive choices. For example, for a four-
fold screw it may be 4,, 4,, or 4.

a b

FIGURE 5.19 In (a), the h k 0 diffraction plane of R3 canavalin exhibits 6 mm symme-
try, but, because of Friedel’s law, it could arise as a consequence of either a true sixfold
axis, or a threefold axis plus the Friedel center of symmetry. In' %), the h k 2 image, which
is along the same direction but does not contain Friedel related reflections, exhibits only
threefold symmetry. This demonstrates that the crystal does, in fact, belong to the trigonal
system and not the hexagonal system.




R — =iy = R e I e e e e

To discriminate between the pure rotational operators and the various screw
axis possibilities, the diffraction pattern must be examined for systematic ab-
sences. These are not hard to search for as they always fall along the reciprocal
lattice axial lines (h 00, 0 k 0, 0 0 1lines) that correspond to the directions of the
putative screw axes in real space. Allowed reflections have forms suchas h 00 =
2n (a 2, axis along @), 0 01 = 4n (a 4; or 4, screw axis along €),001=6n (a 6, or 6
screw axis along @), etc. The only serious ambiguity arises in choosing between
enantiomorphic screw operators such as 4, and 4;, or 6, and 6,. Because handed-
ness is lost in the transformation from real space into reciprocal space (again be-
cause of Friedel’s law), and enantiomorphic screw axes yield the same systematic
absences, they cannot be discriminated one from the other. In those cases, the
space group does remain somewhat ambiguous and the crystallographer must
bear in mind that the space group could be either, for example, P6, or P6;, P4,22
or P4,22, etc.

A feature that is generally accessible to the X-ray crystallographer from a pre-
liminary analysis is the number of protein molecules, or protein subunits in the
asymmetric unit. This is very important in the actual structure analysis, as you
might expect, but it may also be useful for deducing symmetry properties of crys-
talline oligomeric proteins. This is possible, because molecular symmetry ele-
ments are frequently coincident with crystallographic space group operators.
That is, the crystal uses the molecule symmetry in forming symmetrical arrange-
ments within unit cells.

The classic example is monoclinic C2 horse hemoglobin studied by Max Pe-
rutz. In this crystal form, from density measurements it was known that the C2
unit cell contained two entire molecules of hemoglobin. There are four asymmet-
ric units in a C2 unit cell, however. Thus, one half of a hemoglobin molecule, to
satisfy space group symmetry, must be related to the other half by a twofold axis.
By this means, horse hemoglobin was shown to possess a perfect twofold axis of
symmetry well before it was demonstrated by any other means.

If one can measure, usually on some sort of mixed fluid gradient, the density
of a protein crystal, then the number of molecules in the unit cell can be calculat-
ed from the unit cell volume (see McPherson, 1982, 1999). The amount of protein
(or number of subunits) in the asymmetric unit can then be obtained by dividing
by the number of asymmetric units in the cell (known from the space group).

A more convenient method that does not require direct measurement of the
crystal density was introduced by Matthews (1968), though one must be cautious
in its application. It has occasionally proven misleading, particularly for crystals
of unusually high solvent content. Matthews pointed out (and more recent data

Ficure 5.20 Diffraction images frequently reveal problems with particular crystals
that are sometimes blatant, but occasionally subtle. These include disorder, multiple crys-
tals, or twinned crystals. In (a), the pattern initially appears very' ordered and proper, but
close inspection of the row of reflections indicated provides evidence that this monoclinic
thaumatin crystal is, in fact, twinned. In (), the reflections from another Bence-Jones pro-
tein crystal fall not on a single reciprocal lattice, but multiple, interwoven lattices indica-
tive of twinned or multiple crystals. In (c), a tetragonal crystal of Bence-Jones protein is se-
riously disordered as evidenced by the smeared, highly mosaic reflections and high
hackoround scatter.




seem to confirm it) that the ratio between the volume of the asymmetric unit (the
volume of the unit cell divided by the number of asymmetric units in the cell)
and the protein mass of the asymmetric unit is about 2.5 A%/dalton for most crys-
tals.

For oligomeric proteins, the mass of protein in the asymmetric unit is essen-
tially quantized, that s, it is always some integral multiple of the subunit molecy-
lar weight. Given the calculable asymmetric unit volume in A2, the expected ratio
of 2.5 A3/dalton, and the subunit mass M,, then the number n by which M, must
be multiplied is straightforward.

It must be emphasized again, however, that the ra tio, called V,_, of 25
A3/dalton may be misleading for heavily hydrated crystals containing 70-90%
solvent, and for which V,;, may be 3.0-5.0 A%/dalton. If a true density measure for
the crystal can be obtained, it provides reassurance, or inspires retrospection.

There are many insights, tricks, and unexpected relationships in the symme-
tries of diffraction patterns, and they can only be appreciated by practice and ex-
perience. Navigation in diffraction space is the high art of X-ray crystallography,

s T=1

FIGURE 5.21 In (a) is a diffraction image, using the rotation method, of a rhombohe-
dral crystal of, native brome mosaic virus (BMV) of space group R3, recorded with syn-
chrotron radiation, In (b) is a corresponding image from a tetragonal crystal of reassem-
bll?d T'= 1 BMV particles of space group P4,22. Note that the maximum distance from the
primary beam of the diffraction pattern in (b) extends much further than does the pattern
in @. The most distant (highest Bra angle) reflections in (a) arise from families of planes
having spacings of no less than 3.4 A. The better-ordered crystals of the T = 1 particles dif-
fract to much higher resolution, and the most distant reflections arise from Bragg planes of
spacings about 2.5 A,
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and learning it takes time and patience. For both the professional and the novice,

- however, there is always the International Tables for X-Ray Crystallography, Vol. 1,

to serve as guide and reference, and it should be consulted freely.
Diffraction patterns can also yield other kinds of information that reveal the

‘ qua.lity and physical perfection of a specific crystal. The patterns, when examined
~ closely, can even give warnings of subtle problems such as disorder (of many

kinds) or twinning, Some examples are illustrated in Figure 5.20. When these
signs appear, it is best to seek the safety of another crystal, or possibly suffer a

world of grief. '
The resolution of a crystal, how far it diffracts into reciprocal space, is a good

~ measure of crystal order. It tells us immediately to what limit of precision we can

expect to structurally characterize the molecules that make up the crystal. This is
highly variable between protein crystals, and often between different crystal
forms of the same macromolecule. Consider the diffraction patterns in Figure

5.21.




