Three-Dimensional
Electron Microscopy of
Macromolecular Assemblies

Joachim Frank

Wadsworth Center for Laboratories and Research
State of New York Department of Health
The Governor Nelson A. Rockefeller Empire State Plaza
Albany, New York
and
Department of Biomedical Sciences

State University of New York at Albany

Albany, New York

Academic Press
San Diego New York Boston London Sydney Tokyo Toronto




. Chapter § e —

Three-Dimensional
Reconstruction

I. Introduction

The value of projection images is quite limited if one wishes to understand
the architecture of an unknown structure (Fig. 5.1). This limitation is
illustrated by the early controversies regarding the three-dimensional (3D)
model of the ribosome, which was inferred, with different conclusions, by
visual analysis of electron micrographs [see, for instance, the juxtaposition
of different models in Wittmann’s (1982) review]. In 1968, DeRosier and
Klug published the first 3D reconstruction of a biological object, a phage
tail with helical symmetry (DeRosier and Klug, 1968). Soon after that,
Hoppe published an article (Hoppe, 1969) that sketches out the strategy
for reconstruction of a single macromolecule lacking order and symmetry
[see Hoppe et al. (1974) for the first 3D reconstruction of such an object
from projections]. Since then, the methodologies dealing with the two types
of objects have developed more or less separately, although the existence
of the same mathematical thread (Crowther et al., 1970) has been often
emphasized.

This part of the volume is organized in the following way: first, some
basic mathematical principles underlying reconstruction are laid down.
Next, the different data collection schemes and reconstruction strategies
are described, which answer the questions of how to maximize information,
minimize radiation damage, or determine the directions of projections,
while leaving open the choice of reconstruction algorithm. The main
algorithmic approaches are subsequently covered: weighted back-
projection, Fourier interpolation methods, and iterative algebraic methods.
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Fig. 5.1. A single projection image is plainly insufficient to infer the structure of an object.
Drawing by John O’Brien; © 1991 The New Yorker Magazine.

Against this background, the random-conical reconstruction scheme is
described as a scheme of data collection and processing that has gained
practical importance and underlies most single particle reconstructions to
date (see Bibliography at the end of the volume). In a final section,
restoration and angular refinement are covered.

II. General Mathematical Principles

A. The Projection Theorem, Radon’s Theorem, and Resolution

The projection theorem, which is of fundamental importance in the
attempts to recover the object, is implied in the mathematical definition of
a multidimensional Fourier transform. In two dimensions, let us consider
the Fourier representation of a function,

fex, ) =f /;(F(k,(x,yy))exp[——Zwi(kxx + kyy)]dkxdky. (5.1)
k, 'k,
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Now we form a one-dimensional projection in the y-direction. The result is
q(x) = [ f(x,y)dy
i f [/ f F(k,, ky)exp[—qui(kxx -+ kyy)]dkxdky]dy, (5.2
y |7k "k,
which immediately yields
(x) = F(k,, k,)8(k,)dk dk, = F(k,,0)dk,, (5.3)
4 j;( t j;y y y y _/I; ]

where 8(k,) is the delta function. This means that the projection of
a two-dimensional function f(x,y) can be obtained as the inverse one-
dimensional Fourier transform of a central section through its 2D Fourier
transform F(k,, k) = F[ f(x, y)]. The above “proof” is very simple when
the projections in x and y directions are considered, making use of the
properties of the Cartesian coordinate system. Of course, the same rela-
tionship holds for any choice of projection direction, see for instance the
formulation by Dover et al. (1980). An analogous relationship holds
between the projection of a three-dimensional object and the correspond-
ing central section of its 3D Fourier transform. This suggests that recon-
struction can be achieved by “filling” the 3D Fourier space with data on
2D central planes that are derived from the projections by 2D Fourier
transformation (Fig. 5.2).

More rigorously, the principal possibility of reconstructing a 3D object
from its projections follows from Radon’s (1917) quite general theory
which has as its subject “the determination of functions through their
integrals over certain manifolds.” The parallel projection geometry we use
to describe the image formation in the transmission electron microscope
[as modeled in Eq. (5.2)] is a special case of Radon’s theory where the
integrals are performed along parallel lines [see the integral for the 3D
case, Eq. (5.43). According to Radon, an object can be reconstructed
uniquely from its line projections when all of its line projections are known.

Taken literally, this theorem is rather useless because it does not
address the questions of how to reconstruct the object from a limited
number of experimental (noisy) projections to a finite resolution and if for
a limited number of projections such a reconstruction would be unique.
The effect of restricting the reconstruction problem to finite resolution can
be understood by considering the projection theorem—the fact that each
projection furnishes one central section of the object’s Fourier transform
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Fig. 5.2. Illustration of the projection theo-
rem and its use in 3D reconstruction. From
Lake (1971). Reproduced with permission of
Academic Press Ltd.
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—and taking into account the boundedness of the object (see Hoppe,
1969).

We make reference to Fig. 5.18 (later used to explain the related fact
that adjacent projections are correlated up to a resolution that depends on
the angular increment and the size of the object). A bounded object o(r)
can be described mathematically as the product of an unbounded function
6(r) that coincides with the object inside of the object’s perimeter and a
shape function; i.e., a function that describes the object’s shape and has
the value 1 within the boundary of the object and 0 outside.

o(r) = 6(r)s(r). (5.4)

The Fourier transform of o(r), which we seek to recover from samples
supplied by projections, is

o(k) = 6(k)OS(k), (5.5

i.e., every Fourier component of the unlimited object is surrounded by the -
shape transform S(k) = F{s(r)}. For a smooth shape, the shape transform
normally has a main maximum that occupies a region of Fourier space
whose size is 1/D if D is the size of the object. This means that the
Fourier transform o(k) varies smoothly over this distance or, conversely,
that measurements have only to be available on a grid in Fourier space
with that spacing. As a consequence (see Fig. 5.18), roughly

o (5.6)

T )

equispaced projections need be available to reconstruct an object with
diameter D to a resolution R = 1/d (Bracewell and Riddle, 1967,
Crowther et al., 1970). The same conclusion can be reached when one uses
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a least-squares approach and formulates the reconstruction problem as the
problem of finding the values of the Fourier transform on a finite polar
grid from a finite number of experimental projections (Klug and Crowther,
1972).

In conclusion, we can state that, as a consequence of Radon’s theorem
and the boundedness of the object, an object can be recovered to a given
resolution from a finite number of projections, provided that these projections
cover the angular space evenly. For the time being, we leave this formulation
general, but the problems related to gaps in angular coverage will surface
throughout this chapter.

B. Projection Geometries

The purpose of this section is to define the relationship between the
coordinate system of the projection and that of the molecule. Further-
more, using this formalism, we will define the two most important regular
data collection geometries, single-axis and conical.

Let r = (x,y, z)" be the fixed coordinate system of the molecule. By
projecting the molecule along the direction z, defined by the three angles
¥ @, 69, and ¢®, we obtain the projection p® (x®, y®). The transforma-
tion between the vectors in the coordinate system of the molecule and
those in the coordinate system of the projection indexed i is expressed by
three Eulerian rotations. In the convention used by Radermacher (1991),

ri= Ry, : 5.7
with
R=R,RyR,, (5.8)
where
cosy; sinyg; 0
e = csindk: o 0 5.9
0 0 1
cos§;, 0 —sin 6,
Ny~ 0 1 0 (5.10)
sing, 0 cos 6;

cos¢;, sing;, 0
Bo=1~dnd wad 01 (5.11)
0 0 1
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These rotations are defined as in classical mechanics and can be
understood by reference to the sketch in Fig. 5.3: first the molecule is
rotated by the angle ¢; in positive direction around its z axis, then by the
angle 6, in negative direction around its new y axis, and finally by the
angle y; in positive direction around its new z axis. It is seen that the first
two angles define the direction of projection, while the third Eulerian
rotation amounts to a trivial rotation of the object around an axis perpen-
dicular to the projection. One commonly associates the angle 6, with the
concept of “tilt,” although the exact tilt direction must be first defined by
the size of the first Sazimuthal” angle ¢,.

The orientations of projections accessible in a given experiment are
defined by technical constraints; these constraints are tied to the degrees
of freedom of the tilt stage and to the way the molecules are distributed on
the specimen grid. Referring to the geometry defined by these constraints,
we speak of the data collection geometry.

The regular single-axis tilt geometry (Fig. 5.4a) is generated by

Y, =0 and ¢; =0: (5.12)

the molecule is tilted by 6; in equal increments around the y axis and then
projected along z®.
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Fig. 5.3. Definition of Eulerian angles; see text for details. From Sommerfeld (1964).
Reproduced with permission of Wissenschaftliche Verlagsgesellschaft Geest & Portig K. G.
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Fig. 54. Data collection by (a) single-axis and (b) conical tilting. From Radermacher (1980).

The regular conical tilt geometry (Fig. 5.4b) is generated by
Y;=0 and 6; = 6, = constant. (5.13)

The molecule is first rotated around its z-axis by the “azimuthal angle” ¢;
in equal increments and then tilted by 6, around the new y axis.

Finally, for later reference, the random-conical geometry is equivalent
to the regular conical tilt geometry (without an explicit azimuthal rotation),
except that the azimuth is randomly distributed in the azimuthal range
{0, 27r}.

III. Rationales of Data Collection: Reconstruction Schemes

A. Introduction

In attempting to reconstruct a macromolecule from projections to a
resolution of 1/30 A~! or better, we must satisfy several mutually contra-
dictory requirements:

(i) We need many different projections of the same structure to cover
Fourier space as evenly as possible (this requirement often excludes the
direct use of images of molecules showing preferred orientations, since the
number of those is normally insufficient, and the angular coverage is far
from even).
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(ii) The total dose must not exceed 10 e~ /;\2 (this excludes tomo-
graphic experiments of the type that Hoppe et al. (1974) introduced).

(iii) The reconstruction should be representative of the ensemble of
macromolecules in the specimen (this excludes the use of automated
tomography, by collecting all projections from a single particle while
keeping the total dose low (cf. Dierksen ef al., 1992, 1993) unless a sizable
number of such reconstructions are obtained which can be subsequently
combined to form a statistically meaningful 3D average). »

The three pathways that lead from a set of molecule projections
to a statistically sighificant 3D image were summarized by Frank and
Radermacher (1986) in a diagram (Fig. 5.5): following the first pathway,
individual molecules are separately reconstructed from their (tomographic)
tilt series, then their reconstructions are aligned in 3D and averaged
(Fig. 5.5a). Following the second, molecule projections found in the micro-
graph are aligned, classified, and averaged by class. When a sufficient
number of views are present, the molecule can be reconstructed from the
class averages (Fig. 5.5b). The third possibility is to relate projections that
vary widely in viewing direction to one another, so that an averaged 3D
reconstruction can be directly computed (Fig. 5.5¢).

(iv) Since stipulations (i) through (iii) imply that the projections have
to be drawn from different “copies” (i.e., different realizations of the same
structure) of the molecule, we need to establish the relative orientations of
those molecules in a common frame of reference.

In other words, for a data collection and reconstruction scheme to be
viable, it must be able to “index” projections reliably; i.e., it must be able
to find their orientations. Of all the stipulations listed above, the last is
perhaps the most difficult one to fulfill in practice. The reason that the
random conical scheme, to be described below (Section III, D), has found
wide popularity among several schemes proposed over the years, is that it -
solves the problem of finding the relative orientations of different pro-
jections unambiguously, by the use of two exposures of the same speci-
men field. Other methods, such as the method of angular reconstitution
(van Heel, 1987b; Goncharov et al. 1987; Orlova and van Heel, 1994), have
to find the angles a posteriori based on common lines.

In the following, I will first, for the sake for completeness, outline a
method of data collection and reconstruction that draws from a single
averaged projection and thus does not require orientation determination.
Next, an important issue, the question of compatibility of projections,
which determines the validity of-all schemes that combine data from
different particles, will be discussed. After that, the methods of angular
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Fig. 5.5. Three principal ways of combining projection information into a statistically
well-defined 3D structure. (a) Molecules are separately reconstructed from different projec-
tion sets (normally tilt series), and then the reconstructions are merged after appropriate
orientation search. (b) A “naturally occurring” projection set is divided into classes of
different views, an average is obtained for each class, the viewing direction is established
for each average, and—if sufficient views are available—the molecule is reconstructed.
(c) Projections are directly merged into a 3D reconstruction after their viewing directions
have been found. From “Advanced Techniques in Biological Electron Microscopy.” Three-
dimensional reconstruction of non-periodic macromolecular assemblies from electron micro-
graphs. Frank, J., and Radermacher, M., Vol. III, pp. 1-72 (1986). Reproduced with
permission of Springer-Verlag, Berlin.

reconstitution and random-conical data collection will be outlined in two
separate sections.

B. Cylindrically Averaged Reconstruction

For some structures, the deviation from cylindrical symmetry is not recog-
nizable at the resolution achieved (1,/20 to 1,/40 A1), and so there is no
way, except possibly by antibody labeling, to distinguish the particle orien-
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tation (with respect to its long axis that is running parallel to the grid) from
the appearance of its side views. The presentation of a cylindrically
averaged reconstruction that is consistent with the observed views is the
best one can do under these circumstances. The way from the projection to
the 3D reconstruction is provided by the inversion of the Abel transform
(Vest, 1974; Steven et al., 1984):

Let us consider the two-dimensional case. The projection of a function
f(x, y) can be represented by the line integral

fi(R, 0) =!_w fw f(x,y)8(xcos 6 + ysin 6 — R)dxdy, (5.14)

which, considered as a function of the variables R and 6, is the Radon
transform of f(x, y). A choice of 6 defines the direction of projection, and
R defines the exact projection ray. Now if f(x, y) is a slice of a cylindrically
symmetric structure, it depends only on r = (x? + y?)'/. In that case, Eq.
(5.14) simplifies into the Abel transform:

fu(R,0) =0 = [ [ f(r)8(x — Rodady

o O Yrdr
A a7 (5.15)
i
Equation (5.15) can be inverted and solved for the unknown profile f(r) by
the use of the inverse Abel transform
fi(x) dx

3 -]
ﬂﬁ=—;[( = (5.16)

x2 ) r2)
The practical computation makes use of the fact that for a rotationally
symmetric function, the Abel transform is equivalent to the Fourier
transform of the Hankel transform.

This method has been used with success in the investigation of
flagellar basal bodies both negatively stained (Stallmeyer et al., 1989a, b)
and frozen—hydrated (Sosinsky et al., 1992; Francis et al., 1994). Basal
bodies are molecular motors effecting the rotation of flagella which are
used for propulsion in water by certain bacteria. The 3D reconstructions of
basal bodies from several mutants of two bacteria, Salmonella and
Caulobacter, obtained by the Brandeis group over the course of the past
few years, have much advanced our understanding of this fascinating
“natural wheel” (Fig. 5.6). Of course, the detailed exploration of this
structure will ultimately involve the more general methods discussed
below, which are not based on the assumption of cylindrical symmetry.
Better preparation methods and higher resolution are expected to make
this improvement possible.
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Fig. 5.6. Flagellar motor (basal body) of Salmonella, reconstructed from single-particle
averages of frozen-hydrated specimen, assuming cylindrical symmetry. EBB, extended basal
body. HBB, hook plus basal body, lacking the C ring complex and the switch protein. From
Francis et al. (1994). Reproduced with permission of Academic Press Ltd.

C. Compatibility of Projections

When .projections from different particles -are combined in a three-
d¥men51onal reconstruction, the implicit assumption is that they represent
filfferent views of the same structure. If this assumption is incorrect—that
is, if the structure is differently deformed in different particles—then the
reconstruction will not produce a faithful 3D image of the macromolecule.
Moreover, some methods of data collection and reconstruction determine
the .relative directions of projections by making use of mathematical
relationships among them, which are fulfilled only when the structures
they originate from are identical. However, macromolecules are often
d_eformed because of an anisotropic environment: when prepared by nega-
tive staining and air-drying on a carbon grid, they are strongly flattened,
down to as much as 50% of their original z dimension, in the direction
normal to the plane of the grid. Even ice-embedment may not avoid a
d.eformatlon entirely, because of the forces acting on a molecule at the
air—water interface.

One important consideration in assessing the viability of different
reconstruction schemes is therefore whether or not they mix projections
from particles lying in different orientations. If they do, then some kind of
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check is required to make sure that the structure is not deformed in
different ways (see following). If they do not, and the molecule is de-
formed, then it is at least faithfully reconstructed, without resolution loss,
in its unique deformed state.

It has been argued (e.g., van Heel, 1987) that by using solely 0°
projections, i.e., projections perpendicular to the plane of the specimen
grid, one essentially circumvents the problem of direction-dependent de-
formation, as this mainly affects the dimension of the particle perpendicu;
lar to the grid. Following this argument, a secondary effect could be
expected to increase %he width for each view, leading to a reconstruction
that would render the macromolecule in a uniformly expanded form. As
yet, this argument has not been tested. It would appear that specimens will
vary widely in their behavior and that the degree of expansion may be
orientation-dependent as well.

Conservation of the 3D shape of the molecule on the specimen grid
can be checked by an interconversion experiment. Such experiments play an
important role in visual model building, i.e., in attempts to build a physical
model intuitively, by assigning angles to the different views, and shaping a
malleable material so that the model complies with the observed views.
The experiment is désigned to establish an angular relationship between
two particles presenting different views, A and B: on tilting, the particle
appearing in view A changes its appearance into A’, and the one appearing
in view B into B’. The experiment tests the hypothesis that the two
particles are in fact identical but lie in different orientations. In that case,
it should be possible to find a tilt angle «, around an appropriate axis, that
renders A’ and B identical. Inverse tilt around that axis by an angle —«
should also render B’ and A identical.

An example for a successful interconversion experiment is the study of
Stoops et al. (1991) who found that the two prominent views of negatively
stained a,-macroglobulin, the “lip” and “padlock” views, interconvert for
a tilt angle of 45° around the long axis of the molecule. Numerous
interconversion experiments were also done, in an earlier phase of ribo-
some morphology research, to relate the views of ribosomes and their
subunits to one another (e.g., Wabl ef al., 1973; Leonard and Lake, 1979)
so that the 3D shape could be inferred.

D. Relating Projections to One Another Using Common Lines

Methods designed to relate different projections of a structure to one
another make use of the common lines (Crowther et al., 1970). These are
lines along which, according to the projection theorem, the Fourier trans-
forms of the projections should be identical in the absence of noise. The
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common lines concept is important in several approaches to electron
microscopic reconstruction and will be discussed again later (Section VIII).
At present we make use of a simple model: let us represent two arbitrary
projections of an object in 3D Fourier space by their associated central
sections (Fig. 5.7). These intersect on a line through the origin, their
common line. Suppose now that we do not know the relative orientation of
these projections. We can then find their common line by “brute force,” by
comparing every (one-dimensional) section of one 2D Fourier transform
with every one of the other transform. The comparison is done by
cross-correlation, which is in Fourier space equivalent to the forming of
the summed conjugate product. This product will assume a maximum when
a match occurs. Another frequently used measure of the fidelity of match
is the differential phase residual; see Section V, B, 2 in Chapter 3.

Once the common line is found, the (in-plane) rotations of the two
central Fourier sections (and thereby, of the corresponding projections)
are fixed. The two central sections can still move, in an unconstrained way,
around the fixed common line which thereby acts as a “hinge.” Obviously,
a third projection and its central section, provided that it is nonplanar with
either of the first two, will fix this movement and lead to a complete
determination of relative angles among the three projections (apart from
an ambiguity of handedness). Starting with this system of orientations, new
projections are added by combining them with pairs of projections already
placed. This, in essence, is the method of angular reconstitution (described
by van Heel, 1987b; Goncharov et al., 1987; Orlova and van Heel, 1994).

In practice, the common line search is performed in real space with
the help of the so-called sinogram; this is a data table that contains in its
rows the 1D projection of a 2D image (in our case, of a 2D projection)

Fig. 5.7. The principle of common lines.
Two projections of the same object, repre-
sented by central sections of the object’s 3D
Fourier transform, intersect each other along
a common line through the origin. Along
that line, their Fourier transforms must be
identical.
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exhaustively computed for all angles. (Note that the sinogram can be
understood as a discrete version of the two-dimensional Radon transform.)
If the 2D projections originate from the same object, then there exists an
angle for which their 1D projections are identical (or closely similar): in
real space, the equivalent to the common line is the common 1D projec-
tion. The angle is found by comparing or correlating the sinograms of the
two 2D projections (Vainshtein and Goncharov, 1986; van Heel, 1987b;
Goncharov et al., 1987).

Although elegant in concept, the common line (or common 1D projeg-
tion) method of orienting “raw data” projections, and thus the method of
angular reconstitutioff as proposed originally, is normally hampered by the
low signal-to-noise ratio of the data. However, as we know, the signal-to-
noise ratio can be dramatically improved by averaging, either over projec-
tions of molecules presenting the same view, or over symmetry-related
projections. Examples of sinograms for molecule class averages are pre-
sented in Fig. 5.8. From these examples it is clear that the determination
of the common 1D projection, and hence the determination of the relative
angle between two projections represented by class averages, should be
quite robust. On the other hand, the averaging of molecules within classes
entails a resolution loss which will be reflected by the quality of the
reconstruction. Only by adding an angular refinement step, to be described
in Section VIII of this chapter, can the full resolution in the data be
realized.

Reconstructions utilizing this concept, mostly applied to macro-
molecules with symmetries, have been reported by van Heel and co-workers
(Schatz, 1992; Dube et al., 1994; Schatz et al., 1994). Figure 5.9 presents a
model of worm hemoglobin obtained by Schatz (1992), partly making use
of the sinogram-based angle assignments. The first full-sized article, de-
scribing the reconstruction of the calcium release channel from 3000
cryoprojections, has just appeared as this book is being completed
(Serysheva et al., 1995). The results indicate (see Section III in Chapter 6 °
on validation), especially because they closely match the model previously
obtained independently by the method of random-conical reconstruction
(Radermacher et al., 1994a,b), that the angular reconstitution method is a
new viable approach to 3D electron microscopy of macromolecules, espe-
cially those exhibiting symmetries. Since it is based on the presence of
multiple views covering the angular space as evenly as possible, the
method can be seen as complementary to the random-conical method of
reconstruction which is based on a different situation: the presence of a
few preferred views, or even a single one. Another reconstruction of this
type, applied to scanning transmission electron microscope data from
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L ]

Fig. 5.8. Sinograms and their use in finding relative projection angles. (a) Class averages of
worm hemoglobin showing the molecule in different views; (b) corresponding sinograms.
Each horizontal line in the sinogram represents a 1D projection of the corresponding
molecule image in a certain direction. The lines are ordered according to increasing angle of
1D projection, covering the full 360° range. A rotation of an image is reflected by a cyclical
vertical shift of the corresponding sinogram. (c) Sinogram correlation functions (SINECORR
for short). The SINECORR between sinograms of projections 1 and 2 is derived in the
following way: the cross-correlation coefficient is computed between the first row of sinogram
1 and each row of sinogram 2, and the resulting values are placed into the first row of the
SINECORR, and so on with the following rows of 1. The position of the maximum in
the SINECORR indicates the angular relationship between the projections. Meaning of the

f l ‘ \ [ ! : 1
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Fig. 5.8. (continued)

freeze—dried specimens of the signal sequence-binding protein SRP54, was
presented by Czarnota et al. (1994).

Recognizing the noise sensitivity of van Heel’s and Goncharov’s method
in its original form, which intended to recover relative orientations from
raw data), Farrow and Ottensmeyer (1992; Ottensmeyer and Farrow, 1992)
developed an extension of the technique. Solutions are found for many

panels from left to right, top to bottom: SINECORRs of 1vs 1, 1vs 2, 1vs 3,1vs 4,4vs4, 1
vs 9,3 vs 9, vs 9, and 8 vs 8. Multiple maxima occur because of the sixfold symmetry of the
molecule. From Schatz (1992). Reproduced with permission.
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Fig. 5.9. Three-dimensional reconstruction of Lumbricus terrestris erythrocruorin embedded
in ice from class averages shown in Fig. 5.8a. In part, the angles were assigned based on the
technique of “angular reconstitution” (see also Schatz et al. 1994). From Schatz (1992).
Reproduced with permission.

projection triplets using the common-lines triangulation that is at the core
of the angular reconstitution technique, and the results are reconciled
using quaternion mathematics (see Harauz, 1990).

The simultaneous minimization technique (Penczek et al., 1995) at-
tempts to solve the orientation search problem simultaneously for any
number of projections greater then three. Concurrent processing of a large
number of projections relaxes the requirement of high SNR for the input
data. The method uses a discrepancy measure which accounts for the
uneven distribution of common lines in Fourier space. The minimization
program begins the search from an initial random assignment of angles for
the projections. Penczek and co-workers were able to demonstrate that the
correct solution (as it is known from the result of 3D projection alignment
to a merged random-conical reconstruction; Frank et al., 1995a) was found
in 40% of the trials.
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Another use of common lines is in “bootstrapping” methods, where
new projections are matched to an existing reconstruction, or where the
orientations of experimental projections are refined. This topic will be
discussed further in Section VIII.

E. The Random-Conical Data Collection Method

The principle of this data collection scheme was first mentioned in the
context of two-dimensional averaging of molecule projections (Frank et a,
1978a) as an effective way for extending the single particle averaging into
three dimensions. AR explicit formulation and a discussion of the equiva-
lent Fourier geometry was given by Frank and Goldfarb (1980). First
attempts to implement the reconstruction technique led to a Fourier-based
computer program that proved unwieldy (W. Goldfarb and J. Frank,
unpublished, 1981). The first practical implementation of a reconstruction
method making use of the random-conical data collection was achieved by
Radermacher et al. (1986a, 1987a,b). For the implementation, numerous
problems had to be solved, including the determination of the precise tilt
geometry, the practical problem of pairwise particle selection, the align-
ment of tilted projections, the relative scaling of projection data, the
weighting of projections in a generalized geometry, and—Ilast, but not least
—the massive bookkeeping required. A detailed description of the method
and its implementation is found in Radermacher (1988). In the following,
the different solutions to these problems will be described in some detail.

The method is based on the fact that single macromolecules often
assume preferred orientations on the specimen grid (see Section I, E in
Chapter 3). Any subset of molecules showing identical views in an untilted
specimen form a rotation series with random azimuth, ¢,. When the
specimen grid is tilted by a fixed angle, 6, (Fig. 5.10a,b), the above subset
will appear in the micrograph as a conical projection series with random
azimuths and 6, as cone angle (Fig. 5.10c). In the actual experiment, the
specimen field is recorded twice: once tilted and once untilted (in this
order). The first micrograph is used to extract the projections for the
reconstruction. The purpose of the second micrograph is twofold: to (i)
separate the particles according to their views (“classification”) and (ii)
within each subset (or class), determine the relative azimuths of all
particles (“alignment”).

The advantages of this scheme are evident: it allows the orientations
of all molecules to be readily determined while allowing the dose to be
kept to a minimum. Because of these advantages, the random conical
reconstruction has come into widespread use (see the list of 3D recon-
structions in Appendix 2).
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Fig. 5.10. Principle of the random-
conical data collection. (a) untilted,
(b) tilted field with molecule attached
to the support in a preferred orienta-
tion, () equivalent projection geome-
try. From Radermacher et al. (1987b).
Reproduced with permission of
Blackwell Science Ltd., Oxford, from
Radermacher, M., Wagenknecht, T.,
Verschoor, A., and Frank, J., Three-
dimensional reconstruction from a
single-exposure, random conical tilt
series applied to the 508 ribosomal
subunit. J. Microsc. 146, 113-136.

o

There are some obvious limitations that restrict the resolution of the
reconstruction: one is due to the fact that the observed “preferred orienta-
tion” in reality encompasses an entire orientation range (see Section VIIIL,
D for the likely size of the angular range). Another, related limitation
stems from the need to classify particles on the basis of their 0° appear-
ance—a task which may have ambiguous results (see Section IV, K in
Chapter 4). A third limitation has to do with the fact that the azimuthal
angles (as well as the subsequent classification) are determined from the
images of particles (at 0°) that have already been exposed to the electron
beam and may have been damaged. All three limitations can be removed
by the use of a refinement method according to which each projection is
allowed to vary its orientation with respect to the entire data set (see
Section VIII). However, the starting point is always a random conical
reconstruction of the “basic” type outlined above.
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The instructive drawing in Lanzavecchia et al. (1993) in (Fig. 5.11)
sl}ows the coverage of Fourier space afforded by the conical geometry.
Since eacl% projection is sampled on a square grid, its discrete Fourier
transform is available within a square-shaped domain. The body formed by
rotating an inclined square around its center resembles a yo-yo with a
centra.l cone spared out. Since the resolution of each projection is limited
toa c1r01_11ar domain (unless anisotropic resolution-limiting effects such as
astlgmatls.m intervene, see Section II, B in Chapter 2), the coverage of, the
3D P:ouner transform by useful information is confined to a sp;zere
contained within the perimeter of the yo-yo (not shown in Fig. 5.11).
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Fig. 5.11.. Coverage of 3D Fourier space achieved by regular conical tilting. (a) Relationship
between inclined Fourier plane representing a single projection and the 3D Fourier trans-
form. (b) Yo:yo—shaped body (hollowed out by a double cone) covered by filling 3D Fourier
space, assuming each plane contains information up to the sampling resolution. For random-
conical dataf collection, the spacings between successive planes are irregular. Adapted from
Lanzavecchia et al. (1993). Reproduced with permission of Blackwell Science Ltd., Oxford.
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We will come back to the procedural details of the random-conical
data collection and reconstruction after giving a general overview over
reconstruction algorithms.

F. Reconstruction Schemes Based on Uniform Angular Coverage

For completeness, two reconstruction schemes that rely on a uniform
coverage of the space of orientations should be mentioned. Both use
spherical harmonics as a means to represent the object and its relationship
to the input projections. The requirement of statistical uniformity and the
choice of the rather involved mathematical representation have restricted
the use of these schemes to model computations and few demonstrations
with experimental data. The first scheme, proposed by Zvi Kam (1980), is
based on a sophisticated statistical approach difficult to paraphrase here.
The second scheme, introduced by Provencher and Vogel (1983; see also
Provencher and Vogel, 1988; Vogel and Provencher, 1988), is designed to
determine the relative orientations of the projections of a set of particles
by a least squares method, but it requires approximate starting orienta-
tions. Thus far, only a single reconstruction of a nonsymmetric particle, the
50S ribosomal subunit, has been obtained with this latter method (Vogel
and Provencher, 1988).

IV. Overview of Existing Reconstruction Techniques

A. Preliminaries

Given a data collection scheme that produces a set of projections over an
angular range of sufficient size, there are still different techniques for
obtaining the reconstruction. Under “technique” we understand the math-
ematical algorithm and—closely linked to it—its computational realiza-
tion. The value of a reconstruction technique can be judged according to
its mathematical tractability, computational efficiency, stability in the
presence of noise, and many other criteria. .

Weighted back-projection (Section IV, B) has gained wide popularity
because it is very fast compared to any iterative techniques. However,
apart from the computational efficiency, two—mutually contradictory—
criteria that are considered important in the reconstruction of single
macromolecules from electron micrographs are linearity of a technique
and its ability to allow incorporation of constrainis.

Here linearity implies that the reconstruction technique can be consid-
ered a black box with “input” and “output” channels and that the output
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signal (the reconstruction) can be derived by linear superposition of
elementary output signals, each of which is the response of the box to a
delta-shaped input signal (projections of a point). In analogy to the point
spread function, defined as the point response of an optical system, we
speak of the “point spread function” of the combined system formed by
the data collection and the subsequent reconstruction (see Radermacher,
1988). The linearity of the weighted back-projection technique (Section IV,
B) has been important in the development and practical implementation of
the random conical reconstruction method because of is mathematical
tractability. (Someniterative techniques such as algebraic reconstruction
technique (ART) and simultaneous iterative reconstruction technique
(SIRT) which also share the property of linearity have not been used for
random conical reconstruction until recently because of their slow speed.)
The practical importance of linearity also lies in the fact that it allows the
3D variance distribution to be readily estimated from projection noise
estimates (see Section II, A in Chapter 6).

On the other hand, the second criterion—the ability of a technique to
allow incorporation of constraints—is important in connection with efforts
to fill the angular gap. Weighted back-projection as well as Fourier recon-
struction techniques fall into the class of linear reconstruction schemes,
which make use only of the projection data and fail to consider the noise
explicitly. In contrast, the different iterative algebraic techniques lend them-
selves readily to the incorporation of constraints and to techniques that
take the noise statistics explicitly into account. However, these techniques
are not necessarily linear. For example, modified SIRT in Penczek et al.
(1992) incorporates nonlinear constraints.

In comparing the two different approaches, one must bear in mind
that one of the disadvantages of the weighted back-projection—its failure
to fill the missing gap—can be mitigated by subsequent application of
restoration, which is, however, again a nonlinear operation. Thus when one
compares the two approaches in their entirety—weighted back-projection
plus restoration versus any of the nonlinear iterative reconstruction tech-
niques—the importance of the linearity stipulation is somewhat weakened
by its eventual compromise.

B. Weighted Back-Projection

Back-projection is an operation that is the inverse to projection: while
the projection operation produces a 2D image of the 3D object, back-
projection “smears out” a 2D image into a 3D body (“back-projection
body,” see Hoppe et al., 1986) by translation into the direction normal to
the plane of the image (Fig. 5.12). The topic of modified back-projection,
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Fig. 5.12. Tlustration of the back-projection method of 3D reconstruction. The density
distribution across a projection is “smeared out” in the original direction of projection,
forming a “back-projection body”. Summation of these back-projection bodies generated for
all projection yields an approximation to the object. For reasons that become clear from an
analysis of the problem in Fourier space, the resulting reconstruction is predominated by
low-spatial frequency terms. This problem is solved by Fourier weighting of the projections
prior to the back-projection step. From Frank et al. (1985). Reproduced with permission of
van Nostrand-Reinhold, New York.

as it is applied to the reconstruction of single particles, has been systemati-
cally presented by Radermacher (1988, 1991, 1992), and some of this work
will be paraphrased here.

Let us consider a set of N projection into arbitrary angles. As a
notational convention, we keep track of the different 2D coordinate
systems of the projections by a superscript; thus, p,(r®) is the ith projec-
tion, r® = {x®, y®)T are the coordinates in the ith projection plane, and
z® is the coordinate perpendicular to that.

With this convention, the back-projection body belonging to the ith
projection is

b,(x®, z0) = p,(r'P)t(z), (5.17
where t(z) is a “top hat” function:

1 for-D/2<zs<D/2

5.18
0 elsewhere ( )

t(z) = [

Thus b, is the result of translating the projection by D (a distance that
should be chosen larger than the—anticipated—object diameter). As

| } i | 1 | |
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more and more such back-projection bodies for different angles 6 are
added together, a crude reconstruction of the object is obtained:

N
pr) = ¥ b,(x®, z¥), (5.19)

i=1

with r = {x, y, z} being the coordinate system of the object.

The reason why such a reconstruction is crude is found by an analysis
of the back-projection summation in Fourier space: it essentially corre-
sponds to a simpl® filling of Fourier space by adding the central sections
associated with the projections. It is immediately seen (Fig. 5.13) that the
density of sampling points decreases with increasing spatial frequency, so
that low spatial frequencies are overemphasized. As a result, the 3D image
formed by back-projection appears like a blurred version of the object.
Intuitively, it is clear that multiplication with a suitable radius-dependent
weight might restore the correct balance in Fourier space. Weighted back-
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Fig. 5.13. Density of sampling points in Fourier space obtained by projections decreases
with increasing spatial frequency. Although this is shown here for single-axis tilting, the same
is obviously true for all other data collection geometries. From “Advanced Techniques in
Biological Electron Microscopy.” Three-dimensional reconstruction of non-periodic macro-
molecular assemblies from electron micrographs. Frank, J., and Radermacher, M., Vol. III,
pp. 1-72 (1986). Reproduced with permission of Springer-Verlag, Berlin.
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projection makes use of a weighting function W;(k) tailored to the angular
distribution of projections:

p(r) = F-Y{W,(k) F{ p(r)}} (5.20)

or, equivalently, by application of a mwo-dimensional weighting function to
the projections,

p'(r) = FY{W,(KF{p()}}. (5.21)

The weighted back-projection algorithm makes it possible to design
weighting functions for arbitrary projection geometries, and, specifically, to
deal with the random azimuths encountered in the random-conical data
collection (Radermacher et al., 1986a, 1987a,b). In the following, we must
distinguish between the coordinates affixed to the object (denoted by
uppercase letters) and those affixed to the individual projections (lower-
case letters). Similarly, we need to distinguish between the 2D Fourier
coordinates k@ = {k®, K} of the ith projection and the 3D Fourier
coordinates of the object, K = {K,, K, K,}. X, Y, Z are object coordi-
nates, with z being the coordinate perpendicular to the specimen plane.
R = {X®, yO®, 20} are the coordinates of the ith projection body.

The transformations from the coordinate system of the object to that
of the ith projection (azimuth ¢,, tilt angle 6,) is defined as follows:

r® = R (6)R,($)R, (5.22)

where R,, R, represent rotations around the y axis and z axis,
respectively. 9

The weighting function for arbitrary geometry is now derived by
comparing the Fourier transform of the reconstruction resulting from
back-projection, F{ p(R)}, with the Fourier transform of the original object
(Radermacher, 1991):

N
F(p®R)} = ¥ F{b,r®, zM)} (5.23)
i=1

P(kD)D sinc(Dmk). (5.24)

1=

I
—

i
Here P(k®) denotes the Fourier transform of the ith projection. The
function sinc(x) stand for sin(x)/x, frequently used because it is the
“shape transform” of a top-hat function and thus describes the effect, in
Fourier space, of a real-space limitation of an object. Each central section
associated with a projection is “smeared out” in the k,-direction and
thereby “thickened.” In the discrete formulation, each Fourier coefficient
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of such a central section is spread out and modulated in the direction
normal to the section plane. This is in direct analogy to the continuous
“spikes” associated with the reflections in the transform of a thin crystal
(Amos et al., 1982). However, in contrast to the sparse sampling of the
Fourier transform by the reciprocal lattice, in the case of the crystal, we
now have a sampling that is at least in principle continuous.

It is at once clear that the degree of overlap between adjacent “thick
central sections” is dependent on the spatial frequency radius. The exact
radius beyond which there is no overlap is the resolution limit of Crowther
et al. (1970). The different degrees of overlap produce an imbalanced
weighting, which the weighting function is supposed to overcome.

For the reconstruction of a point (represented by a delta function)
from its projections,

PY) =1, (5.25)

so that the Fourier transform of the reconstruction by back-projection
becomes

N
. H(K) = Y Dsinc(Dmk®). (5.26)

i=1

By definition, Eq. (5.26) can be regarded as the transfer function associated
with the simple back-projection operation. From this expression the
weighting function appropriate for the general geometry can be found as

W(K) = 1/H(K). (527

From this weighting function for general geometries, any weighting functions
for special geometries can be derived (Radermacher, 1991). Specifically,
the case of single axis tilting and regular angular intervals yields the .
zvell-k)nown “r*-weighting” (in our nomenclature, [K|-weighting) of Gilbert
1972).

In constructing the weighting function W(K) according to Eq. (5.27),
the regions where H(K) — 0 require special attention as they lead to
singularities. In practice, to avoid artifacts, Radermacher et al. (1987a)
found it sufficient to impose a threshold on the weighting function,

W(K) < 1.66; (5.28)

ie., to replace W(K) by 1.66 wherever 1/H(K) exceeds that limit. In
principle, a more accurate treatment can be conceived that would take the
spectral behavior of the noise explicitly into account.
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Note that W(K) as derived here is a 3D function, and can be used
directly in 3D Fourier space to obtain the corrected reconstruction. In
practice, its central sections w(k®) are frequently used instead and applied
to the 2D Fourier transforms of the projections. It should be noted that
both ways of weighting are mathematically, but not necessarily numeri-
cally, equivalent.

Radermacher (1992) discussed reconstruction artifacts caused by ap-
proximation of Eq. (5.27), and has recommended replacing the sinc func-
tion by a Gaussian function in Eq. (5.24), tantamount to the assumption of
a “soft” Gaussian-shaped object limitation.

C. Fourier Methods

Fourier approaches to reconstruction [see, for instance, Radermacher’s
(1992a) brief overview] utilize the projection theorem directly and regard
the Fourier components of the projections as samples of the 3D transform
to be determined. In most case, the positions of these samples do not
coincide with the regular three-dimensional Fourier grid. This situation
leads to a complicated interpolation problem, which can be stated as
follows: given a number of measurements in Fourier space at arbitrary
points not lying on the sampling grid, what set of Fourier components on
the sampling grid are consistent with these measurements? The key to this
problem lies in the fact that the object is of finite dimensions (Hoppe,
1969); because of this, the arbitrary measurements are related to those on
the grid by the Whittaker—Shannon interpolation (Hoppe, 1969; Crowther
et al., 1970; Radermacher, 1992a; Lanzavecchia et al., 1993; Lanzavecchia
and Bellon; 1994).

Following Radermacher’s account, we consider the unknown object
bounded by a rectangular box with side lengths a, b, and c. In that case, its
3D Fourier transform is completely determined when all samples on the
regular 3D sampling grid with grid size (1/a, 1/b, 1/c) are known. We
index them as F,,, = F(h/a, k/b,1/c). For an arbitrary position (denoted
by the coordinate triple x*, y* z*) not lying on this grid, the
Whittaker—Shannon theorem yields the relationship

sin 7 (ax* — h)
FEar gt T
(.x y Z) %%; hkl w(ax*—h)
sin w(by* — k) sinw(cz* — 1)
w(by* — k) a(cz* — 1)

(5.29)
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[The three terms whose product from the coefficient of Fj,;, are again sinc
functions.] This relationship tells us how to compute the value of the
Fourier transform at an arbitrary point from those on the regular grid, but
the problem we wish to solve is exactly the opposite: how to compute the
values of the Fourier transform on every point 4, k, ! of the grid from a
given set of measurements at arbitrary positions {x}, y/, zf; j=1...J )
as furnished by the projections. By writing Eq. (5.29) for each of these
measurements, we create a system of M equations for H * K * L unknown
Fourier coefficients on the regular grid. The matrix C representing the
equation system has,the general element

sin 7 (ax} — h)sin w(by} — k)sin w(cz}' — D

= 5.30)
o w(axf — W)w(by} — k)m(czf — D (

To solve this problem, we must solve the resulting equation system as
follows:

Fhkl Z F(X] ,,V, s *)C hkl> (531)
?

3

where C;;} inii are the elements of the matrix that is the inverse to C. It is
obvious that this approach is infeasible because of the large number of
terms. Basically, this intractability is the result of the fact that at any point
that does not coincide with a regular Fourier grid point, the Fourier
transform receives contributions from sinc functions centered on every
single grid point.

Remedies designed to make the Fourier approach numerically feasible
have been discussed by Lanzavecchia et al. (1993) and Lanzavecchia and
Bellon (1994). These authors use the so-called “moving window” method
to curb the number of sinc functions contributing in the interpolation, and
thus obtain an overall computational speed that is considerable faster than -
the efficient weighted back-projection technique. A demonstration with
experimental data—albeit with evenly distributed projections—indicated
that the results of the two techniques were virtually identical. Other
remedies are to truncate the sinc functions or to use different (e.g.,
triangular) interpolation functions.

D. Iterative Algebraic Reconstruction Methods

In the discrete representation, the relationship between the object and the
set of projections can be formulated by a set of algebraic equations
(Crowther et al., 1970; Gordon et al., 1970). For the parallel projection
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geometry, the jth sample of projection i is obtained by summing the object
p along parallel rays (indexed j) defined by the projection direction 6;. The
object is a continuous density function, represented by samples p, on a
regular grid, along with some rule (interpolation rule) for how to obtain
the values on points not falling on the grid from those lying on the grid.
Consequently, the discrete points of the object contribute to the projection
rays according to weights wj(,’;) that reflect the angle of projection and the
particular interpolation rule:

PP =¥ wip,. (5:32)

With a sufficient number of projections at different angles, Eq. (532
could be formally solved by matrix inversion, as pointed out by Crowther et
al. (1970), but the number of unknowns is too large to make this approach
feasible. Least-square, pseudoinverse methods (see Carazo, 1992) involve
the inversion of a matrix whose dimensionally is given by the number of
independent measurements, still a large number but somewhat closer to
being manageable for the 2D case (see Zhang, 1992). There is, however, an
entire class of reconstruction algorithms based on an approach to estimate
the solution to Eq. (5.32) iteratively. The principle of these algorithms is
that they start from an original estimate p{”’ and compute its projection
ﬁ}“ following Eq. (5.32). The discrepancy between the actually observed
projection p® and the “trial projection” P can now be used to modify
each sample of the estimate p{”, giving a new estimate pY, etc. In the
algebraic reconstruction technique (ART) [proposed by Gordon et al.,
1970, but essentially identical with Karczemarz’ (1937) algorithm for
approximating the solutions of linear equations], the discrepancy is sub-
tracted from the object estimate along the projection rays in each step, so
that perfect agreement is achieved for the particular projection direction
considered. In the simultaneous iterative reconstruction technique (SIRT)
(proposed by Gilbert (1972)), the discrepancies of all projections are
simultaneously corrected. For an exhaustive description of these and other
iterative techniques, the reader is referred to Herman (1980).

Iterative methods have the advantage over the other approaches to 3D
reconstruction that they are quite flexible, allowing constraints and statisti-
cal considerations to be introduced into the reconstruction process (e.g.
Penczek et al., 1992). They have the disadvantage of much larger computa-
tional expense than the weighted back-projection method. The use of
nonlinear constraints (e.g., prescribed value range) introduces another
disadvantage: the reconstruction process is no longer linear, making its
characterization by a point spread function (see Section IV, B) or the 3D
variance estimation by projection variance back-projection (Section II, A
in Chapter 6) impossible to achieve.
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V. The Random-Conical Reconstruction Scheme in Practice

A. Overview

The concept of the random-conical data collection was introduced above
(Section III, E). In the following section, all steps of the reconstruction
scheme that makes use of this data collection method will be outlined. In
this we will follow the detailed account given by Radermacher (1988), but
with the addition of the multivariate statistical analysis (MSA)/ classificg-
tion step and some modifications that reflect changes in the procedures as
they have developed?since 1988.

To start with an overview of the procedure (Fig. 5.14), the particles are
first selected (“windowed”) simultaneously from the tilted and the untilted
specimen field (steps 1 and 2, respectively), yielding two sets of images.
Next, the untilted set is subjected to alignment (step 3), producing a set of
“aligned” images. These are then analyzed using multivariate statistical
analysis and classification (step 4), resulting in the rejection of certain
particles and in the division of the data set into different classes according
to particle view. From here on, the different classes are processed sepa-
rately. For each class, the following steps are followed:

The tilted-particle images are sorted according to the azimuthal angle
found in the alignment procedure. Once in correct order, they are aligned
with respect to one another or with a common reference (step 5). After
this, they may be used to obtain a 3D reconstruction (step 6). Thus, in the
end, as many reconstructions are obtained as there are classes, the only
requirement being that the class has to be large enough for the reconstruc-
tion to be meaningful.

B. Optical Diffraction Screening

The tilted-specimen micrograph covers a specimen field with a typical
defocus range of 1.4 pum (at 50,000 X magnification and 50° tilt) perpen-
dicular to the direction of the tilt axis. Because of the properties of the
contrast transfer function (Section II, C in Chapter 2), useful imaging
conditions require the defocus to be in the range of underfocus [ie,Az<0
in Eq. (2.5) of Chapter 2]. In addition, the entire range must be restricted,
to prevent a blurring of the reconstruction on account of the defocus
variation that is equivalent to the effect of energy spread (Section 1. G 2m
Chapter 2). How much the range must be restricted, to a practical
“defocus corridor” parallel to the tilt axis, depends on the resolution
expected and can be inferred by reference to the transfer function charac-
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teristics (Chapter 2, Section II, C, 4) and the sharp falloff in the “energy
spread” envelope produced by the defocus spread.

When the micrograph shows a field with carbon film, the useful
defocus range can be found by optical diffraction analysis. Details of this
screening procedure have been described by Radermacher (1988). The
selection aperture must be small enough so that the focus variation across
the aperture is kept in limits. By probing different parts of the micrograph,
the tilt axis direction is readily found as the direction in which the optical
diffraction pattern remains unchanged. Perpendicular to that direction, the
diffraction pattern changes most dramatically (see Fig. 5.15), and following
this direction of sf8epest defocus change, the useful range must be
established by comparison with the transfer function characteristics.

Electron microscopes equipped for spot scanning allow an automatic
compensation for the defocus change perpendicular to the tilt axis (Zemlin,
1989b; Downing, 1992). For micrographs or data collected electronically
from such microscopes, particles from the entire specimen field can be
used for processing (Typke et al., 1992).

Another way of including all data in the processing irrespective of
their defocus is by keeping track of a spatial variable, in the course of
selecting and storing the individual particle windows, that gives the particle
position within the micrograph field in the direction perpendicular to the
tilt axis. This variable can later be interpreted in terms of the effective
local defocus, and used to make compensations or assign appropriate
Fourier weighting functions in the reconstruction (see also Section IX).

C. Interactive Tilted / Untilted Particle Selection

Selection of particles from a pair of tilted- and untilted-specimen micro-
graphs is a tedious task. A computer program for simultaneous interactive
selection was first described in the review by Radermacher (1988). The two
fields are displayed side by side on the screen of the workstation (Fig. 5.16) -
with a size reduction of 1:3 to 1: 4. The size reduction makes it possible to
select all particles from a micrograph field at once. It has the beneficial
side effect that the particles stand out with enhanced contrast, since size

Fig. 5.14. Schematic diagram of the data flow in the random-conical reconstruction. Simulta-
neously, particles are selected from the micrograph (1) of the tilted specimen and that (2) of
the untilted specimen. Those from the untilted field are aligned (3), resulting in azimuthal
angles ¢;, and classified (4), resulting in the separation into classes C;—C,. Separately, for
each of these classes, tilted-specimen projections are now aligned (5) and passed to the
3D reconstruction program (6). From Radermacher et al. (1987b). Reproduced with permis-
sion of Blackwell Science Ltd., Oxford, from Radermacher, M., Wagenknecht, T., Verschoor,
A., and Frank, J., Three-dimensional reconstruction from a single-exposure, random conical
tilt series applied to the SOS ribosomal subunit. J. Microsc. 146, 113-136.
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reduction with concurrent band limitation enhances the signal-to-noise
ratio (SNR), provided (as is the case here) that the signal spectrum falls off
faster then the noise spectrum with increasing spatial frequency (see
Chapter, 3, Section IV, C, 1).

Such a program is laid out to calculate the geometrical relationships
between the coordinate systems of the two fields as sketched in the paper
by Radermacher ez al. (1987b). For this purpose, the user selects a number
of particle images in pairs—tilted and untilted, by going back and forth
with the cursor between the two fields. After this initial “manual” selec-
tion, the program is prompted to compute the direction of the tilt axis and
the precise coordinate transformation between the two projections. This
transformation is given as (Radermacher, 1988)

(X’) e ( cos B sin B) @ (cose O) 3 (cosa —sin a
ba —sin B cos B 0 1 sin « cos a

x X0

5 ((y ) (Yo ) T

where « is the angle between tilt axis in the untilted-specimen image and
its y axis; B is the corresponding angle for the tilted-specimen image;
Xy, Yo are coordinates of an arbitrary selectable origin in the untilted-
specimen image; and, x{,, y; are the corresponding origin coordinates
in the tilted-specimen image.

After these geometrical relationships have been established, the user
can select additional particles from one field (normally the untilted-
specimen field as the particles are better recognizable there), and the
program automatically finds the particle as it appears in the other field. A
document file (see Appendix 1) is used by the program to store all particle
positions in both fields, later to be used for windowing the particles images
from the raw data files.

As an alternative to the interactive particle selection, Lata et al.
(1994, 1995) have developed an automated particle picking program (see
Section II, C), which has already proved its practical value in the 3D

reconstruction of the 30S ribosomal subunit from Escherichia coli (Lata
et al., 1995).

A
i 8 5.33
" ) (5.33)

D. Density Scaling

As in electron crystallography of crystals (Amos et al., 1982) correct
mutual scaling of the projection densities is necessary so that projections
are prevented from entering the analysis with undue weight, which would
lead to a distorted representation of the structure.

W T I I N W O R W

V. The Random-Conical Reconstruction Scheme in Practice 215
a
normalized
defocus
A=Bg+ it
&
Q
K
10 (bb »
.\\\\
2 Dtire
5.
Ax :
o coordinate
I ®:=45 Cs ) Ax
VCsA
S GG o)
25 <> =+ §>
>< =T e X
= <> * <:
o S e =R SN -
> <> e i;
<7 g A = 2
P \T o 2
spatial => 2; S
frequency ‘><> = Sl
r <} < e SN
<] o g
(25nm) A
| L8 86 124 162 200 normalized

defocus

Fig. 5.15. Change of contrast transfer function across the micrograph of a tilted specimen.
(a) Theoretical behavior; (b) optical diffraction patterns obtained at different positions of the
area-selecting aperture of the optical diffractometer along a line perpendicular to the tilt axis.
From Zemlin (1989b). Dynamic focussing for recording images from tilted samples in
small-spot scanning with a transmission electron microscope. J. Electron Microsc. Tech.
Copyright©1989 John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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Radermacher et al. (1987b) normalized the individual images repre-
senting tilted particles as follows: next to the particle (but staying away
from the heavy stain accumulation if the preparation is with negative
staining), the average density of a small reference field, (D), is calculated.
The density values measured in the particle window are then rescaled
according to the formula

o, Bemed (5.34)
; o 4

Boisset ef al. (1993) introduced another scaling procedure that makes

explicit use of the statistical distribution of the background noise: it is

assumed that the background noise surrounding the particle has the same

statistical distribution throughout. Using a large portion of one of the

tilted-specimen micrographs, a reference histogram is calculated. Subse-

quently the density histogram of the area around each particle is compared

with the reference histogram, and the parameters a and b of a linear
density transformation

D.=aD;+ b (5.35)
are estimated. This transformation is then applied to the entire particle
image, with the result that in the end all images entering the reconstruc-
tion have identical noise statistics. In fact, the match in statistics extends
beyond the first and second moment.

E. Processing of Untilted-Particle Images
1. Alignment and Classification

Following the random-conical scheme, the untilted-specimen projections
are first aligned and then classified. The alignment furnishes the azimuthal.
angle ¢ of the particle, which is needed to place the corresponding
tilted-specimen projections into the conical geometry. The classification
results in a division into L subsets of particles which are presumed to have

Fig. 5.16. Interactive particle selection using WEB. Two micrographs of the same field (left,
untilted: right, tilted by 36°) are displayed side by side. Equivalent particle images are
identified and numbered in both micrographs. Shown here is the beginning phase of the
program where each particle has to be tracked down in both micrographs. After the initial
phase, the parameters of the underlying coordinate transformation are known, and the
program is able to identify the companion in the second micrograph for any particle selected
in the first micrograph.
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different orientations and ideally should be processed separately to give L
different reconstructions. In practice, however, one chooses the classifica-
tion cutoff level rather low, so that many classes are initially generated. By
analyzing and comparing the class averages, e.g., by using the differential
phase residual criterion (Section V, B, 2 in Chapter 3), it is possible to
gauge whether some mergers of similar classes are possible without com-
promising resolution. This procedure leads to some small number of
L, < L “superclasses” which are fairly homogeneous on the one hand but
contain sufficient numbers of particles on the other hand to proceed with
three-dimensional reconstruction.

A substantial number of particles that fall in none of the superclasses
are left out at this stage, their main fault being that their view is
underrepresented, with a number that is insufficient for a 3D reconstruc-
tion. These particles have to “wait” till a later stage of the project when
they can be merged with a well-defined reconstruction based on a merger
of the superclass reconstructions, see Section VI below.

2. Number of Particles Needed: Angular Histogram

The number of projections required for computing a “self-standing”
reconstruction is determined by the statistics of the angular coverage
(Radermacher et al., 1987b; see Fig. 5.17). If we require a self-standing
reconstruction to be mathematically supported according to the conical-
reconstruction resolution formula (Section V, I below), there should be no
gap in the azimuthal distribution larger than

A6 = 360/N = 360 X d/(2wD sin 6,), (5.36)

min

Fig. 5.17. Distribution of azimuthal

angles of 50S ribosomal particles ex-

tracted from five pairs of micro-

graphs. The angles were determined

| by alignment of particles showing the

crown view as they appear in the

W | untilted-specimen micrographs. From

Radermacher et al. (1987b). Repro-

10 l duced with permission of Blackwell

Science Ltd.,, Oxford, from Rader-

macher, M., Wagenknecht, T., Ver-

5 schoor, A., and Frank, J., Three-

dimensional reconstruction from a

single-exposure, random conical tilt

I series applied to the 50S ribosomal
-180° -90° 0° 90° 180° subunit. J. Microsc. 146, 113-136.
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where N is the number of equidistant projections in a regular conical
series, d = 1/R is the resolution distance aimed for, D is the diameter of
the object, and 6, is the cone angle. To reconstruct the 50S gibosomal
subunit of E. coli (D = 200 A) to a resolution of R =1/30 A™' (d =
30 A) from a 50° tilted specimen (ie., 6, = 40°), the minimum angular
increment works out to be Af,,, = 13°. Because of the statistical fluctua-
tions in a random coverage of the azimuthal range, the required number of
projections is much larger then the minimum of N =360/13 = 28. In
practice, a set of 250 projections proved sufficient to cover the 360° range
with the largest gap being 5° (Radermacher et al., 1987b). Although there
is no iron-clad rule, Molecules in that size range (200 to 300 A) and to that
resolution (1,/30 A™1) appear to require a minimum of 200 projections.

F. Processing of Tilted-Particle Images

1. Alignment

Reference to the Fourier description (Fig. 5.18) explains why an alignment
of neighboring tilted-particle projections by cross-correlation is possible:
because each Fourier component is surrounded by a “circle of influence,”
as a result of the boundedness of the object. It is the very reason that
reconstruction from a finite number of projections is feasible.

There are four methods of alignment that have been tried at one stage
or the other: (i) sequential alignment “along the circle” with cosine
stretching (Radermacher et al., 1987b), (ii) alignment to the corresponding
0° projection with cosine stretching (Radermacher, 1988; Caraza et al.,
1988), (iii) alignment to a perspectively distorted disk (Radermacher,
1988), and (iv) alignment to a disk or “blob” (Penczek et al., 1992).

The reference to cosine stretching requires an explanation. According
to Guckenberger’s (1982) theory, the projection to be aligned to the
untilted-particle projection (method (i) above) must first be stretched by
the factor 1/cos(6,) in the direction perpendicular to the tilt axis, where 6,
is the tilt angle. When this philosophy is applied to the alignment of two
adjacent ftilted-particle projections (method (i) above), both must be
stretched by that factor prior to alignment. The cosine stretching proce-
dure appears to work well for oblate objects, i.e., those objects that are
more extended in the x and y directions than in the z-direction, as for
instance the 50S ribosomal subunit in the negatively stained double layer
preparation (Radermacher et al. , 1987a,b; Radermacher, 1988) The
reason that it works well for such specimens is that the common signal
includes the surrounding carbon film which is flat. For globular objects,
such as the 70S ribosome embedded in ice (Frank et al., 1991, 1995a, b;

s
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Fig. 5.18. Statistical dependence of Fourier components belonging to different projections.
We consider the Fourier transform along central sections Py, P, representing two projections
of an object with diameter D. Each Fourier component is surrounded by a “circle of
influence” with diameter 1/D. Thus the central section is accompanied on both sides by a
margin of influence, whose boundaries are indicated by the dashed lines. The diagram can be
used to answer two interrelated questions: (1) to what resolution are two projections
separated by A6 correlated? (2) what is the minimum number of projections with equispaced
orientations that are required to reconstruct the object to a resolution R without loss of
information? From “Advanced Techniques in Biological Electron Microscopy.” Three-dimen-
sional reconstruction of non-periodic macromolecular assemblies from electron micrographs.
Frank, J., and Radermacher, M., Vol. III, pp. 1-72 (1986). Reproduced with permission of
Springer-Verlag, Berlin.

Penczek et al., 1992, 1994), alignment to a nonstretched disk (blob) whose
diameter is equal to the diameter of the particle leads to better results.

Sequential alignment of neighboring projections is errorprone because
errors can accumulate in the course of several hundred alignments, as may
be easily checked by computing the closure error (Radermacher et al.,
1987b). Radermacher and co-workers developed a fail-safe variant of the
sequential method in which neighboring projections are first averaged in
groups spanning an angle of 10% these averaged tilt projections are aligned
“along the circle”, and, in the end, the individual projections are aligned to
their corresponding group average. However, for cryospecimens with their
decreased SNR, sequential alignment has largely been abandoned in favor
of the alignment of each tilted-particle projection with the 0° projection or,
as pointed out before, with a blob.

It may seem that the availability of 3D refinement methods (see
Section VIII) has relaxed the requirement for precise tilted-particle pro-
jection alignment at the stage of the first reconstruction; on the other
hand, it must be realized that the accuracy of the refinement is determined
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by the quality of the reference reconstruction which is in turn critically
dependent on the success of the initial alignment.

2. Screening

Screening of tilted-particle projections is a way of circumventing the
degeneracy of 0° classification (Section IV, K in Chapter 4). In the first
study of a molecule whose structure is unknown, it is advisable to verify
that the 0° projection does not hide a mixture of two or more molecule
orientations. The most important stipulation to apply is the continuity of
s-hape in a series of angularly ordered projections. As members of a conical
tilt series, projectios must occur in a strict one-dimensional similarity
order: for instance, the ordering of five closely spaced projections along
the cone in the sequence A-B—-C-D-E implies that the cross-correlation
coefficients (denoted by symbol ®) are ranked in the following way:

A®B > A®C > A®D > A®E

If we look at projections forming an entire conical series, then the
associated similarity pathway is a closed loop (see Section IV, H). In any
short segment of the loop, we find a cross-correlation ranking of the type
stated above as a local property. If all projections of the conical series are
closely spaced, then”the shape variation from one neighbor to the next is
qua§i-c§>ntinuous. In practice this means that a gallery of tilted-particle
projections presented in the sequence in which they are arranged on the
cone should show smooth transitions, and the last one of the series should
be similar to the first. The most sensitive test of shape continuity is a
presentation of the entire projection series as a “movie”: any discontinuity
is immediately spotted by eye.

The correct ordering on a similarity pathway can also be monitored by
multivariate statistical analysis. In the absence of noise, the factor map
should show the projections ordered on a closed loop (Frank and van Heel,
1982b; van Heel, 1984a). In fact, the ordering is on a closed loop in a .
high-dimensional space R’, and this closed loop appears in many different
*projected versions in the factor maps. In the presence of noise, it proves
difficult to visualize the similarity pathway (and thereby spot any outliers
that lie off the path). One way out of this problem is to form “local”
averages over short angular intervals, and apply MSA to these very robust
manifestations of the projections (Frank er al., 1986). A closed loop
becomes then indeed visible. It can be used, in principle, to screen the
original projections according to their distance, in factor space, from the
averaged pathway. This method has not been pursued, however, and has
been partly replaced by the 3D projection matching (Section VIII, B) and
3D Radon transform (Section VIII, C) methods.



222 Chapter 5. Three-Dimensional Reconstruction

Flip /flop ambiguities are normally resolved by classification of the 0°
degree views, on the basis of the mirroring of the projected molecule shape
(van Heel and Frank, 1981). However, a peculiar problem emerges when
the shape of the molecule in projection is symmetric. In that case, there is
no distinction between flip and flop projections—unless induced by one-
sidedness of staining. Lambert et al. (1994a) had to deal with this problem
when they processed images of the barrel-shaped chiton hemocyanin which
sits on the grid with one of its (unequal) round faces. As these authors
realized, the cylindric shape is unique in that it allows flip and flop
orientations of the molecule to be sorted by MSA of the tilted-particle
images. Perfect cylinders give uniformly rise to double-elliptic. barrel
projections, irrespective of the tilt direction. Any asymmetry in the
z distribution of mass (in this case, the existence of a “crown” on one side
of the molecule) leads to a difference in appearance between molecules
tilted to the one side from those tilted to the other. This difference was
clearly picked up by correspondence analysis, and the two different popu-
lations could be separated on this basis.

G. Reconstruction

After the screening step to verify that the tilted-particle projections follow
one another in a reasonable sequence, the particle set is ready for 3D
reconstruction. Both weighted back-projection (Radermacher et al., 1987b)
and a modification of SIRT (Penczek et al., 1992) are being used. For the
weighted back-projection, the weighting step is either performed individu-
ally on each projection (Radermacher et al.;-1987b) (implying the steps
FT — Weighting —» FT™!) or, summarily, by applying a 3D weighting
function on the volume obtained by simple back-projection (Hegerl
et al., 1991).

The reconstruction exists as a set of slices (see Fig. 5.19). Each slice is
represented by a 2D image that gives the density distribution on a given z
level, which is a multiple of the sampling step. The representation as a
gallery of successive slices (the equivalent of a cartoon if the third
dimension were the time) is both the most comprehensive and the most
confusing way of representing 3D results. Instead, surface representations
(Section 1V, B, 1, in Chapter 6) are now in common use. A general
discussion of visualization options is contained in Section V, 4.

H. Resolution Assessment

The mathematical resolution of a reconstruction is determined through
the Crowther et al. (1970) formula (Section II, A). Corresponding formulae
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Fig. 5.19. The 50S ribosomal subunit, reconstructed from cryoimages, represented as a

series of slices. From Radermacher (1994). Reproduced with permission of i "
Amsterdam. P of Elsevier Science,

have been given by Radermacher (1991) for the conical projection geome-
try. Here we mention the result for an even number of projections:

d =2w(D/N)sin 6, (5.37)

where d = 1/R is the “resolution distance,” i.., the inverse of the
resolution, D the object diameter, and 6, is the tilt of the specimen grid
Furthermore, for such a data collection geometry, the resolution is direc-
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tion-dependent, and the above formula gives only the resolution in the
directions perpendicular to the direction of the electron beam. In direc-
tions that form an angle oblique to those directions, the resolution is
deteriorated. In the beam direction, the effect of the missing cone is
strongest, and the resolution falls off by a factor of 1.58 (for 0, = 45°) or
1:23 (for 6, ='60).

The account given thus far relates to the theoretical resolution ex-
pected from the data collection geometry. However, whether this resolu-
tion is actually realized is quite another matter. The reasons that it is
normally not realized are manifold: the structure of the biological particle
may not be defined to that level of resolution because of conformational
variability; in stained preparations, the stain fluctuations and finite graini-
ness limit the definition of small specimen features; and there are a
number of electron optical effects (partial coherence, charging, specimen
movement) that limit the transfer of information from the specimen to the
image. Another important limitation is due to errors in the assignment of
projection angles (see Section VIII, D).

For these reasons, the significant resolution of a reconstruction needs
to be independently assessed. (Here the term “significant resolution”
denotes the resolution up to which object-related features are represented
in the 3D image.) The procedure is quite similar to the assessment of 2D
resolution (Section V, B in Chapter 3), by computing two reconstructions
from randomly drawn subsets of the projection set, and comparing these in
Fourier space using differential phase residual (DPR) or Fourier ring
correlation (FRC) criteria. However, in the 3D case, the summation in the
defining formulas [Chapter 3, Eqs. (3.64) and (3.65)] now has to go over
shells [k| = constant. This extension of the differential resolution criterion
to three dimensions was first implemented (under the name of “Fourier
shell correlation”) by Harauz and van Heel (1986a) for the case of the
FRC. Thus far, a resolution assessment analogous to the spectral signal-
to-noise ratio (SSNR) has not been developed for the 3D reconstruction,
but some considerations along these lines have been developed by Liu
(1993).

Resolution assessment based on the comparison of experimental pro-
jections with projections “predicted” from the reconstruction is useful, but
cannot replace the full 3D comparison mentioned above. One of the
consistency tests for a random-conical reconstruction is the ability to
predict the 0° degree projection from the reconstruction, a projection that
does not enter the reconstruction procedure yet is available for compari-
son from the analysis of the 0° data. Mismatch of these two projections is
an indication that something has gone wrong in the reconstruction; how-
ever, on the other hand, an excellent match, up to a resolution R, is not a
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guarantee that such a resolution is realized in all directions. This is easy to
see by invoking the projection theorem as applied to the conical projection
geometry (see Fig. 5.10): provided that the azimuths ¢; are correct, the
individual tilted planes representing tilted projections furnish correct data
for the 0° plane, irrespective of their angle of tilt. It is therefore possible to
have excellent resolution in directions defined by the equatorial plane, as
evidenced by the comparison between the 0° projections, while the resolu-
tion might be severely restricted in all other directions. The reason that
this might happen is that the actual tilt angles of the particles differ from
the nominal tilt angle assumed (see Penczek et al., 1994).

Another resolution test, used initially for assessing the results of 3D
reconstruction, employs the pairwise comparison of selected slices, again
using the two-dimensional DPR and FRC (e.g., Radermacher et al., 1987b,
Verschoor et al., 1989; Boisset e al., 1990b). Although such a test, in
contrast to the 0° projection check mentioned above, is indeed sensitive to
the accuracy of assignment of tilt angles to the particles, it still fails to give
an overall assessment of resolution including all spatial directions, as only
the Fourier shell measures can give.

Because of these shortcomings of 2D resolution tests in giving a fair
assessment of 3D resolution, the use of DPR and FRC computed
over shells is now common practice (e.g., Akey and Radermacher, 1993;
Radermacher et al., 1994b, Serysheva et al., 1995). (Unfortunately, the two
measures in use give widely different results for the same data set, with
FRC being as a rule more optimistic than DPR; see Section V, B in
Chapter 3. It is therefore a good practice to quote both in the publication
of a 3D map.) However, there is as yet no convention on how to describe
the direction dependence of the experimental resolution. Thus, the resolu-
tion sometimes relates to an average over the part of the shell within the
measured region of 3D Fourier space; sometimes (e.g., Boisset ef al., 1993,
1995; Penczek et al., 1994) it relates to the entire Fourier space without
exclusion of the missing cone. It is clear that, as a rule, the latter figure
gives a more pessimistic estimate than the former.

VI. Merging of Reconstructions

A. The Rationale of Merging

Each reconstruction shows the molecule in an orientation that is deter-
mined by the orientation of the molecule on the specimen grid (and by a
trivial “in-plane” rotation angle whose choice is arbitrary but which also
figures eventually in the determination of relative orientations). The goal
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of filling the angular gap requires that several reconstructions with differ-
ent orientations be combined, to form a “merged” reconstruction as the
final result. The procedure to obtain the merged reconstruction is easily
summarized in three steps (i) 3D orientation search, (ii) expression of the
different projection sets in a common coordinate system, and (iii) recon-
struction from the full projection set.

The premise of the merging is that the reconstructions based on
molecules showing different 0° views represent the same molecule, without
deformation. Only in that case will the different projection sets be consis-
tent with a common object model. The validity of this assumption will be
investigated in the next section. In each case, the merging must be
justified, by applying a similarity measure: until such verification is achieved,
the assumption that the particles reconstructed from different 0°-view sets
have identical structure and conformation remains unproven. This extra
scrutiny is required because molecules are potentially more variable in the
single particle form than when ordered in crystals.

B. Preparation-Induced Deformations

Molecules prepared by negative staining and air-drying show evidence of
flattening. Quantitative data on the degree of flattening are scarce; how-
ever, as an increasing number of comparisons between reconstructions of
molecules negatively stained and embedded in ice become available, some
good estimations can now be made. Another source of information is the
comparison of molecules that have been reconstructed in two different
orientations related to each other by a 90° rotation. In interpreting such
data, it is important to take incomplete staining into account. Without
using the sandwiching technique, some portions of the particle, pointing
away from the grid, may “stick out” of the stain layer and thus be rendered
invisible. On the other hand, the sandwiching may be responsible for an
increase in flattening.

Boisset et al. (1990b) obtained two reconstructions of negatively
stained, sandwiched Androctonus australis hemocyanin, drawing either
from particles lying in the top or those in the side view, and reported a
factor of 0.6 when comparing a particle dimension perpendicular to the
specimen grid with the same dimension parallel to the grid. Since the
flattening is accompanied by an increase in lateral dimensions, one can
assume that the flattening is less severe than this factor might indicate.
Another estimate, a factor of 0.65, comes from a comparison between two
reconstructions of an A. australis hemocyanin—Fab complex, one obtained
with negative staining (Boisset et al. 1993b) and the other using vitreous
ice (Boisset et al., 1994b; 1995).
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Cejka et al. (1992) obtained a somewhat larger factor (12 nm/
18 nm = 0.67) for the height (i.e., the dimension along the cylindric axis)
of the negatively stained (unsandwiched) Ophelia bicornis hemoglobin.
They were able to show that molecules embedded in aurothioglucose and
frozen—hydrated have essentially the same height (18.9 nm) when recon-
structed in their top view as molecules negatively stained presenting the
side view.

The 50S ribosomal subunit, reconstructed in its crown view frox.n
negatively stained, sandwiched (Radermacher et al., 1987a, b), and ice-
embedded preparatigns (Radermacher ez al., 1992), appears to be flattened
according to the ratio 0.7:1. A factor of 0.6: 1 holds for the calcium
release channel, as can be inferred from a comparison (Radermacher
et al., 1994b) of the side views of the cryo-reconstruction (Radermacher
et al., 1994a, b) with the reconstruction from the negatively stained specimen
(Wagenknecht et al., 1989a).

In summary, then, it is possible to say that as a rule, molecules
prepared by negative staining are flattened to 60-70% of their original
dimension. All evidence suggests that the flattening is normally avoided
when ice or aurothioglucose embedment is used. In addition, the high
degree of preservation of 2D bacteriorhodopsin crystals in glucose-
embedded preparations (Henderson and Unwin, 1975; Henderson et al.,
1990) would suggest that single molecules embedded in glucose might also
retain their shape, although to date this has been neither proved nor
disproved by a 3D study. The important lesson for data merging is that 3D
reconstructions from negatively stained molecules cannot be merged unless
they are based on the same view of the molecule, i.e., on images showing the
molecule facing the support grid in the same orientation.

C. Three-Dimensional Orientation Search

1. Orientation Search Using Volumes

The reconstructed volumes have to be aligned both translationally and
with respect to their orientation. This is achieved by a computational
search in which the different parameters of shift and 3D orientation (five
in all) are varied and the cross-correlation coefficient is used as similarity
measure (Knauer et al., 1983; Carazo and Frank, 1988; Carazo et al. 1989;
Penczek et al., 1992). The search range and the computational effort can
be kept small if the approximate matching orientation can be estimated.
Often it is clear from other evidence (e.g., interconversion experiments,
see Section III, C; symmetries; or knowledge of architectural building
principles, as in the case of an oligomeric molecule) how particular views
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are related to one another in angular space. Examples are the top and side
views of A. australis hemocyanin, which are related by a 90° rotation of the
molecule around a particular axis of pseudosymmetry (see Appendix in
Boisset et al., 1988).

A major difficulty in finding the relative orientation of different
reconstructions is presented by the missing cone. In Fourier space, the
correlation between two volumes in any orientation is given by the sum
over the terms F,(K)F¥(k) for all possible k. Here F,(k) denotes the
Fourier transform of the first volume in its original orientation, and F3 (k)
the complex conjugate of the Fourier transform of the second volume after
it has been subjected to a “probing” rotation. Since the missing cones of
data sets originating from different molecule views lie in different orienta-
tions, the orientation search is biased by a “vignetting effect.” This effect
results from the cones either intersecting each other to different extents,
depending on the angles, or sweeping through regions of the companion
transform that carry important parts of the structural information. Real-
space methods of orientation determination search generally fail to deal
with this complication and may therefore be inaccurate. Fourier methods,
in contrast, allow precise control over the terms included in the correlation
sum and are therefore usually preferable.

Figure 5.20 shows the outcome of an orientational search for the 70S
Escherichia coli ribosome. In the matching orientations, the correlation
coefficients are in the range between 0.8 and 0.86, justifying the assump-
tion that we are indeed dealing with the same structure. The angles
obtained when three or more structures are compared can be checked for
closure. Penczek et al. (1992) applied this principle in the case of the 70S
ribosome of E. coli where three reconstructions S,, S,, S; were available:
the combination of the rotations found in the orientation search (S, S,),
(S,, S3) should give a result close to the rotation resulting from the search
(S;, S5). [Note that each of these rotations is expressed in terms of three
Eulerian angles (see Section II, B), so that the check actually involves the
multiplication of two matrices]. More generally, in the situation where N
reconstructions S; (i = 1... N) are compared, then any “closed” string of
pairwide orientation determinations (i.e., a string that contains one volume
twice, in two different comparisons),

(S8, .., (S8

should result in rotations that, when combined, amount to no rotation at
all. In the case of the 70S ribosome, the resulting closure error for three
reconstructions was found to be in the range of 2° (Penczek et al., 1992),
which signifies excellent consistency.
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Fig. 5.20. Result of orientation search among three independent reconstructions of the
ribosome (DPR-resolution; 1,/47 AD, Top row, the three reconstructions before orienta-
tional alignment; bottom row, reconstructions 2 and 3 after alignment with reconstruction 1.
From Penczek et al. (1992). Reproduced with permission of Elsevier Science, Amsterdam.

2. Orientation Search Using Sets of Projections (OSSP)

Instead of the reconstructions, the projection sets themselves can be used
for the orientation search (Frank et al., 1992; Penczek et al., 1994). In
Fourier space, each random-conical projection set is represented by a set
of central sections, tangential to a cone, whose mutual orientations are
fixed (Fig. 5.21). It is obvious that the real-space search between volumes
can be replaced by a Fourier space search involving the two sets of central
sections. Instead of a single common line, the comparison involves N
common lines (N being the number of projections in the two sets com-
bined) simultaneously, with concomitant increase in signal-to-noise ratio.
The method of comparison uses a discrepancy measure 1-p;,, where p,, is
the cross-correlation coefficient, computed over Fourier coefficients along
the common line. Penczek et al. (1994) described the geometry underlying
this search: the angle between the cones is allowed to vary over the full
range. For any given angle, it is necessary to locate the “common line”
intersections between all central sections of one cone with all central
sections of the other.
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Fig. 5.21. Principle of the method of
orientation search using sets of pro-
jections (OSSP). The two cones
around axes 1 and 2 belong to two
random-conical data collection ge-
ometries with different orientations of
the molecule. Two given projections
in the two geometries are represented
by central Fourier sections tangential
to the cones. These central sections
intersect each other along the com-
mon line C. The OSSP method simul-
taneously considers every ‘common
line generated by the intersection of
every pair of central sections. From
Penczek et al. (1994). Reproduced
with permission of Elsevier Science,
Amsterdam.

While the location of the common line is constructed in Fourier space,
the actual computation of the discrepancy measure is performed in real
space, exploiting the fact that the one-dimensional common line found for
any particular pairing of central sections is the Fourier transform of a
one-dimensional projection. The OSSP method has two advantages over
the orientation search between reconstruction volumes: it makes the
computation of reconstructions prior to merging unnecessary, and it offers
a rational way of dealing with the angular gap.

D. Reconstruction from the Full Projection Set

Once the relative orientations of the projection sets are known, either
from an orientation search of the reconstruction volumes, or from an
orientation search of the projection sets (as outlined in the previous
section), the Eulerian angles of all projections of the combined projection
sets can be formulated in a common coordinate system. It is then straight-
forward to compute the final, merged reconstruction.

It is important to realize that because of the properties of the general
weighting functions, it is not possible to merge reconstructions by simply
adding them. Instead, one must first go back to the projections, apply the
appropriate coordinate transformations so that all projection angles relate
to a single coordinate system, and then perform the reconstruction from
the entire set. The same is true when one uses iterative reconstruction
techniques, where the solution is also tied to the specific geometry of a
projection set.
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VII. Three-Dimensional Restoration

A. Introduction

3D restoration (as distinct from restoration of the contrast transfer func-
tion; see Section II, H in Chapter 2 and Section IX in this chapter) is the
term we will use for techniques designed to overcome the angular limita-
tion of a reconstruction which leads to resolution anisotropy and an
elongation of the molecule in the direction of the missing data. Maximum
entropy methods present one approach to restoration (Barth et al., 1989;
Farrow and Ottensmeyer, 1989; Lawrence et al., 1989). These methods are
known to perform well for objects composed of isolated peaks, e.g., stars in
astronomical applications, but less well for other objects; see Trussell
(1980). Another approach, based on a set theoretical formulation of the
restoration and the enforcement of mathematical constraints, is known
under the name of projection onto convex sets (POCS). POCS was devel-
oped by Youla and Webb (1982) and Sezan and Stark (1982) and intro-
duced into electron microscopy by Carazo and Carrascosa (1987a,b). An
overview chapter by Carazo (1992) addresses the general question of
fidelity of 3D reconstructions and covers POCS as well as related restora-
tion methods.

As was earlier mentioned, iterative reconstruction techniques allow
nonlinear constraints to be incorporated quite naturally. In this case they
actually perform a reconstruction-cum-restoration, which can also be un-
derstood in terms of the theory of POCS (Penczek, unpublished work,
1993).

All these methods, incidentally, along with multivariate statistical
analysis, are examples of a development that treats image sets in frame-
work of a general algebra of images. Hawkes (1993) has given a glimpse
into the literature in this rapidly expanding field.

B. Theory of Projection onto Convex Sets

What follows is a brief introduction into the philosophy of the POCS
method which can be seen as a generalization of a method introduced by
Gerchberg and Saxton (1971) and Gerchberg (1974). A similar method of
“iterative single isomorphous replacement” (Wang, 1985) in X-ray crystal-
lography is also known under the name of solvent flattening. Still another,
related method of “constrained thickness” in reconstructions of one-
dimensional membrane profiles was proposed earlier on by Stroud and
Agard (1979). An excellent primer for the POCS method was given by
Sezan (1992).
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Similarly as in multivariate statistical analysis of images (Chapter 4),
which takes place in the space of all functions with finite 2D support, we
now consider the space of all functions with finite 3D support. In the new
space (Hilbert space), every conceivable bounded 3D structure is repre-
sented by a (vector end-) point. Constraints can be represented by sets. For
instance, one conceivable set might be the set of all structures that have
zero density outside a given radius R. The idea behind restoration by
POCS is that the enforcement of known constraints that were not used in
the reconstruction method itself will yield an improved version of the
structure. This version will lie in the intersection of all constraint sets and
thus closer to the true solution than any version outside of it. In Fourier
space, the angular gap will tend to be filled. The only problem to solve is
how to find a pathway from the approximate solution, reconstructed, for
instance, by back-projection or any other conventional technique, to one of
the solutions lying in the intersection of the constraint sets.

Among all sets representing constraints, those that are both closed and
convex proved of particular interest. Youla and Webb (1982) showed that
for such sets the intersection can be reached by an iterative method of
consecutive *projections. A *projection from a function f(r) onto a set C
in Hilbert space is defined as an operation that determines a function g
in C with the following property: “of all functions in C, g(r) is the one
closest to f(r),” where “closeness” is defined by the size of a distance; for
instance by the generalized Euclidean distance in Hilbert space:

J
E=lgr) —fl = ¥ lgh) - fGpl. (5.38)
1

j=

Note that, by implication, repeated applications of *projection onto the
same set lead to the same result.] In symbolic notation, if P; denotes the
operation of *projection onto set C;, so that f' =Ff is the function
obtained by *projecting f onto C;, the iterative restoration proceeds as
follows:

fO =PP,...P,fO
f@ =PP,...B,fO (5.39)

etc. As the geometric analogy shows (Fig. 5.22), by virtue of the convex
property of the sets, each iteration brings the function (represented by a
point in this diagram) closer to the intersection of all constraint sets.
Carazo and Carrascosa (1987a,b) already discussed closed, convex
constraint sets of potential interest in electron microscopy: spatial bound-
edness (as defined by a binary mask), agreement with the experimental
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Fig. 5.22. Principle of restoration using the method of *projection onto convex sets. C, and
C, are convex sets in the space RY, representing constraints, and P;, P, are associated
*projected operators. Each element f; is a 3D structure. We seek to find a pathway from a
given blurred structure f, to the intersection set (shaded). Any structure in that set fulfills
both constraints and is thus closer to the true solution than the initial structure f;. From
Sezan (1992). Reproduced with permission of Elsevier Science, Amsterdam.

measurements in the measured region of Fourier space, value bounded-
ness, and energy boundedness. Thus far, in practice (see following), only
the first two on this list have gained much importance, essentially compris-
ing the two components of Gerchberg’s (1974) method.”” Numerous other
constraints of potential importance [see, for instance, Sezan (1992)] still
await exploration.

C. Projection onto Convex Sets in Practice

In practice, the numerical computation in the various steps of POCS has to
alternate between real space and Fourier space for each cycle. Both
support (mask) and value constraints are implemented as operations in
real space, while the “replace” constraint takes place in Fourier space. For
the typical size of a 3D array representing a macromolecule (between
64 X 64 X 64 and 100 X 100 X 100), the 3D Fourier transformations in
both directions constitute the largest fraction of the computational effort.

2 Gerchberg’s (1974) method, not that of Gerberg and Saxton (1972), is a true precursor
of POCS since it provides for replacement of both modulus and phases.
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The support-associated *projector is of the following form:

), ieM

; (5.40)
0 otherwise,

ri- |
where M is the set of indices defining the “pass” regions of the mask. In
practice, a mask is represented by a binary-valued array with “1” repre-
senting “pass” and “0” representing “stop.” The mask array is simply
interrogated, as the discrete argument range of the function f is being
scanned in the computer, and only those values of f(i) are retained for
which the mask M indicates “pass.” The support constraint is quite
powerful if the mask is close to the actual boundary, and an important
question is how to find a good estimate for the mask in the absence of
information on the true boundary (which represents the normal situation).
We will come back to this question later after the other constraints have
been introduced.

The value constraint is effected by the *projector (Carazo, 1992)

a f<.a
Pf={f axfzb (5.41)
S

The measurement constraint is supposed to enforce the consistency of
the solution with the known projections. This is rather difficult to achieve
in practice because the projection data in Fourier space are distributed on
a polar grid while the numerical Fourier transform is sampled on a
Cartesian grid. Each POCS *projection would entail a complicated
Fourier—sinc interpolation. Instead, the measurement constraint is nor-
mally used in a weaker form, as a “global replace” operation: within the
range of the measurements (i.e., in the case of the random-conical data
collection, within the cone complement that is covered with projections;
see Fig. 5.11), all Fourier coefficients are replaced by the coefficients of
the solution found by weighted back-projection.

This kind of implementation is somewhat problematic, however, be-
cause it reinforces a solution that is eventually not consistent with the true
solution because it incorporates a weighting that is designed to make up
for the lack of data in the missing region. A much better “replace”
operation is implicit in the iterative schemes in which agreement is
enforced only between projection data and reprojections. In Fourier space,
these enforcements are tantamount to a “replace” that is restricted to the
Fourier components for which data are actually supplied.

The use of the global replace operation also fails to realize an
intriguing potential of POCS: the possibility of achieving anisotropic
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superresolution, beyond the limit given by Crowther et al. (1970). Intu-
itively, the enforcement of “local replace” (i.e., only along central sections
covered with projection data) along with the other constraints will fill the
very small “missing wedges” between successive central sections on which
measurements are available much more rapidly, and out to a much higher
resolution, than the large missing wedge or cone associated with the data
collection geometry. The resolution factor might be as large as two—theo-
retical calculations are still pending.

What could be the use of anisotropic superresolution? An examplé is
the tomographic stl,Ldy of the mitochondrion (Mannella ef al., 1994), so far
hampered by the extremely large ratio between size (several microns) and
the size of the smallest detail we wish to study (5 nm). The mitochondrion
is a large structure that encompasses, and is partially formed by, a
convoluted membrane. We wish to obtain the spatial resolution in any
direction that allows us to describe the spatial arrangements of the differ-
ent portions of the membrane: Do they touch? Are compartments formed?
What is the geometry of the diffusion-limiting channels? The fact that the
important regions where membranes touch or form channels occur in
different angular directions makes it highly likely in this application to pick
up the relevant information. The subject of tomography is outside the
scope of this book, but similar problems where even anisotropic resolution
improvement may be a bonus could well be envisioned in the case of
macromolecules.

Examples for the application of POCS to experimental data are found
in the work by Akey and Radermacher (1993) and Radermacher et al.
(1992b, 1994b). In all these cases, only the measurement and the finite
support constraints were used. In the first case, the nuclear pore complex
was initially reconstructed from data obtained with merely 34° and 42° tilt
and thus had an unusually large missing-cone volume. Radermacher ef al.
(1994b) observed that POCS applied to a reconstruction from a negatively
stained specimen led to a substantial contraction in z direction (see
Fig. 5.23 in this Chapter and Fig. 7.6 in Chapter 7) while the ice recon-
struction was relatively unaffected.

VIIL. Angular Refinement Techniques

A. Introduction

The random-conical method of data collection was developed as a way of
providing a defined angular relationship among a set of molecules. Since
the selection of groups is based on the classification of molecule views in
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Fig. 5.23. Example for application of POCS. (a) Four views of the 50S ribosomal subunit,
reconstructed from images of negatively stained specimen using random-conical data collec-
tion and weighted back-projection; (b) the structure in (a) after application of POCS using
only “replace” and “boundedness” *projectors. The particle is seen to flatten in z direction,
as a result of some filling of the missing cone in the low spatial frequency region. Reproduced
with permission of M. Radermacher (unpublished).

the 0° micrograph, there exists an uncertainty in the actual size of the 6
angle which defines the inclination of the central section associated with
the projection. This angular uncertainty can easily reach + 10° and reduce
the resolution of the reconstruction substantially (see the estimates given
in Section VIII, D).

At this point it should be reiterated (see Section V, H) that the
cross-resolution comparison between the 0° average of a molecule set in a
certain view and the 0° projection of the reconstruction, valuable as it is as
a check for internal consistency (Section V, I), nevertheless fails to provide
an adequate estimate of over-all resolution. It has been pointed out
(Penczek et al., 1994) that the 0° projection is insensitive to incorrect
assignments of 6, since its associated central section in Fourier space is
built up from one-dimensional lines, each of which is an intersection
between the 0°-central section and the 50°-central section.

Angular refinement, by giving each projection a chance “to find a
better home” in terms of its orientation and phase origin, improves the
resolution of the reconstruction substantially. For the 70S ribosome, an
improvement from 1/47.5 to 1/40 A~! was reported (Penczek et al.,
1994). An angular refinement technique essentially based on the same
principle, of using an existing lower-resolution reconstruction as a tem-
plate, has been used recently in the processing of virus particles (Cheng
et al., 1994). The two schemes resemble earlier schemes proposed by
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van Heel (1984) and Harauz and Ottensmeyer (1984a). In fact, all four
schemes, although differing in the choice of computational schemes and
the degree of formalization, can be understood as variants of the same
approach.

B. Three-Dimensional Projection Matching Method

In the 3D projection matching scheme, reference projections (in +the
following termed “reprojections”) are computed from the (low-resolution)
template structure™such that they cover the entire angular space evenly
(Fig. 5.24). As template structure, an existing 3D volume is used, which
might have been obtained by merging several random-conical projection
sets. In the application by Penczek et al. used to demonstrate the tech-
nique—the 70S ribosome from E. coli—5266 such reference projections
were obtained. A given experimental projection is cross-correlated with all
reference projections. The angle giving the largest CCF peak is the desired
projection angle. The cross-correlation function between reference and
current projection gives, at the same time, the shift and the azimuthal
orientation of the particle under consideration. Using the new parameters
for each experimental projection, a new reconstruction is computed, which
normally has improved resolution. This refined reconstruction can now be
used as new template, etc. Usually, the angles no longer change by
significant amounts after two or three iterations of this scheme (see
Section VIII, D for a discussion of this point in the light of experimental
results). In the demonstration by Penczek et al. (1994), additional 0° or
low-tilt data could be used, following this approach, to improve the
resolution from 1,/40 to 1/29 A~'. [0° Data here means “the collection of
particle images in an untilted specimen field.”] The end results of the
refinement, and the evenness of the distribution can be checked by
plotting a chart that shows the 3D angular distribution of projections
(Fig. 5.25). Before refinement, each random-conical set of projections will
be mapped into a circle of data points on such a chart. It is seen that the
angular corrections in the refinement have wiped out all traces of these
circular paths.

The 3D projection matching technique as described above (Penczek
et al., 1994; Cheng et al., 1994) is closely related to Radermacher’s 3D
Radon transform method (Radermacher, 1994; see below). [This relation-
ship can be understood in terms of the so-called X-ray transform versus
Radon transform (see Natterer, 1986).]. It also has close similarities with
projection matching techniques that were formulated some time ago,
when exhaustive search techniques with the computer were quite time-
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Fig. 5.24. Principle of 3D angular alignment or refinement. From an existing reconstruction
(top left), a large number of projections are obtained, covering the 3D orientation space as
evenly as possible. In the case illustrated, 5266 projections are computed. 3D angular
alignment of new data: a given experimental projection that is not part of the projection set
from which the reconstruction was obtained is now cross-correlated with all trial projections.
The direction tor which maximum correlation is obtained is then assigned to the new
projection. In this way, an entire new data set can be merged with the existing data so that a
new reconstruction is obtained. Angular refinement of existing data: each projection that is
part of the experimental projection set is matched in the same way with the computed
projections to find a better angle than originally assigned. However, in this case, the search
range does not have to extend over the full space of orientations, because large deviations are
unlikely. The best choice of search range can be gauged by histograms of angular “move-
ments”; see Section VIII, D and particularly Fig. 5.27. From Penczek et al. (1994). Repro-
duced with permission of Elsevier Science, Amsterdam.

consuming and therefore still impractical to use. These relationships will
be briefly summarized in the following:

(i) van Heel (1984b) proposed a method to obtain the unknown
orientations of a projection set using the following sequence:
step 0: assign random orientations to the projections;
step 1: compute 3D reconstruction;
step 2: project 3D reconstruction in all directions in space to match
experimental projections. The parameters for which best matches are
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Fig. 5.25. Distribution of directions of 567 projections after refinement through 3D projec-
tion alignment. A single random-conical projection set prior to refinement would be repre-
sented by a circular pattern of dots on this map. From Penczek et al. (1994). Reproduced with
permission of Elsevier Science, Amsterdam.

obtained yield new orientations for the projections; compute differences
between current model projections and experimental projections; if
summed squared differences are larger than a predefined value then GO
TO step 1, otherwise STOP.

This procedure thus contains the main ingredients of the algorithm of
Penczek et al., except for the choice of starting point (step 0), which makes
it difficult for the algorithm to find a satisfactory solution except in quite
fortuitous cases where the random assignment of angles happens to come
close to the actual values. In all other cases, the initial reconstruction will
not likely resemble a low-resolution version of the true structure, and will
fail to steer the orientation assignments in the correct directions.

(i) The Harauz and Ottensmeyer (1984a,b) approach differs from all
approaches discussed thus far in that it uses a computer-generated model
of the predicted structure rather than an experimental reconstruction as
an initial 3D template and a combination of visual and computational
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analyses to obtain an optimum fit for each projection. Because of the small
size of the object (nucleosome cores whose phosphorus signal was obtained
by energy filtering) and the type of specimen preparation used (air-drying),
the result was greeted with considerable scepticism. There is also a
principal question whether the use of an imposed 3D reference (as
opposed to an experimental 3D reference) might not bias the result.
We recall the reports about reference-induced averages in the two-
dimensional case (Radermacher et al., 1986b; Boekema et al., 1986), and
our previous discussion of this question as in introduction to reference-free
alignment schemes (see Chapter 3, Section III, E, 1).

As van Heel (1984b), Harauz and Ottensmeyer (1984a,b) also make
use of the summed squared difference, rather than the cross-correlation,
to compare an experimental projection with the reprojections. It was
earlier pointed out (Chapter 3, Section III, C, 1) that there is no practical
difference between the summed squared difference (or Euclidean dis-
tance) and the cross-correlation as measures of “goodness of fit” when
comparing 2D images that are rotated and translated with respect to one
another. This is so because the variance terms in the expression of the
Euclidean distance are translation- and rotation-invariant. In contrast, the
two measures do behave differently when employed to compare projec-
tions of two structures, since the variance of a projection may strongly
depend on the projection direction.

(iii) Alignment of correlation-averaged projections. Saxton et al. (1984)
developed a somewhat related alignment technique as part of a strategy to
reconstruct a crystal from projections that have been obtained by correla-
tion averaging. New projections are added incrementally to a data set by
aligning it to a “pseudoprojection” generated from the existing layer lines.
A refinement pass was designed in which each projection, again, has the
opportunity “to find a new home”: each projection is matched with the
data set which has been modified by exclusion of that projection.

(iv) Multiresolution approach. Dengler (1989) discussed projection
matching in the general framework of a multiresolution approach to
reconstruction. He addressed the important problem of error propagation,
which can be solved only by, in the words of the author, “iterative control
strategy from coarse to fine.” Some of Dengler’s ideas, relating to the
modeling of a space variant displacement vector field, have yet to be
implemented and tested.

(v) Method of “inactive” *projection in factor space (Carazo et al.,
1989). When a projection set is analyzed by correspondence analysis or by
a similar method of multivariate statistical analysis, closely matched pro-
jections come to lie in close proximity to one another in factor space.
When an existing model structure is projected successively along a closed
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angular pathway, and the resulting projection set is analyzed by correspon-
dence analysis, the data points representing the projections can be ob-
served to fall on a closed loop (see the demonstration of this principle by
Frank et al., 1986). In principle, this offers the possibility of determining
orientations of experimental projections: these projections are “inactively”
(i.e., without participating in the factor analysis) *projected into the factor
space spanned by the model projection set. Assignment of angles then is
on the basis of proximity to active data points with known angles. A similar
strategy could be used for refinement (although the computational effort
would be substantial): by making each projection of a data set in turn
“inactive.”

(vi) Matching of projections with a theoretical model. For completeness,
it should be mentioned that projection matching plays a role in attempts to
fit a theoretical model to experimental projections. The approach is
initially similar to that of Harauz and Ottensmeyer (1984a,b), in that a
theoretical model is used, but differs from the latter in the important fact
that no attempt is made to obtain an experimental 3D reconstruction,
mainly because of insufficient angular coverage. For example, De Haas
and van Bruggen (1994) investigated the orientations of the four hexamers
of the tarantula hemocyanin by cross-correlating their averaged projec-
tions with a model projected into a large range of orientations. van Heel
and Dube (1994) refined the parameters of the architectural model of
Limulus polyphemus hemocyanin using a similar matching method. Boisset
et al. (1990a) were able to explain the appearance of stained molecules of
Scutigera coleoptrata hemocyanin on a single carbon film by calculating
projections of a stain-exclusion model generated in the computer (see
Fig. 3.4 in Chapter 3).

C. Three-Dimensional Radon Transform Method

Although its principle is quite similar to the projection matching ap-
proaches described above, the Radon transform method (Radermacher,
1994) is distinguished from the former by its formal elegance and the fact
that it brings out certain relationships that may not be evident in the other
approaches. Radermacher’s method takes advantage of the relationship
between the 3D Radon transform and the 2D Radon transform. The 3D
Radon transform is defined for a 3D function f(r) as

fip, &) = [f®)8(p - ér) ar (5.42)
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where r = (x,y,2z)" and 8(p — ¢7r) represent a plarie defined by the
direction of the (normal) unit vector &. The 2D Radon transform is defined
for a 2D function g(r), in analogy to Eq. (5.42), as

£6n.- &) /g(r)é(p — ¢Tr) dr (5.43)

where r = (x,y)" and 8(p — £'r) now represents a line defined by
the direction of the (normal) unit vector £. The discrete 2D Radon
transform is also known under the name sinogram (e.g., van Heel, 1987b).
Radermacher (1994) shows that the determination of the unknown orien-
tation of a projection is solved by cross-correlating its discrete 2D Radon
transform with the discrete 3D Radon transform of the existing model
(Fig. 5.26). Translational alignment (equivalent to “phasing” in Fourier
space) can be done simultaneously.

As we recall from Section III, D, the use of the cross-correlation
function between 2D sinograms was proposed by van Heel (1987b) under
the name angular reconstitution, as a means of determining the relative
orientation between two or more raw, experimental projections. Applied to
such data, that method generally fails because of the low SNR values
normally encountered in electron micrographs of stained or frozen—
hydrated specimens, unless high point symmetries are present. However,
the method has proved viable when applied to the matching of an experi-
mental to an averaged projection, or the matching of one averaged projec-

Fig. 5.26. Demonstration of angle search with the 3D Radon transform, using the cryo-re-
construction of the 50S ribosomal subunit of Escherichia coli (see Fig. 5.19). (a) Computed
projection of the reconstruction into the direction given by the angles {y = 0°, 6 = 45°
¢ = 30°%}, with noise added (SNR = 0.88). (b) The ¢ = 0 plane of the 3D cross-correlation
between the Radon transform of the projection in (a) and the 3D Radon transform of the
50S-subunit reconstruction. The peak is found centered at {6 = 45°, ¢ = 30°}. From Rader-
macher (1994). Reproduced with permission of Elsevier Science, Amsterdam.
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tion to another; see van Heel et al., 1994; Orlova and van Heel, 1994;
Serysheva et al., 1995).

D. The Size of Angular Deviations

Little is known about the actual size of the angular deviations of af
molecule within its class,?' but inferences can be drawn from the results 1(:
the angular refinements. Some data (unpublished) are avallab!e fromIt ;
ribosome study of Penczek et al. (1994). As described in Section VIII, h
the refinement by pfbjection matching is done in several passes. For f:ilic
pass, one can make a histogram of angular adjustments of the Part.“iles'
These are given in terms of three Eulerian angles (¢, 0, @), of whic l'[;
and ¢ have to do with the rotations of the particle aroupd”axes no;i Ot
interest here, and only 6 gives the information about its “tilt. In the 1{)50
pass (Fig. 5.27a), one half of the particles “moved” by less thand b’
one-third moved by angles between 10° and 35°, and the rest movec 1 3;
larger angles. In the second pass (Fig. 5.27b), a full 80% of the partic c)
moved by less than 5° (50% are even within 1%; not shown In this ﬁgl;ree,
indicating approximate stabilization of the solution. One can there tor 1
take the angular adjustments in the first pass as estimates for the actua
angular deviations. .

z The size of these deviations—a full half of the particles are tilted by
more than 10° away from the orientation of their class—is at first glaléiﬁ‘:
surprising. It certainly explains (along with - and ¢-deviations nOtd .
picted in Fig. 5.27) the great gain in resolution that was a.Chl?,Ve n};
correcting the angles. The deviations are the result of both mlS?hgnmeh
and misclassification of the extremely noisy data. What it means 1§ that ; €
unrefined reconstruction is essentially a superposition of a high-qua ‘tg
reconstruction (where the resolution limitation is due to factors unrel_ateal
to angular deviations, namely electron—optical limitations, conformat:jon .
changes, etc.) and a blurred reconstruction, with the former basf;) Od
projections whose 6 angles are closely matching anq the latter aset
on projections whose 6 angles fall into a wide range. With such a conceri1 ;
it is now possible to understand the power of the angular“rqﬁnen}’ein
method: basically, a high-resolution reconstruction is alread)( hidden :
the unrefined reconstruction and it furnishes weak but essentially accurate
reference information in the course of the angular refinement passes (see
Fig. 5.27).

; ifica-
! This obviously depends on the definition of the class obtalneq by MSA a.n_d 1zlsasi2 i
tion. However, the classification in the example used is rather typical for partic
200 A size range.
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Fig. 5.27. Histograms showing the change of the theta-angle during angular refinement.
(a) First refinement pass, (b) second refinement pass. For explanation, see text. (P. Penczek,
R. Grassucci, and J. Frank, 1994, 9npublished data).
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Histograms similar to those shown in Fig. 5.27 were already obtained,
in model computations, by Harauz and Ottensmeyer (1984a), who gave the
projections intentionally incorrect angular assignments. Since these au-
thors used a model structure, they could study the actual angular improve-
ments as a function of the number of iterations. What is interesting in the
results of Harauz and Ottensmeyer is that angular error limits of +10° are
rapidly compensated, to a residual error below 2°, while limits of +20°
lead to residual errors in the range of 8°. Since the algorithm driving the
correction of angles in this work differs somewhat from that employed by
Penczek et al. (1994), the behavior of angular correction is not strictly
comparable. However, it is likely that there is again a limit of rms angular
deviation below which the angular refinement is well behaved and very
efficient, but above which only small improvements might be achievable.

IX. Transfer Function Correction

Without correction for the effects of the contrast transfer function, the
reconstruction will have exaggerated features in the size range passed by
the CTF spatial frequency band. Most importantly, the definition of the
whole particle against the background is affected. Procedures for CTF
correction were already discussed in Chapter 2. These can either be
applied to the raw data (i.e., the projections) or to the 3D volume (or
volumes). The most effective correction is obtained by combining data sets
obtained with two or more different defocus settings.

In deciding whether to apply correction before or after the 3D recon-
struction, one has to consider the following pros and cons: when applied to
averages, such as the 3D reconstructions, all procedures mentioned in
Section II, H of Chapter 2 are very well behaved numerically because of
the high SNR of the data. The opposite is true when these procedures are
applied to raw data. On the other hand, correction after reconstruction
runs into the difficulty that the projections from tilted-specimen micro-
graphs have different defocus values (see Frank and Penczek, 1995). In
order to proceed in this way, one has to sort the raw data according to the
distance from the tilt axis and perform separate reconstructions for each
defocus strip.

For processing data from untilted specimens taken at different defocus
settings, Zhu and co-workers (1995) developed a method of reconstruction
that implicitly corrects for the CTF. The is done by including the CTF into
the mathematical model describing the relationship between the three-
dimensional model and the observed projections.



246 Chapter 5. Three-Dimensional Reconstruction

In algebraic form, this relationship can be formulated as
p, = H, Po, (5.44)

where p, is a matrix containing the projection data for the k-th defocus
setting, o is a vector representing the elements of the 3D object in
lexicographic order, P is a non-square matrix describing the projection
operations, and H, is the CTF belonging to the k-th defocus.

In reality, the data are subject to noise, and the equation system
underlying Eq. (5.44) is ill-conditioned. Zhu and co-workers (1995) make
use of an approach of regularized least squares to find a solution to the
expression ;

1
Y —lpe — HkPol2 — min, (5.45)
t N

where N, is the number of projections in the k-th set. A least-squares
solution is found iteratively, by the use of Richardson’s method:

1
o+ =™ 4 A Y N, P/ H{p, — H,p o™}, (5.46)
x Nk

where A is a small constant controlling the speed of convergence. This
method of “reconstruction-cum-CTF correction” was successfully used in
the reconstruction of the ribosome from energy-filtered data that were
taken with 2.0 p and 2.5 p defocus (Frank et al., 1995a, b).





