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X-ray crystallography

13-1 X-RAY SCATTERING BY ATOMS AND MOLECULES

X-ray diffraction is the most powerful technique currently available for studying the
structure of large molecules. In many cases, x-ray diffraction studies on protein or
nucleic acid crystals have yielded the complete tertiary structure at a level of resolu-
tion of 3 A or better. If only a less-well-ordered sample (such as an oriented fiber) is
available, x-ray diffraction still provides a wealth of structural information. Though
insufficient to determine the structure uniquely, this information in many cases can
provide decisive tests of structural models. Here we develop the theory of x-ray
diffraction and describe some of the steps involved in obtaining structures from
diffraction data.

Outline and limitations of our treatment

As one might expect, a technique that can provide so many structural details is
intrinsically rather complex. We omit as many of the complications as possible and
try to focus on the essential features of the method. Thus, atoms are treated as motion-
less, even though in crystals there is appreciable motion at finite temperatures. Crystals
are treated as perfectly ordered arrays, even though they may actually be ordered only
in local domains, X-ray radiation is treated as monochromatic, even though a distribu-
tion of wavelengths is always used in practice. Finally, diffraction data are considered
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to be very precise, even though experimental errors often are a significant problem in
practice.

To understand x-ray diffraction, one must know how x rays interact with atoms
and the manner in which atoms can be organized into crystals. Most traditional
descriptions of the technique start with a discussion of the symmetry and structure
of crystals. Diffraction of x rays is described in terms of reflections from crystal planes.
The structure of molecules within the crystal is introduced into the discussion only
later. The reader probably has seen this approach before in more elementary texts.
Here we use a different approach, elaborated by H. Lipson and C. A. Taylor (1958).
The x-ray scattering of single atoms is explained. Then we build in complexity to
describe the x-ray scattering of sets of atoms (one-dimensional arrays) and, finally,
of the three-dimensional arrays found in crystals. Although this treatment requires
somewhat more sophisticated mathematics, there seems to be a consensus among
practicing crystallographers that it ultimately affords much greater insight and
understanding.

X rays: short-wavelength electromagnetic radiation

X rays are photons with wavelengths in the range of 0.1 A to 100 A. They usually are
generated by bombarding a target with electrons of energies of 10,000 electron volts
(eV) or more. Upon collision, these high-energy electrons can knock electrons out of
the target atoms, leaving vacancies in atomic shells. If, for example, a vacancy is
produced in the innermost (K) shell of an atom, it rapidly will be filled by an electron
descending from the next (L) shell, or one from the one after that (M). The photons
emitted as a result of these transitions are called, respectively, K, and K, x rays.
Their wavelengths are

)"K, = hC/{EL o EK) and ixﬂ = hC[J"(EM = EK) (13'1}
where h is Planck’s constant, ¢ is the speed of light, and E refers to the energy of a
particular state (K, L, or M). Typical x rays used in structure determination are Cu
K, (A=1.54 A) and Mo K, (2 = 0.71 A).

Parameters that describe an eleciromagnetic wave

X rays, like any other photons, are electromagnetic waves. A general expression for
the propagation of one such wave in the k direction through space and time is

E(r,1) = Egeti-rii=w+2)

= Eofcos[2n(k - r/2 — vt + 8)] + isin[2n(k - ¢/ — vt + 8)]}  (13-2)
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Characteristics of electromagnetic waves. (a) The electric field amp!itud_e as a function gf ﬁtflmal:ceisa;
time zero. (b) The relative phase of two waves remains constant with time. The phase difference
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where E(r, t) is the electric field at point r and time t; kis a unit vector _11;1 the k dgrcc‘;
tion: 4 is the wavelength in cm cycle™'; v is the frequency in cycles‘sec pas}_ ao ):1 -
point; & is the phase of the wave (in cycles) that defines its amplitude at r = A
t = 0; and E, is the maximal amplitude (Fig. 13-1). Such a transverse wave osciliate
iodi in both time and space. ‘
perlolillf\?(l)gld be equally accurglte to describe the wave blf a real funcﬁor}:I such ;lrs
sin[?.n(ﬁ-r/). — vt + &')], rather than by a complex function (Box 13-1). or:e:de,
the measured radiation intensity of a wave depends on the square of the ampl 16;
and this always will be a real quantity. We _choose to cliescnbe X rays by ":?]:nfuch
exponentials because of the great mathcmatlcz_ll convenience of working wi -
functions. For example, e**? = %", whereas su}(a + _b] =sin a cos b +‘co§ a si ve;
Two waves propagating in the same direction with the same amplitude, wa
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length, and frequency can differ only in phase. We can describe them as
E((r,t) = Eoez"“f‘ - rfA=vt+47)

E,(r,t) = Eoezai[&-rm-—vﬁa‘,) = E\(r r}eZﬂJ

where 6 = 6, — &) is the phase shift. Note that & is constant for all space and time, If
two such phase-shifted waves are combined, the net amplitude is E(r, 1)(1 + %),
When § is zero, this net amplitude is just twice the individual amplitude but, when
is one-half cycle, the net amplitude is zero because ¢'* is — 1. Clearly, in situations

where an observable is a superposition of many waves, their relative phases are quite
critical.

Geometry of an x-ray scattering experiment

Consider the geometry of the typical x-ray scattering experiment shown in Figure
13-2a. A collimated beam of x rays is allowed to impinge on a sample consisting of a

Box 13-1 RELATIONSHIP BETWEEN SINES, COSINES, AND EXPONENTIALS

as complex exponentials. The basic relationship between these

One easy way to justify this relationship is to expand each of the functions in an infinjte series:

Because cos(— x) = cos X, and sin(—x) = —sin x, it is obvious that

Therefore,
as follows:

It is possible to express periodically varying functions either in terms of sines and cosines or
two representations is

€™ = cosx + isin x

e =1+ ix — x2/21 — ix?/31 + x4/41 + ix®/51 — - - -
cos x =1 — x?/2! 4 x*/41 — x5/61 4 - - -

isin x = ix — ix3/31 + ix5/5! — ix7/71 4 - -+
e™™ =cos x — i sin x
We can always represent trigonometric functions in terms of complex exponentials

cos x = (1/2)(e™ + e™)

sin x = (1/2i)(e™ — ™)
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i igi coordinate system. A unit vector, ‘38‘9,
Slnglt‘: eiwhmr:iilr?c?itz: :; :1111: i?il:gih?; ::fliation. Scattering wil} deflect a certain
deSCl:lbes ft tl: incident x rays, and will lead to radiation propagating away from the
fractlon.O allii'rcctions Suppose we could place an x-ray detector at some !ocat.lon
§ample - : ure thle amplitude and phase of radiation scattered in that c_hrectlon.
The pos 'Etl?oclxn:f:?lie detector is denoted by another unit vector, f. The scattering angle
3111: g:{:;ed as one-half the angle of deflection of § relative to §, (Fig. 13-2a). We are
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i detector is
X cattering by a single electron. The angle of deflection (20) between the sou;doe :tand ;}::m ool
Wy Il three cases. (a) An electron at the origin. (b) An electrc._m located at po e
ns ]iame’u'l : (c) An expanded view near the origin, showing the path'd!ﬂ'erenee betw:;::s rShowTl A
stic o:iiim.an electron at r and that scattered by an electron at the origin. The num ks
X dyb measure the x-ray path in units of wavelength. The vectors 8, and § are uni s
sae;:iabi:; the direction of incident rays and that of scattered rays seen by the detector, respe :
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concerned here only with the elastic scattering of x rays. This means that the wave-
length of the incident and scattered radiation is the same.

| The 1ntens_uy‘of x-ray scattering will depend on the orientation of the sample
relative to the incident and scattered rays. It is convenient mathematically and, as

you will see shortly, very convenient conceptuall i i
! y to define a new single
called the scattering vector: SRR

S = (8/2) — (80/4) (13-3)

Figure 13-3a shows the meaning of S. The direction of S bi
Fig can . 1sects the angle betwee
incident and scattered radiation. The dimensions of S are inverse ]engtl% so that S‘I:

measures the number of cycles of radiation per cm. The le i i
; t :
the total scattering angle (Fig. 13-3b). ¥ AR

S-S =8 +82—28-8,)/72
= 2(1 — cos 20)/2 = (4 sin? 0)/42 (13-4)
Therefore the length of S is

IS| = 2|sin 6]/4 (13-5)
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the tip of the scatteri
ng vector S. § § i
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The value of jS| can vary from 0 to 2/4 (Fig. 13-3c). Thus, the vector S is described
in a finite coordinate system in which each axis has the dimensions of a reciprocal
distance. This coordinate system is called reciprocal space. Like any other coordinate
system, the space containing S can be expressed by many different possible axes.
We derive later a particularly convenient representation that allows S to be related
to the axes of a crystalline sample.

Scattering as a function of electron position

The radiation E(S) seen by the detector (Fig. 13-2a) that results from the scattering of
a single electron at the origin can be computed by a proper consideration of the
quantum mechanics of photons interacting with matter.® If we had more than one
electron located at the origin, the scattered radiation at any angle should simply
increase in amplitude in direct proportion to the number of electrons.

In crystallography, one is interested not so much in the scattering properties of
individual electrons as in the effect of relative electron position on the pattern of
scattering. Therefore, we can simply ask how the scattering changes as an electron
is moved away from the origin. The structure factor, F(S), is defined as the ratio of the
radiation scattered by any real sample to that scattered by a single electron at the
origin.

Suppose a sample contains a single electron located at position r, instead of at
the origin (Fig. 13-2b). The source and detector are very far away from the sample,
and are large compared to r. Therefore, to a very good approximation, the scattering
angle, 0 = (1/2) cos™'(§ - §,), is the same for this sample as it is for a sample with an
electron at the origin. The only difference in the two samples is the path length that
X rays must travel from source to sample to detector. This path length is simply
(§ — §) - r (Fig. 13-2c). Such a path length is equal to (§ — §o) - r/2 =S - r cycles, for
x rays of wavelength A. Therefore, if the radiation scattered by an electron at the
origin is E(S), moving the electron from the origin to a position r simply causes a phase
shift of S - r cycles. The scattered radiation is E(S)e*™ ', and the structure factor F(S)
iS eZm’S' r

In general, because electrons are not localized, it is better to describe an electron
density p(r) in a volume element dr, located at r; the scattering then is proportional
to p(r)dr. For continuous electron density at position r, the structure factor is

E(S) = p(r)e*™S " dr (13-6)

where p(r)dr is the number of electrons in the volume element dr.
A sample with many discrete scattering sites has a structure factor that is simply
a sum over many terms corresponding to Equation 13-6. For a continuous electron

§ The result shown in Figure 13-2a contains one serious oversimplification. In actuality, all scattered
radiation experiences a phase shift of one-half cycle relative to the phase of the exciting radiation. We can

ignore this.
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distribution, the sum is replaced by an integral:

F(S) = f drp(r)e?™s (13-7)

The ir}tegra] is taken over the entire sample. Equation 13-7 is the single fundamental
egua_tlon that governs all x-ray scattering and diffraction. If the electron densit

d1§tr:bution p(r) of a sample is known, one can compute the structure factor. and fron);
this one can compute the expected x-ray scattering for all scattering g;ornetries.

X-ray scattering in terms of Fourier transforms

'_l"he rqathematical form of Equation 13-7 is equivalent to a Fourier transform. This
is an integral with very convenient properties (Box 13-2). Note that outsid.e the
sample, lp{r) is zero. Therefore, the integral in Equation 13-7 can be exte;lded over all
space without changing its value. Thus, the physical meaning of Equation 13-7 is that
the structure factor is a Fourier transform of the object.

‘ Because F(8) is the Fourier transform of p(r), a second Fourier integral must
exist that relates these two quantities. This is the inverse Fourier transform:

p) = (1/V) [dSe=2 1 F(s) (13-8)

The integral is taken over all reciprocal space. V is a constant that contains (27)® and
other constants that compensate for the difference in the unit of volume of sample
space r and_ reciprocal space S. In what follows, we sometimes ignore the constant V.
Eguation 13-8 means that, if one had measured or calculated values of F{Sj
Z)ftel‘}dln_g over all reqprocal space, one could readily compute the electron density
1str1but1_on of the object. Thus, Equations 13-7 and 13-8 form a relationship that
!ets one interconvert structure factors and electron densities freely providing each
is known over all space. It is similar in spirit to the relationship givell by the Kronig—
Kramers transforms in Chapter 8, which let CD and ORD data be interconvertegd.

An example of the properties of Fourier transforms

;1'0 illustrate the properties of Equations 13-7 and 13-8, we shall derive the latter
rom the former. Set up the integral I(r') = [ F(S)dSe™2"S"*' in some new coordinate
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system r’. Substitute for F(S) from Equation 13-7:
I¥) = e [drp(yez=s - (13-9)
We can exchange the order of the two integrals to write
I(r) = J' drp(r) f dSe 278 TS T = f drp(r) _[dse“fs- (t=r) (13-10)

The integral over dS in the right-hand expression of Equation 13-10 has a very unusual
property. As shown in Box 13-3, it is the Dirac delta function:

5 — 1) = J'dsezxss- (r=r) (13-11)

This function has the following characteristics. If r 5 r', then o(r — r') = 0. If r =1,
then d(r — r') = co. However, [dré{r— r')=1 and [for some arbitrary function
g(r)] | drg(r)o(r — r') = g(r) if the integrals include the point r = r'. Thus, o(r — r')
will simply sample a function at r = r'. Equation 13-10 becomes I(r') = p(r’). Recog-
nizing that r and r’ are equivalent variables, this result is identical to Equation 13-8
except for the constant V.

Measuring the structure factor

Unfortunately for x-ray scattering studies, no way is known to measure F(S) directly.
F is a complex number that can be written as the product of two terms,

F = |Fle* (13-12)

or as the sum of real and imaginary parts,

(13-13)

The term |F| is called the amplitude of the structure factor, and " is the phase.
Figure 13-4 shows the relationship between the two representations of F(S).

F,=|F|cos ¢; F;=[F|sin¢ (13-14)
|F| = (F2 + F})'?; ¢ =tan"'(F/F,) (13-15)



Box 13-2 PROPERTIES OF FOURIER TRANSFORMS
Representing a Function by a Fourier Series

Consider a completely arbitrary function f(f), defined in the interval 0 = —n to 6 = 7. It
is possible to represent this function as an expansion in a series of functions with known
properties. Only certain sets of functions are suitable for such an expansion and, in the interval
—x to m, sines and cosines together constitute such a set:

f6) = i a, cos(nf) + a,, sin(nfl)

n=0

where the index n runs through all positive integers. This expansion is called a Fourier series.
The coefficients a, and a, are numbers determined by the properties of f(6).

As shown in Box 13-1, sines and cosines can be expressed in terms of complex exponentials,
Therefore, the Fourier series just given can instead be written as

f(0) = E: b,e™®

n= =g

where the index n now runs through both positive and negative values because these are
necessary to describe sines and cosines. The coefficients b, can be found in a simple way by
making use of the following result.

For any two integers n and m,

J‘j,‘ el =imd 4o _ f:, gitn=me _ [l,f(t{l".l - m}J(ei{n—m]x — g iln -mlx)
=[2/(n—m)]sinn—mr=0 ifn#m
=2n ifn=m

where the result for n = m can be proven by expanding the sine expression in a power series.
Therefore, to find a particular b,,, one performs the integral

(1/2r) J.:" f(@)e™™ do = (1/2n) I:K do i bee™m0 = b

n=-—m

Not; that the integral is carried out over the entire range of  over which f(6) is defined.
lt_oﬁen is convenient to be able to work with an arbitary range — L/2 to L/2 rather than
with —= to z. This is accomplished by defining a new variable, x = L8/2r, such that when
0 = =, then e L2, and when 6 = —m, then x = — L/2. Incorporating this variable into the
above equations, and using the fact that dx = (I/27)df, we obtain

fi9m § pem

n=—w

bu s (l,u'{L} ff;jz e-z«inx.fl.f(x)dx

Fourier Transforms in One Dimension

The function f(x) is defined at all x, whereas the set of coefficients b, represents an infinite
array of numbers, which must be tabulated. Therefore, it is convenient to find an analog of

[696]

the Fourier series in which the coefficients b, are replaced by a function, and the summation
is replaced by an integral. This representation is called a Fourier transform when the interval

over which the function is defined extends from — o to + 0.
We define a new continuous variable, S = 2zn/L, and a new continuous function g(5) =
Lb,. Using these, the equation for b, is transformed to

]

9(8) = [, e (x)dx (A)

-

in the limit as L — oo. The series expansion for f(x) becomes

fx)= Y [g(S)/L]e*"*

n=-wm

To replace the sum by an integral, note that the interval AS corresponds to (2r/L) An from
the definition of S. But An =1 in the summation, and therefore each increment dS in an
integral is equivalent to 2n/L in the sum. Thus,

S = (Lj2m) [ [g(Sy/LIe*5=ds = (1/2m) [ g(S)e?*ds (B)

Equations A and B constitute a pair of Fourier transforms that allow f(x) to be cal-
culated if g(S) is known, and vice versa. They are particularly interesting because the variables
x and S have opposite dimensions. For example, if x is distance, then S is reciprocal distance.

The factor of (1/27) in equation B often is written instead as (1//2z) in front of the integrals
in both equations A and B.

Fourier Transforms in Three Dimensions
Suppose the function f is now defined in a Cartesian coordinate system with axes x, y, z. For
fixed y and z, the function f(x, y,2) can be expanded in a Fourier series in e*™S=* and the
Fourier transform becomes (by analogy to Equation A)
@ = 2miS.x
9,:(85) = f_m e” 2 (x, y, 2) dx

This expression, in turn, can be expanded in the function e**5¥ for fixed z, and finally as a
function of 2*5+*, The resulting three-dimensional Fourier transform is

9SS, 8 = [ dze™2i5 [* dye=25% [ dxe™53(x,5,2)

If we use the vector S to represent the three variables S,, S,, and S, and we use r to represent
x, y, and z, then the three-dimensional transform can be written very compactly as

68)= [, dre”> 1)
Similarly, the analog of Equation B becomes

@ = /2mp 7 dSesg(s)
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Box 13-3 THE DIRAC DELTA FUNCTION

We wish to demonstrate that the following integral is a representation of the one-dimensional
Dirac delta function:

dx —x) = f_t i =x18 gg

The results can easily be generalized to three dimensions. If this is the delta function, it must
obey three properties.

First, if x" = x, then d(x — x) = o0. It is obvious that, with x = x, the exponential in the
above integral is just unity; therefore, the integral is infinite.

Second, if X # x, then d(x — x') = 0. It is not so obvious that the integral meets this
requirement. The way to realize that it does is to note that the complex exponential is a
periodic function that continually oscillates from —1 to 1 throughout all space. For each
positive lobe there exists an adjacent (absolutely equivalent) negative lobe. The areas under-
neath these lobes cancel identically.

Third, if x’ lies between a and b, then

f: dxd(x — x) =1
Leta=x"+ ¢ and b = x' — ¢ Then the area under the delta function is
J‘I‘-H dx J.q' e2rilx=x)s ds = J“D ds J'x""'e dx e?mitx—x"8
x'—e -m -} x"—¢
= f_‘* e~ 2%xS 4g :':’: Q2mixS g

= I’jm e-2““‘3[[1,1'2‘.'!1'5)[22'"""”?3 = elni(x‘—ns}] ds

13-1 X-RAY SCATTERING BY ATOMS AND MOLECU

Experimentally, all one can observe is the intensity of radiation scattered at
angle 26. If we express this intensity relative to the intensity scattered by a singl
electron at the origin, it is

I(S) = F(S)F*(S) = |F|? (13-16)

We must multiply by the complex conjugate, rather than simply by F(S), because F is
a complex number. The intensity is a pure observable and must be real. It is given
by the square of the amplitude of the structure factor. Thus |F| can be measured
experimentally. The phase term (¢'?) of F(S) is not directly measurable; this is the
major obstacle in x-ray scattering and diffraction studies. In order to use Equation
13-8 to calculate p(r), one first must guess, calculate, or indirectly estimate '®,

o f_‘” ™ 2Mx'S[(e2%x'S )D7iS)2i sin 2neS] dS

=(1/n) J‘ “ [(sin2neS)/S]dS = 1
because

' 2 0 .
.’.o [(sinx)/x]dx = f_ ,, [(sinx)/x] dx = m/2

If x’ is not between a and b, then the integral [5dx d(x — x') is zero, because the function is
everywhere zero. Thus we see that the integral originally given meets all the requirements,
and is in fact the Dirac delta function.

A most important property of the delta function is the ability to shift the location of
another function:

JZ, dxfex - x) = f)

We can demonstrate this by choosing a narrow interval X' — £ to x’ + ¢ near x’ and breaking
up the integral into three parts:

Jo st —x) + [ e fsx = x) + [, dx fx)3x — x)
The first and third integrals are zero for any finite-valued function f(x), because everywhere
within them é(x — x’) = 0. The second integral can be evaluated if we choose ¢ small enough
so that f(x) = f(x'); then it becomes

Je) [27 dxox - x) = fix)
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The electron density in Equations 13-7 and 13-8 is, in principle, measurable
directly, and therefore it must be real. As probed by x-ray scattering experiments, p(r)
behaves as a real quantity so long as there is no anomalous scattering (vide infra).
The reality of p(r) allows a constraint on F(S) to be developed. Because p(r) is
real, p(r) = p*(r). Substituting Equation 13-13 into Equation 13-8, and taking the
complex conjugate, we obtain

JTFS) + iF()le=25 7 as = [IF(8) — iF(S)e* > a5 (13-17a)

Note that r can take on any value. For Equation 13-17a to hold for any arbitrary
value of r, it is necessary (for every value of S) that

FS)=F(-8) and  F(S)= —F(-$) (13-17b)

In other words, the real part of the scattering function must be symmetrica] about
the origin of S space, whereas the imaginary part is antisymmetric. When such a
relationship holds, the function F(S) is called a conjugate function.

When the results of Equation 13-17b are substituted into the definition of the
intensity, an interesting result emerges:

I8) = |FS)|* = F? + F} = |[F(-S)|* = I(-8) (13-18)

Equation 13-18 reveals that the observed pattern of scattered intensity is symmetric
about the origin of reciprocal space at S = 0. The result, that I(S) has a center of
symmetry, is called Friedel's law. It means that one has to measure only half the
scattering to obtain all the information it contains,

A requirement for heterogeneities in electron density

Suppose that an experimental sample consists of a uniform distribution of electron
density, p(r) = p. Then the expected structure factor is

F(8S) = pfdrez’“'s" (13-19)

But this is just the Dirac delta function (S — 0). The only x rays that emerge from
the sample are F(0). From Figure 13-3, S = 0 corresponds to scattered radiation
parallel to the incident beam. In other words, a uniform sample cannot deflect x rays
?t all, just as a medium of constant refractive index cannot bend or focus collimated
ight.

A fundamental principle of scattering is the requirement for spatial (or temporal)
heterogeneities. Scattering is caused by the contrast between a given region and its
neighbors. We now must calculate the scattering that results from the presence of

13-1 X-RAY SCATTERING BY ATOMS AND MOLECULES

discrete atoms, and then that resulting from arrangements of atoms found in molecules
or crystal lattices.

Scattering from a single atom at the origin

Suppose the sample consists solely of a single atom located at the origin. The gletajlef]
pattern of electron density around an individual atom depends on the bon'dmg it is
involved in. However, in almost all x-ray diffraction experiments, the resq[utton is not
high enough to detect this detailed pattern. Thus, it is a gooc_i approximation to model
the electron distribution of an atom as spherically symmetric. Then p(r) becomes p(r).
If we express Equation 13-7 in spherical polar coordinates (Fig. 13-5a),

FS) = [ do [7sin0a0 [ drpryrers
=2n j;; d.l‘p(r}r" J:: A0 sin 0 e2m’5r cos Bl (13_2{]}

where S and r are the lengths of the vectors S and r, respective?l){. By making the
substitution x = cos 0, we can easily evaluate the ¢ integral, obtaining

F(S) = 4n Iﬂi drp(r)r*[(sin 2rSr)/2Sr] = f(S) (13-21)

~ : O
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Figure 13-5

X -ray scattering from atoms. (a) Coordinate system used to evaluate Equation 13-20. (b) Atomic
scattering factor for various atoms as a function of the scattering angle (20). [After J. P. Glusker and
K. N. Trueblood, Crystal Structure Analysis: A Primer (London: Oxford Univ. Press, 1972).]

(¢) Coordinate system used to describe an atom not at the origin.



The function f(S) is defined as the atomic scattering factor. It depends only on

S| and thus, from Equation 13-5, it depends only on the angle between §, and §, and

not on the orientation of the sample. Note that, because p(r) = p(—r), the function

f(S) is real. Therefore, the intensity measured in a scattering experiment on a single
atom, I(S), can be used to compute f(8) directly by Equation 13-16:

S(8) = £[1(8)]"> (13-22)

The_ (_)nly ambiguity is the choice of sign; we can arbitrarily define this sign to be
positive.

For real atoms, p(r) can be crudely approximated by a Gaussian distribution of
e_lcc(ron density: p(r) = zNe ™ ", where z is the number of electrons, N is a normaliza-
tion constant, and k is related to the width of the Gaussian. Then Equation 13-21 can
be integrated to yield.

f(8) = ze~=*/0s? (13-23)

This relationship shows that the atomic scattering factor has the same sign everywhere
in space. The atomic scattering factor for forward-scattered radiation (S = 0) is
simply the number of electrons. Equation 13-23 shows that spherical atoms scatter
X rays most efficiently in the forward directions. The scattering factor drops fairly
rapidly with increasing scattering angle (Fig. 13-5b).

Scattering from atoms not located at the origin
Nexftt suppose the sample is still a single spherical atom, but it now is centered at the
positionr,. As before, r is a vector from the coordinate system origin to a point within

the electron density distribution of the atom. R is a vector from the atom center to the

point r. It is defined by r = R + r, (Fig. 13-5¢). Thus, from Equation 13-7, the X-ray
scattering is

F(S) = fd(R + 1,)p(R + r,)e?S  Rtrm) (13-24)

Bece_luse r, is constant, d(R + r,) = dR, and the term e2®*"S can be removed from
the integral :

F(8)= e ™ [dRp(R +r,)e?s ® (13-25)

ghe fnteg_ral_ in ’.Equation 13-25 is taken over all space. Because p is the electron
ensity distribution around the atom, the constant vector r, specifying the original
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coordinate system is irrelevant. Thus, this integral is identical to Equation 13-20.
It is just the atomic scattering factor, and so Equation 13-25 becomes

F(S) = f(S)e?*® ™ (13-26)

For a set of N atoms, each located at position r, with atomic scattering factor
1., the total structure factor expected is

F(S)= i fo (8)e?is (13-27)
n=1

where f, is the scattering factor of the nth atom. If the N atoms happen to belong to a
single molecule, then Equation 13-27 is called the molecular structure factor, F(S).

Consider the case of a sample with a center of symmetry. If that center is placed
at the origin, then for each atom at r, contributing f,(S)e*™S ™ in Equation 13-27,
there must be an equivalent atom at —r, contributing f,(S)e 28 ™. Because e** =
cos x + i sin x (Box 13-1), the structure factor of the sample can be written as the
centrosymmetric function:

N
F.(S) = f 2f(S) cos(27S - 1,) (13-28)

n=1

which is a sum over N/2 symmetry-related pairs of atoms. This is a real function, and
therefore the problem of determining the phase of F (S) is dramatically simplified.
From Figure 13-4, note that ¢ must be either 0 or 7. Thus the term e must be simply
+1 or —1 at each point S, corresponding respectively to ¢ =0 or ¢ = 7.
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Interference fringes from sets of atoms

In general, moving an atom to position r, (away from the origin) introduces a phase
shift, ¢S ™, in the x-ray scattering. Note that, for a single atom, this will lead to no
observable change in scattering because the intensity is still I(S) = f%(S). Suppose,
however, a sample contains one atom at the origin and an identical atom at position
r,. The total structure factor will be

E(S) = f(S)(1 + &%) (13-29a)
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The scattering intensity will be
I(S) = fA(S)(1 + €*™5-™)(1 + e~ %8 ™) = 21 %(§)[1 + cos(2nS - 1,)] (13-29b)

Thus—in addition to the scattering seen from each of the atoms separately, f*(S)—
there is an interference pattern generated by the cos 228 - r, term (see Fig. 13-6b). This
is exactly comparable to the interference fringes seen in a two-slit experiment in
optical diffraction (see Box 13-4). The term e?™ "™ in Equation 13-29 often is called
a fringe function.

If it were possible to measure the scattering from a sample containing just a few
atoms, the pattern of fringes would yield information on the spatial arrangement.
Such measurements are impossible because the intensity of radiation scattered from
just a few atoms is too small. The number of terms in the structure factor increases
as the total number of atoms (N;) increases, and therefore the observed intensities
increase as N%. To increase the number of atoms without loss of information, it is
necessary to work with periodic arrays of atoms, such as atoms in crystals. Here we
shall demonstrate the pattern of fringes introduced by such arrays.

Calculation of x-ray diffraction from a one-dimensional array

Start with a one-dimensional row of 2N + 1 identical atoms. Locate the central atom
at the origin of the coordinate system. As shown in Figure 13-6a, the position of each
atom in the array is generated from that of its neighbor by translation along a vector
a. The position of the nth atom in the array is na. The structure factor resulting from
this atom is given by Equation 13-26:

F,(S) = e**"S"*((S) (13-30)
Thus the scattering from any of the atoms can be written in terms of the atomic

scattering factor f(S) for an atom at the origin. The structure factor for the whole
array can be written as

N
Fra(8) = f(S) ) e**s» (13-31)

n=-—N

The sum is the fringe function resulting from the array.

We could treat a linear array of molecules in a similar way. If this array is
generated by translation, the resulting scattering will be given by an equation iden-
tical to Equation 13-31, except that the molecular structure factor F m(S) will replace
the atomic scattering factor f(S). However, with molecules, more complex arrays

1 atom at origin

2 atoms, at —a/2 and +a/2

Intensity ——>

3 atoms, at —a, 0, and +a

4 atoms, at —(3/2)a, —(1/2)a,
+(1/2)a, and +(3/2)a

An infinite row of atoms

(b)

Figure 13-6
X -ray scattering from a one-dimensional array of atoms. (a) The array, as defined I?y the vector
translation a. (b) X-ray scattering intensity as a function of the number of atoms in the array. Shown
are the actual observed scattering (black line), the scattering expected for a single atom (dashed line),
and the fringe function produced by the array (colored line). The observed s?attermg is the product of
the fringe function and the single-atom scattering. Note the changes in vertical scale as the number of
atoms increases. The horizontal scale is in units of S+ a and is the same for all cases.
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can be generated if there are rotations as well as translations relating adjacent
molecules. These cases can be handled by simple extension of the methods used here;
some examples are given in Chapter 14, where we discuss scattering from helices.

Equation 13-31 is simply a geometric series with an initial term e~ 2%NS'a 4
constant ratio e*™S'%, and a final term e2*™5'* The sum of a geometric series is
t(1 — r™)/(1 — r), where r is the ratio between terms, m is the number of terms, and
t is the first term. Using this expression, Equation 13-31 becomes

—2miNS§ - a(l _ eZm‘{ZN +1)8. a)
2riS-a (13-32)

e
Fro(S) = f(S) T3

Equation 13-32 can be simplified by multiplying both numerator and denominator
by e—mS' a Then

—mi(2N+1)S-a _ eui{ZN-i-l]S' a

Frul8) = f8) —— =g

sin[(2N + 1)nS - a]
sin(nS - a)

=/(5) (13-33)

We have used the fact that e*™* = cos x + i sin x to reach the final form of Equa-
tion 13-33.
The intensity of scattering from the array will be

Ito(S) = [Fro(S)] = [f (S)]z( (13-34)

sin[(2N + 1)z8S - a]\?

sin(nS - a) )
This is shown schematically as a function of the size of the array in Figure 13-6b.
You can see that, as N becomes large, the intensity tends to zero everywhere except
where S - a is integral. The term S - a that appears in Equation 13-34 measures the
relative orientation of the sample and the detector. Note that the scattering intensity
is a maximum when S - a = 0. This occurs when $ is in a plane perpendicular to the
long axis of the array.

Discontinuous diffraction pattern from a one-dimensional array

It is helpful to demonstrate explicitly the behavior of Equation 13-33 as N becomes
large. For most values of S - a, the value of sin(nS - a) lies between 0.1 and 1.0 or
between —0.1 and — 1.0. Around these values of S - a, the value of sin[(2N + 1)zS -a]
oscillates wildly between 0 and 1. Therefore, the quotient in Equation 13-33 falls in
the range of about — 10 to 10, regardless of the value of N. However, what happens
when sin(zS - a) approaches zero? It is easiest to examine this behavior in the limit
where S -a — 0. If we use the series expansion for sin x = x — x*/3! + -+, and if
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we keep only the first term as x — 0, the quotient in Equation 13-33 becomes
(2N + 1)(nS - a)/(nS - a) = 2N + L.

In a crystalline array of molecules, N can be 10° or more. Therefore, the struc-
ture factor becomes enormous each time sin(znS - a) goes to zero. This occurs every
time S - a approaches an integer. Compared with the sharp peak in scattering for
integral S - a, all other values are negligible. Therefore, the fringe function of a linear
array leads to a discontinuous scattering pattern (Box 13-4 illustrates the analogous
effect in optical diffraction). Only for certain orientations of sample and x-ray detec-
tor will any scattering be observed at all. This result is called a von Laue condition:

Sra=h, where h=0, +1, +2,... (13-35)

The vector a is a property of the particular one-dimensional crystalline sample
and its orientation in space. The vector S depends on the geometry of the scattering
experiment. The observed scattering depends only on S - a and is intense only when
Equation 13-35 is satisfied. Figure 13-7 shows the geometrical significance of this.
S - a is the projection of S onto a. Suppose a is fixed. Then S - a = 0 means that §
can be any vector in a plane perpendicular to a and passing through the origin
(Fig. 13-7a). S-a = 1 means that S can be any vector from the origin to a plane
perpendicular to a and spaced a distance 1/a away from the origin (Fig. 13-7b). For
example, if S is parallel to a, then S - a = 1 implies that |S| = 1/|a|.

S:a=0

(a)

Figure 13-7

The von Laue scattering conditions for a one-dimensional array. Scattering vectors
are shown as solid arrows. (a) ForS-a=0. (b)ForS-a=1.



Box 13-4 OPTICAL DIFFRACTION PATTERNS FROM ARRAYS

The same mathematical formalism developed in the text to calculate x-ray diffraction from
molecular arrays also applies to optical diffraction from arrays of slits or pinholes. The figures
show the optical diffraction pattern from a series of opaque masks containing increasingly
more elaborate arrays of pinholes. Such diffraction patterns can be created by the apparatus
shown in Figure 10-4a by using the mask as a sample. The figures on the left show the sample
masks used; the corresponding figures on the right indicate the diffraction patterns produced
by the masks.

(a)

(b)

(c)

[708]

(a) A six-atom molecule, modeled by six pinholes. (b) Two six-atom molecules in a row.
Note how the presence of two atoms introduces additional vertical fringes. (¢) Four six-atom
molecules. The horizontal repeat in structure leads to additional horizontal fringes. (d) A
vertical row of many pairs of six-atom molecules. Note how the diffraction pattern sharpens
in the vertical direction but remains broad in the horizontal direction. (e) A two-dimensional
crystalline array of six-atom molecules. Note that the diffraction pattern is now a set of sharp
spots. (f) A different crystalline array of the same molecules. The smaller reciprocal lattice
results from the larger crystal lattice. [From G. Harburn, C. A. Taylor, and T. R. Welberry,
Atlas of Optical Transforms (Ithaca, N.Y.: Cornell Univ. Press, 1975).]

(d)

(e)

(f)
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Figure 13-8

Experimental conditions for observation of scattering from the linear array of atoms shown in Figure 13-6.
(a) A set of parallel planes, representing the von Laue condition imposed by the array of atoms.

(b) For a fixed direction §, of incident x rays, the possible scattering vectors (black) must lie on the
surface of the sphere. (See Fig. 13-3a for further information.) (c) The intersection of the two sets of
conditions outlined in parts a and b is shown for two different relative geometries of a and §,,.

By extending this argument, it is clear that integral values of S - a define a set
of parallel planes. The spacing between these planes is 1/a (Fig. 13-8a). The set of
parallel planes in reciprocal space defines all those values of the scattering vector
that produce measurable intensity. Further constraints are introduced if the wave-
length of the incident x rays is held constant, and if their direction is fixed at §,.

Once a particular §, is selected, the various possible observation directions §
lead to a restricted set of possible scattering vectors S. Note from Figure 13-3b that
the tip of the vector S always extends from the origin to a point at a distance 1/4
along 8. The locus of all points located 1/4 from § will define a sphere of radius 1/4
centered at the tail of §. Thus all possible scattering vectors S must extend from the
origin to the surface of a sphere of radius 1/4 (Fig. 13-8b). This sphere is called the
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sphere of reflection. It is always tangent to the plane drawn through the origin
perpendicular to the direction of incident x rays, §,.

The scattering of x rays will be observed only when both the von Laue condi-
tions and the conditions of the sphere of reflection are satisfied. This means that the
scattering vector must lie on points formed by the intersection of the surface of a
sphere and a set of parallel planes. As shown in Figure 13-8¢, this intersection is a
set of parallel circles. The orientation of the circles, and the identity of the particular
planes from which they originate, depend on the angle between §, and a.

Sampling the scattering from any atom or molecule in a periodic array

For a sample consisting of a single atom, the atomic scattering factor f(S) would be
measurable with a single sample orientation and §,, at geometries S, anywhere on
the surface of a sphere of radius 1/4. With a linear array of atoms oriented along a,
this atomic transform now can be measured only where this sphere is intersected
by a set of parallel planes with a spacing of 1/a (Fig. 13-8c). One describes this by
saying that the originally broad atomic or molecular structure factor now is sampled
at discrete places. Figure 13-6 shows an additional example of this sampling (see
also Box 13-4). The orientation and spacing of the scattering planes contain all the
information about the array and no information about the atom or molecule. The
actual value (amplitude and phase) of the structure factor at these sampling positions
retains information about the structure of the atom or molecule.

Note that all of the conditions restricting the observation of scattering have
been plotted in Figures 13-7 and 13-8 in terms of the vector S. The dimensions of S
are reciprocal distance, and so the coordinate system shown in these figures is reci-
procal space. Increasing the distance between atoms of an array (in real space) will
result in decreasing the spacing imposed by the von Laue conditions on the parallel
planes (in reciprocal space).

A fixed orientation of a and §, allows only a restricted region of reciprocal space
to be sampled in an x-ray scattering experiment. This region can be enlarged by
changing the angle between a and §,, by rotating either the sample or the angle of
incidence of the x rays. The largest possible value of |S| for any geometry is 2/2 (Fig.
13-3c). Therefore, the maximal region of reciprocal space that can be sampled, after
all orientations of a and §, have been tried, is a sphere of radius 2// centered at the
origin of reciprocal space. This sphere is called the limiting sphere (see Fig. 13-23b).

X-ray scattering actually observed in the laboratory frame

The scattering vector S is very convenient for mathematics, but it tends to obscure
what is happening in an experiment. Therefore, Figure 13-9 shows the diffraction
from a linear array of identical scatterers in the laboratory frame. Assume that the
sample is placed at the center of a cylinder of x-ray film (Fig. 13-9a). X rays are incident
along a fixed direction, and all of the scattered intensity is detected by the film. Dif-
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Figure 13-9

X-ray scattering from a one-dimensional array as seen in the laboratory. (a) X rays incident along the z
axis strike a sample at the origin, and scattered rays are detected by a cylindrical film. (b) Scattering
pattern produced by a single atom. The pattern is elliptical because of the cylindrical film; the pattern
would be circular if flat film were used. (c) The linear array. (d) The scattered radiation allowed by
the von Laue conditions, viewed in the x—z plane. (e) The scattered radiation allowed by the von Laue
conditions, viewed in the y—z plane. (f) Cones of scattered radiation produced by the von Laue
conditions, for the particular geometry shown in part a. All scattered rays will extend along the surface
of one of the cones.  (g) Diffraction pattern of the array, resulting from the intersection of the scattering
cones with the cylindrical film. (h) The actual scattering seen is the product of the atomic scattering
shown in part b with the diffraction pattern of part g. (i) An alternative scattering geometry with the
array parallel to the direction of incident radiation. (j) The scattered rays allowed by the von Laue
conditions in the geometry of parti. (k) The array diffraction pattern resulting from the geometry of
parti. (1) The product of the diffraction pattern of part k with the atomic scattering of part b.
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ferent vectors S now correspond to different scattering angles 20. Consider each
scatterer just as a single atom. Then, if the sample had only a single atom at the origin,
the scattering would be given by Equation 13-23 (Fig. 13-9b).

The effect of the linear array is to allow finite intensity only at scattering geo-
metries corresponding to the intersection of the set of planes (a*S = h, for h =0,
+1, £2,...) with the sphere of reflection. For each scattering vector S drawn to
one of these points of intersection, there corresponds a ray of scattered radiation.
From Equation 13-3, this ray propagates in the direction § = iS + 8, (Fig. 13-3).

To compute the pattern of scattered radiation, it is easiest to use the description
of scattering shown in Figure 13-3b rather than the equivalent one shown in Figure
13-3a. The vector § is placed along the §, axis a distance 1/4 from the origin. In other
words, § can be shown as emanating from the center of the sphere of reflection. When
drawn in this manner, § points toward the tip of the corresponding scattering vector
S (Figs. 13-3b and 13-9e).

The vectors a and §, are fixed by the choice of orientation of the sample and
the incident beam. Because of the von Laue constraint, each scattering vector S
extends from the origin to one of the planes spaced 1/a apart. Figure 13-9d.e shows
two cross sections through the origin. In the plane defined by S - a = 0, a continuous
set of scattering vectors S is allowed. This leads to a continuous distribution of
scattered radiation, which emanates from the sample in a circle parallel to theS -a = 0
plane (Fig. 13-9f).

In the plane parallel to a, only certain values of S are allowed. Thus, vectors
describing scattered radiation appear only at certain deflection angles o (Figs. 13-9d).
Elementary geometrical considerations indicate that sin o = hi/a, where h is any
integer such that |h| < a//. Each value of h leads to a cone of scattering (Fig. 13-9f).
Where this cone intersects the cylindrical film, a ring of scattered intensity results.
When the film is unrolled, this ring becomes a line, called a layer line. The various
layer lines are all parallel, and their spacing increases progressively as |h| increases.
The lines are perpendicular to the linear array (Fig. 13-9g).

The film records scattering from the individual atom of Figure 13-9b only in
the lines allowed by the array (Fig. 13-9g). This effect leads to the pattern of scattering
shown in Figure 13-9h. Note that only a finite number of layer lines are seen because
of the conditions imposed by the sphere of reflection. There is a maximal value of 1
for sin &. For the geometry shown in Figure 13-9c¢, this value will occur when § is
parallel to a. Here the largest value of h that can be included within the sphere of
reflection is + [a|/2. For example, suppose la] is 5 A, and 4 is 1 A. Then the integer h
can have values only in the range —5 < h < +35; the diffraction pattern will have
11 layer lines.

Figure 13-9h shows that the intensities drop off as h increases. This occurs
because the atomic scattering decreases as ¢~ °. As demonstrated in Figure 13-9d.e,
large values of h tend to correspond to large values of |S|. The scattered intensity also
drops off rapidly on each layer line as one moves from the center to the edges. This
is because, along each line of scattering, larger angles inevitably correspond to longer
lengths of the scattering vector, S| (see Fig. 13-e).

The appearance of the scattering pattern depends markedly on the relative
orientation of the incident beam (So) and the repeating array (a). For example, if the
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array is rotated so that a and §, are parallel (Fig. 13-9i), th‘e scattering pattern changes
from a series of lines to a series of concentric curves (Fig. 13-9k). The;e curves are
elliptical because the intersection of a circle (the cone of scattere_:d radiation) a_nd a
cylindrical surface with its long axis parallel to the plane of the circle (the film) is an

ellipse.

X-ray scattering from a two-dimensional array of atoms

The results shown in Figures 13-8 and 13-9 are the basic ideas behind al].x-ray crystal-
lographic measurements. However, if they are to be useful in practice; one must
extend them from a one-dimensional array to a three—dlmensmnal_ cr_ys.tal. Firs_t,
consider a two-dimensional net of molecules (Fig. 13-10a). The perlodmt}r of this
net is defined by two vectors, a and b. In general, a and b are not perpendlcular to
one another, nor are they of the same length. The periodi_city al_ong a will cause a set
of scattering fringes at S - a = h, exactly as for the one-dimensional array in Figure
13-8. The additional periodicity along b causes a comparable set of fringes defined
by S - b = k, where k is any integer. By the arguments used earlier, you can see that
these latter fringes are parallel planes perpendicular to the vector b and spaced by
equal increments 1/|b| (Fig. 13-10b).

The x-ray scattering will have finite intensity onl};.whftre both von Laue con-
ditions (S - a = h,and S - b = k) are satisfied. This condition is met at the intersection
of the two sets of planar fringes. That intersection is an array of parallel !lnes (Fig.
13-10c). The lines all are perpendicular to the plane defined by a and b. Experimentally,
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Figure 13-10

X -ray scattering from a two-dimensional array. (a) The array deﬁnec! by a and b.‘ (b) Parallel |31alrus!:i
demonstrate the allowed positions of the scattering vector S. Shown in cross section are p}gnes span;::_

by 1/a perpendicular to a. and planes spaced by 1/b perpendicular to b. (c) The array of lines resu mgn
from the intersection of the parallel planes shown in part b. Scattering vectors ex.tcndlng from the origt
to any point along one of these lines will yield observable x-ray scattering intensity.
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scattering intensity will be observed whenever the
radiation leads to a scattering vector that exten
one of the arrays of parallel lines.

The greater restriction of scattering caused by a two
that more of the intensity will be concentrated at a smaller
angles, 20. The effect of a two-dimensional array on the act
pattern is shown schematically in Figure 13-11. The plane
to the direction of incident x rays. If the array is con
perpendicular one-dimensional arrays, each alone woul
fringes. The x-ray diffraction pattern is the product of t
case, the scattered radiation detected by the x-ray film consists of a series of spots,

each occurring at the intersection of two fringes. (See Box 13-4 for examples of the
optical diffraction of two-dimensional arrays.)

geometry of incident and diffracted
ds from the origin to a point along

-dimensional array means
number of sets of scattering
ual experimental scattering
ofthe array is perpendicular
sidered as the effect of two
d produce a set of scattering
he two sets of fringes. In this

X-ray diffraction from a three-dimensional array of atoms

Itiseasy mathematically to generalize X-ray scattering to three dimensions, but it is not

SO easy to visualize the results. For an array such as that found in a real three-dimen-

sional crystal, there is now a third periodicity defined by the vector ¢ (Fig. 13-12a).
This leads to a third set of planar scattering fringes given by S - ¢ = /, where | = 0,
*1, +2,.... This set of fringes intersects the parallel lines generated by S-a=h
and S-b = k. The result is a three-dimensional lattice of points, spaced evenly by
1/ja] in the direction perpendicular to a, by 1/|b| perpendicular to b, and by 1/[|
perpendicular to ¢ (Fig. 13-12b). Diffracted radiation will be observed only when the

Note that the lattice that describes allo
same as the lattice of points that represents t
The position lattice has spacings a, b, and ¢, whereas the spacings in the diffraction
lattice, a* b*, and c*, are related to the inverse of these. This scattering lattice is

called the reciprocal lattice. The vector space it occupies is called the reciprocal space
(Fig. 13-12¢).

The array (crystal) we have describe
repeating unit. The positions of the atom

wed scattering geometries is not the
he positions of the atoms in the array.

d thus far contains only a single atom per
s define a set of cells bounded by a, b, and ¢

Figure 13-11

X -ray scattering observed in the laboratory for a two-dimensional array perpendicular to the direction of
incident radiation, Each part shows patterns for both cylindrical and spherical film. (a) Sample
geometries.  (b) Layer lines resulting from the a periodicity of the array.  (c) Layer lines resulting from
the b periodicity of the array. (d) Actual scattering observed is the product of the functions shown in
Parts b and ¢ with the atomic scattering pattern shown in Figure 13-9b,
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(Fig. 13-12a). It is convenient to express the position of the atoms in terms of a co-
ordinate system defined by these vectors. A vector drawn from the origin to the jth
atom position is r = xa + yb + zc. Because the atoms lie at the corners of the cells,
x, ¥, and z must be integers.

The vector r can be used to calculate the x-ray scattering from the array. From
Equation 13-27, the structure factor is a sum over all atom positions:

FralSf= 5 Y. 3 J(S)ete- i) (13-36)

x vy 3

Inserting the von Laue conditions (S - a = h, etc.), we can rewrite this as

Fro(h k) =3 T 3 f(S)e? =075 (13-37)

x .y E

where h, k, and [ are any integers. Every diffracted ray can be computed by choosing
the appropriate integral values of h, k, and [ and summing over the array. Note that,
for an array of identical atoms, each exponential term in Equation 13-37 is simply
unity, because h, k, I, x, y, and z are all integers. Therefore, Equation 13-37 becomes

Fro(h k1) = Nf(S) (13-38)

where N is the number of atoms in the array, and f(S) is the atomic scattering factor,
now evaluated only at the particular values of S allowed by integral choices of h,
k, and I. Thus the x-ray scattering is just the single-atom scattering sampled at all
points in reciprocal space allowed by the von Laue conditions imposed by the lattice.

Equation 13-37 is a Fourier series rather than a Fourier transform because of
the discrete nature of the diffraction pattern. However, it can be inverted in exactly
the same way as a transform. By analogy to Equation 13-8, the electron density
distribution of the array will be given by '

o o0 a0

Pl 1,2)=(/NV) ¥ % % Fralhk e 2rtxrosia (13-39)

h=—w k=—w I==-wm

where V is the volume of one unit cell, ¥ =a - b x ¢, so that NV is the volume of
the entire array. The presence of the volume factor V' in Equation 13-39 is easy to
rationalize. F(h, k, I) is proportional to the number of electrons, whereas p (an electron
density) has units of electrons per unit volume.




X-ray diffraction from a three-dimensional molecular crystal

Jow) = [ axfxg - x) (13-40)

Where the variable y ¢ i i
it By t:;,:; r;ilt(: g(r)z[jany value that x can, It is equivalent to x except that
We wi i i
sxinis :]: ;thnrgi/nz; idevelg) a physical picture of the convolution product. See the
i gl:}rle -1 ‘?‘a. The funct‘lon g(u) plotted along the u axis is identical
the Banct ! o sﬁjgﬁ e; x axis. The function g(u — x) plotted along the u axis is Just
reduct g f ) Jined in space by an amount x. Therefore, in the convolution
multipli;d e fur grll1 iq is ?laced Successively at all noints along the u axis, but it js
valus of g are add or ntegrajed 15 pronpes sl PESIION = Al the weghted
A egrate uce the final convolution.
. ;*h It(;:;llg tjl'“: ;:totrwolutlon Ja(u) means that one is laying down successive images
of fweps by * .- turns out to be equivalent to say that one is laying down i
€d by g. To see this, let x' =  — X in Equation 13-40, Thendx' = — dglzgneds

YIF this is not
absolutely clear, stop right here. Study Fj i
Product for the simple functions of your choice. e e n b

fix)
T
g(x)
b
=

Six)
g(x)
o
£

(b)

Figure 13-13
Convolution integrals. (a) Two functions f and g and their convolution calculated
by Equation 13-40. (b) Two functions—a tree, f, and a lattice (set of delta functions),

g—and their convolution.

(taking note of the reversal of the limits of integration)
fatu = —J:’ dx'f(u — xX)g(x') = gfw) (13-41)

because x and x’ are just dummy variables.
Suppose the function g is the Dirac delta function, d(x — a). Then the convolution

o) = ff‘; dxf(x)o[u — (x — a)] = f(u + a) (13-42) ‘



just shifts the function the distance g along the u coordinate system. In three dimen-
sions, all the same results hold. The convolution product is

Jow) = [arf0gu — (13-43)

If g is the three-dimensional delta function, é(r — p), the convolution integral defined

in Equation 13-43 merely shifts the function f(r) along the vector pin the u coordinate
system.

Delta functions can be used to describe a lattice. It is sufficient to define the
origin of each unit cell. In one dimension, the origin can be any integral multiple of

(- <]
Lx)= Y d(x — na) (13-44)
n=-—a
This function really is just a list of al] the lattice points.
Suppose that the electron density distribution within one cell of the lattice is p(x).
Then to describe the crystal, we want to replicate this electron density in each unit cell.
From the properties of the convolution integral described above, this is done by

Crystal = I:;(u) = fj’m dxp(x) i O8u—(x — na)] = i p(u+ na) (13-45)

n=-—m

The convolution I:c; simply lays down an image of the structure in each unit cell
(Fig. 13-13b).

In three dimensions, an infinite lattice is described by

o= 3 ¥ fa(r—m-mb—m} (13-46)

S =—wm=-w p=—q

where n, m, and p are any integers. The electron density within one cell is p(r), and
the crystal is described by

Crystal = I:B(u) = i i E p(u + na + mb + pe) (13-47)

A== m=-w p=-x

Thus any crystal can be described as the convolution of the contents of one unit cell
with the lattice.

13-2 X-RAY DIFFRACTION

The Fourier transform of a convolution

i i ful for describing
i lutions that makes them especially use
I—lg;esfaétttg:iigegﬁpo;;;nt‘l:;t f(r) and g(r) are functions that can be expressed as the
Fourier transforms of the functions F(S) and G(S):

flr) = f: dSF(S)e™ 28« (13-48a)
g(r) = j: dSG(S)e™ ™S (13-48b)
and, consequently, F and G are inverse transforms of f and g:
E(S) = _[j“m drf(r)e*=s * (13-49a)
GE) = [ drglre’=s (13-49b)
Then the convolution product of the two functions can be written as
faw = [ drfg—rn
= [* dr [ dsFE)e S [* a8/G(S)em S =0 (13:50)
Rearranging the order of the integrals, we obtain
faw = [*_ asFs) [* aSGE)e > [ drer S-S (1351)

The third integral is just the Dirac delta function, (S’ — S) (see poxll S;a)‘ngggi(;re,
the result of the second integral is just to set ' = S, and Equation 13-51 be

fow = [ dSFE)G(S)e™25 T 13

Note that Equation 13-52 is just the Fourier transform of the product of the two

ions F(S) and G(S). .
funct_i_(;lr:: is{aL important conclusion. The Fourier transform of the product of two

functions, F and G, is the convolution product of their two Fourie{ transforn:ls, f la;gl g:
We can ricrive a second important result by Fourier-transforming Equation :

JZ, e gy = [* du [* dSFS)G(S)e™ 2 e



-!-!;Y .c-n-m‘l.l.m.m“"
= [, dSFS)GS) [* dueris =9 (13-53)

However, the second integral is just the Dirac delta function, (S’ — S). Thus,

[, dwers ) = Fs)G() (13-54)

The Fourier transform of a convolution product is just the product of the Fourier
transforms of the two convoluted functions.

Convolutions in the computation of x-ray scattering

Consider a one-dimensional molecular crystal. Within each unit cell, the electron

density distribution is p,(r). The x-ray scattering from the contents of a single cell
located at the origin is given by Equation 13-7:

F.(S) = f O drpn(r)e? s (13-55)

The lattice is generated by the vector a, and the lattice can be described by Equation
13-44 expressed in three dimensions:*

L(r) = _Z_: o(r — na) (13-56)

n=

The crystal is generated by the convolution

e o @
pul@) = [* drpur) ¥ o[u—(r — na)] (13-57)

n= =

The x-ray scattering from the crystal, using Equation 13-7, is
, ™
Fro/(S) = f_’: dre*™S % I (u) (13-58)

This expressi_on can be evaluated by using Equations 13-54 and 13-49, and changing
from the variable u to the equivalent variable r:

Fro(S) = (f: drp,(r)e*™s ") (f_i dr i d(r — na)e*™s- ') (13-59)

[ . 2 .
Even with a one-dimensional molecular crystal, one must formally consider a three-dimensional

diffraction pattern, because the relative orientation of the molecule within the lattice will affect the
scattering.
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The first term is just the structure factor of a single unit cell, F,,(S) (Eqn. 13-55). The
second term is the sampling function generated by the lattice, F\(S). It is evaluated
simply by using the properties of the delta function. The result is

o

Fro(S) = FuS)F(S) = Fu(S) ), e*™™'* (13-60)

n=—ux

This result is identical in form with Equation 13-31. However, it is more general
because it holds for molecular crystals. This example shows the correctness and
simplicity of the convolution approach. However, its real advantage is the physical
insight that can be gained once one is used to it.

Equations 13-59 and 13-60 mean that, to calculate x-ray scattering, one can sim-
ply multiply the scattering expected from one unit cell by the sampling function gener-
ated by the lattice.

Another example of this approach will demonstrate its usefulness. Consider an
infinite one-dimensional crystal with a cell length 2a and two identical atoms per cell,
one at the vertex and one halfway between adjacent vertices:

o o) fo) o] o s} o] o] o]
| | | | |
_ T

2a Origin

Let us calculate the x-ray scattering expected for such a crystal. From Equation 13-59,
we evaluate the unit-cell structure factor as

FulS) = [ drpu®e™s " = f(S)(1 + &%) (13-61)

where we have used the definition of the atomic scattering factor. One must consider

only two atoms—one at a vertex (say, the origin), and one at the center of the cell—

because the atom spaced 2a away from the origin will be counted as part of the next

unit cell, and the atom —a from the origin is counted as part of the preceding unit cell.
The lattice shown leads to a sampling function )

o

F\(S) = fi dr _Z o(r —2na)e®™S T = Y trinse (13-62)

n=-cw

Thus, the x-ray scattering expected for the crystal is

FTD[[S} = f{s}(l + E}"“s ¥ ’] z {,4:\:1')15‘ a

n=—m

= () i (e%7inS & | o4niln+112)S  m) (13-63)
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_ By writing out the sum in the final expression term by term, we can easily show
it to be equal to

Fro(S) = f(S) i i (13-64)

n=—m

This is identical to Equation 13-31, illustrating the important result that the scattering
calculated for a crystal does not depend on how we choose to define the unit cell.

Calculation of x-ray scattering from a molecular crystal
using convolutions

'Fo treat a real crystal, one must extend Equations 13-55 and 13-56 to three-dimen-
sional arrays. The crystal is generated by the convolution p,,L, where L(r) is given by
Equation 13-46. Evaluating this (exactly in the way it was done in Equations 13-59
and 13-60) yields the structure factor of the crystal:

s

Fro(S) = F,(S) Z Z g2mi(nS - a+mS b+pS - c) (13-65)
== m=—wm p

o

The triple sum in Equation 13-65 is the three-dimensional sampling function
generated by the lattice. It limits the detection of scattered intensity to geometries
allowed by the von Laue conditions. Applying these conditions, we can evaluate
S:ra=handS-b=k andS-c =/to obtain ’

Fro(hkl)=F,8) ¥ i i g2mitnh +mi+ pl (13-66)

A=—m mM=-w p==—-wm

Now every exponential term is simply unity, and the triple sum simplifies to

Fro(h k1) = NF,(S) (13-67)

where N is the number of unit cells in the crystal.

t It is conver_lignt to write out tl}e unil-cgll structure factor, F,(S), explicitly in
erms L':'lf the positions of each atom in the unit cell, and of the corresponding atomic
scattering factors. Using Equation 13-27 for the molecular structure factor, we choose

a com:dmate system based on the unit-cell vectors a, b, and ¢. The position of the jth
atom in the unit cell is then

r,=xa+yb+ze (13-68)

13-2 X-RAY DIFFRACTION W

where x;, y;, and z; are now fractions of the corresponding unit-cell dimensions. Then
Equation 13-27 becomes

Fo8) =Y fAS) el aenfi-bag e (13-69)

J

where the sum is taken over all the atoms in one unit cell. However, F(S) can be
sampled only at geometries allowed by the von Laue conditions. When we apply
these, equation 13-69 simplifies to

Fulh k1) = Y, fi(S)e?=i=s+hritie (13-70)
i

This equation is called the structure factor equation. It represents the unit-cell x-ray
scattering sampled at the reciprocal lattice points, h, k, and 1.

Equation 13-70 is one of the key results in x-ray crystallography. It provides a
direct way to calculate the x-ray diffraction of a crystal, provided that the structure
of one unit cell is known. Alternatively, if the structure factor F(h, k,[) is known, the
electron density distribution of the crystal can be calculated. The equation used is
identical to Equation 13-39. However, instead of using Equation 13-38 to describe
the unit-cell contribution, one must use Equations 13-67 and 13-70.

@ Bragg’s law of diffraction

Most elementary treatments of x-ray diffraction discuss the process as the reflection
of x rays from certain planes in the crystal lattice. Because this is probably the for-
malism many readers have seen previously, it is worthwhile to show how our present
treatment is equivalent. Lattice points are defined as the corners (vertices) of the unit
cells. Lattice planes are a set of equidistant parallel planes constructed so that all
lattice points lie on some member of the set. Clearly, the planes passing through the
faces of the unit cells of the lattice are one such set of planes. Planes passing through
opposite vertices of the unit cells also are a set of lattice planes (Fig. 13-14a). These
cut the axes (a, b, and ¢) precisely at the values corresponding to one unit translation
of the lattice. However, increasingly finer-spaced lattice planes can be drawn that
cut the a axis at any a/2, a/3, . . ., a/h of the unit translation (Fig. 13-14b,c).

In three dimensions, lattice planes exist that cut one axis every a/h while cutting
another at b/k and the third at ¢/I. The planes can be described by specifying the Miller
indices, h, k, and I. Note that the spacing (d) between adjacent planes is inversely
related to the size of the indices of the planes. Therefore, it is reasonable that the
planes could bear some relationship to the reciprocal lattice.
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Figure 13-14

Three sets of lattice planes. Shown below each set are the Miller
indices (h, k) that describe it.

In the Bragg's-law description of diffraction, an x-ray beam that impinges on
a lattice plane at an angle 0 is described as being reflected from that plane at an equal
angle (Fig. 13-15a). This corresponds to a scattering angle 20. The Bragg conditions
for observing diffraction require that the path difference between reflected beams
from adjacent lattice planes be an integral number of wavelengths. From Figure
13-15a, we see that this condition clearly is met wherever

2d sin 0 = n (13-71)

| where n is any integer, and d is the distance between two adjacent lattice planes.

To compare the Bragg treatment with our previous description, it is necessary
to show how the scattering vector S is related to a lattice plane. Consider a lattice
plane that intersects the three axes of a unit cell at a/h, b/k, and ¢/I (Fig. 13-15b). Let
r be a vector drawn from the origin to any point in this plane. Consider the properties
of a scattering vector S that happens to satisfy the equation S -r = 1. For a fixed
| direction of S, the relation S - r = 1 defines a plane perpendicular to S, because it
simply means that the projection of r on S is a constant.

As we showed previously, not all values of S lead to detectable scattering. Only
those values that satisfy the von Laue conditions are acceptable. These conditions are

| S-a = h, with equivalent equations for b and ¢. We can put the von Laue conditions
in the form

S-ah=S-bk=S-¢/l=1 (13-72)

In other words, a/h, b/k, and ¢/l are all values of r that satisfy the condition S - r = 1.
These three values uniquely define a plane (Fig. 13-15b). This plane is a lattice plane

(as described in Fig. 13-14), but it is also a plane containing values of S that lead to
x-ray diffraction.
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Figure 13-15

Derivation of Bragg's law. (a) Diffraction viewed as reflection of x rays from adjacent Iat_tice plan_erl..
(b) The lattice plane (h,k,I) is a plane containing vectors that satisfy the von Laue scattering conditions.

The lattice plane adjacent to the plane defined by S - r = 1 will pass through the
origin. The spacing d between these two planes is the length of a vector r, parallel to
S (Fig. 13-15b). The condition S - r, = 1 means that d = [ro| = 1/|S|. However, we
showed earlier that S| = 2|sin 6]/A. Therefore, the scattering angle (26) produced by
crystal planes separated by a spacing d, is given by

sin 6 = 4/2d (13-73)

This is identical to Equation 13-71 with n = 1. Thus, the equivalence of the Bragg

treatment and the von Laue conditions has been illustrated. (To derive the full Bragg
equation, consider the properties of the plane defined by S -r=n where n is an
: integer.)

13-3 PROPERTIES OF CRYSTALS

A crystal is a three-dimensional ordered array of molecules. From the discugsion of
x-ray scattering in the previous section, it is clear that crystals are not a requirement
for x-ray diffraction measurements. Any ordered (or partially ordgred)_ array of
molecules can, in principle, produce useful x-ray data. However, it is evident that
crystals are the most favorable samples. A large ordered array _leads to sl?arp diffrac-
tion spots, which concentrate the scattered intensity in small dtsgrete regions of scat-
tering angle (26). This greatly facilitates the acquisition of reliable intensity data.

If the sample is not a perfectly ordered crystal, intensity can reach observa'able
levels over wider ranges of scattering angles. The diffraction pattern can smear into
rings or streaks, and therefore considerable imprecision is introduced in assigning
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values of 6 observed. In general, only if the sample has three-dimensional order will
the diffraction pattern contain all the information needed to reconstruct the three-
dimensional structure. Disorder corresponds to averaging over orientations of both
the lattice and the molecules it contains. The resulting data then contains only
information about the averaged structure,

Restrictions on possible crystal lattices

A crystal is essentially a three-dimensional mosaic. The unit cell defined by the vectors
a, b, and ¢ contains the fundamental repeating unit. The crystal is generated by suc-
cessive translations of the unit cell along the axes a, b, and ¢; in just the same way,
a mosaic is built up by placing down multiple copies of the same unit structure. It is
a fundamental consequence of geometry that three-dimensional space can be filled
only by mosaics of cells of certain shapes. There are, in fact, only seven fundamental
types of unit cells. Each defines a crystal system (Fig. 13-16; Table 13-1).

Each unit cell consists of a motif that is the actual unit repeated throughout the
crystal by the lattice translations. The crystal is a convolution of the motif and the
lattice (Fig. 13-17a). A motif can be a single atom or molecule, or it can contain more
than one molecule.

The simplest possible crystals would have one motif positioned with the same
orientation at each corner of the unit cells. There are eight corners and each is shared
by eight unit cells. Therefore, there is one motif per unit cell. Such lattices are called
primitive, and they are denoted by the letter P. It is always possible to choose a
primitive triclinic cell for any lattice. This is the least-symmetric unit cell. Each dimen-
sion and each angle are different. So it takes six parameters to specify such a cell.

There are many cases in which the symmetry of the lattice can be increased if
a larger unit cell containing additional lattice points located on the faces or at the
center is chosen. These nonprimitive lattices have more than one copy of the motif
per unit cell. By choosing a nonprimitive lattice, one often can describe the crystal
with fewer parameters. There are a total of seven nonprimitive lattices (Fig. 13-16).
They are designated I for cells having an extra lattice point at the center, C for cells
with two extra lattice points on one pair of opposite faces, and F for cells with extra
lattice points on all faces. You should be able to convince yourself that C and I
lattices have two motifs per unit cell, whereas F lattices have four.

It is important to recognize that the choice of lattice is not always unique. Figure
13-18 shows a few examples of alternative choices. There are certain conventions
that help to decide which lattice to use, but we need not be concerned with them
here and, in any event, they are not always rigidly adhered to. For each type of lattice,
there are only certain arrangements of molecules or motifs that can be inserted without
reducing the lattice to one of greater symmetry or one with a smaller unit cell,

The choice of lattice can simplify the analysis of x-ray scattering data. However,
it is important to reiterate the point made earlier that the x-ray scattering calculated
for a crystal of known structure is independent of the choice of lattice.
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Figure 13-16

The fourteen Bravais lattices. For a list of their properties, see .Tab.le 13-1.
[After G. H. Stout and L. M. Jensen, X-Ray Structure Determination
(New York: Macmillan, 1968).]
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(a) A lattice and simple motif (a single hand). The crystal is
(b) Two motifs containing symmetry-related structures.

the convolution of the motif and the lattice.
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(c) Arrays generated by screw axes. From left to rig

Motifs, lattices, and symmetry operations.
The two hands on the left are related by a twofold rotation (
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[Drawings by Irving Geis.]

just a single hand.

4, and 4 asymmetric units, respectively.

the resulting unit cells have 2,
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Figure 13-18

Chaosin_g different unit cells for the same lattice, (a) Choice of C or I unit cells in a monoclinic lattice.
(b) Choice of C or P unit cells in a tetragonal lattice. () Choice of an orthorhombic C lattice or a

hexagonal P lattice, l After G. H. Stout and M.J =, .
. L. CHSCI'I.X Ray Str ucture Determmauon New k
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Symmetry properties of molecules and crystals

The overall symmetry lof the crystal is called the space group. It is described by

naming the type of unit cell and any symmetry relationships within the molecules

;};z(l)t mak.r; !up the motif. For arbitrary structures, it turns out that there are precisely
possible space groups. These contain two types of symmetry: poi

i s . pe y. Iy: point symmetry

Point-symmetry operations consists of manipulations of an isolated object that

13-3 PROPERTIES OF CRYSTALS
leave at least one point in space unchanged (Box 2-3). These can include

1. rotation axes, named by a number (2 for twofold axis, 3 for threefold axis, and
SO on);

2. mirror planes, designated by m;

3. rotation coupled with reflection (for example, combining a twofold rotation
axis with a mirror plane perpendicular to it, resulting in inversion of an object
through an origin located at the intersection of the rotation axis and the
mirror plane; this operation is designated 2/m);

4. rotation-inversion axes, designated by a number with an overbar (for example,
4 indicates that each rotation of 90° is accompanied by inversion through
the origin).

A point group is a list of all of the point-symmetry relationships possessed by an
object. The object can be a molecule, a set of molecules, or an entire crystal. Several
of the point groups possible for molecules consisting of multiple copies of identical
subunits are illustrated in Chapter 2.

Space-symmetry operations involve translation of the object. These include
screw axes (which are a rotation accompanied by translation) and glide planes (which
are translations accompanied by reflection). Screw axes are called n,,, where n is the
rotation axis, and m/n is the fraction of a unit cell along which the translation occurs.
For example, 3, indicates a rotation of 120° accompanied by a translation 1/3 of the
unit-cell length. The description of glide planes is complicated, because it depends
on which face or diagonal the glide is along, as well as on how far the glide occurs.
Figure 13-17c shows a few examples of motif-symmetry operations.

The presence of particular symmetry elements in the motif restricts the possible
type of unit cell. For example, if a twofold rotation axis is present in the space group,
this axis must be perpendicular to two unit-cell vectors. Otherwise, this symmetry
operation would leave the motif unaltered internally, but would change its location
within the unit cell. The presence of threefold or higher rotation axes requires that
the two unit-cell vectors perpendicular to the axis must be equal in length.

Space groups available to biological molecules

The allowed combinations of the point and space symmetry possessed by the motif
generate the 230 space groups. It is convenient to introduce the concept of an asym-
metric unit. This is the smallest unit from which the crystal structure can be generated
by making use of the symmetry operations of the space group. The asymmetric unit
can be several molecules, one molecule, or a subunit of an oligomeric molecule. The
crystal is generated, first by creating the motif by the space-group symmetry opera-
tions on the asymmetric unit, and then by translation of the motif through the lattice.



The number of asymmetric units per unit cell, n', is determined by the space group.

For biological molecules, the motifs inevitably contain asymmetric carbon
atoms. Therefore, the symmetry arrangement of the molecules can never contain
mirror planes, glide planes, centers of symmetry, or rotation inversion axes. Only 65
of the 230 space groups can apply to biological molecules. The biologically relevant
space groups can contain 1, 2, 3, 4, 6, 8, 12, 24, 48, or 96 asymmetric units per unit
cell (Table 13-1).

A practicing crystallographer presumably will learn to picture many of these
space groups. However, molecules seem to prefer to crystallize in only a limited
number of space groups. For example, 80% of 1,200 organic compounds surveyed
fell into the triclinic, monoclinic, or orthorhombic crystal classes, and half of these
occurred in just three space groups. Figure 13-19 shows a few of the most commonly
found of the space groups allowable for biological molecules. Note that these dif-
ferent groups imply different numbers of molecules per unit cell.

Figure 13-19
A familiar asymmetric unit as it might appear in four different space groups. P1 has no motif symmetry;
P2_1 has a sm_gle 2, screw axis shown as a half-arrow; P2,2,2 has four screw axes (each 2;)and a C,
axis perpendicular to the plane of the page; C2 has two 2, screw axes and a C, rotational axis shown as
the full arrow. [ Drawings by Irving Geis.]
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Determination of the dimensions of the crystal lattice

X-ray diffraction occurs whenever the scattering vector coincides with a reciprocal
lattice point, as we have shown. That means that the resulting diffraction pattern
can be used to construct an image of the reciprocal lattice. From the spacing between
diffraction spots as actually observed in the laboratory and a knowledge of the
geometry of the diffraction experiment, one can compute the spacing between points
on the reciprocal lattice. This in turn allows the geometry of the unit cell to be
calculated.

Here we shall demonstrate the determination of the spacing of a one-dimensional
crystal. The crystal is placed in the center of a cylindrical film (Fig. 13-20). The von
Laue conditions for the a crystal axis require that S - a = h. Consider the first two
diffraction planes, which will occur at h = 0 and h = 1. If we make measurements
with the crystal oriented so that S is parallel to a, then the length of the scattering
vector, S, is 0 for & = 0 and is 1/a for h = 1. The scattering angle is computed from
Equation 13-5; |S| = 2[sin6|/A. For h = 0, we have sinf = 0 and 6 = 0. For h = 1,
we have sin = |S|/2 = //2a. Therefore, the angle between the two scattering planes
is 20 = 2sin™! /2a. Thus, if 6 is measured experimentally, and if 4 is known, the
distance a can be computed.

X-ray
source

2nr) = (20 360 )

=
Aisd

Figure 13-20

Experimental scattering geometry. Shown are a sample at the origin, a section of the reciprocal lattice,
one scattering vector S (and the scattered radiation associated with it), and two layer lines as they
intersect the film. Below the reciprocal lattice, three atoms in the actual crystal lattice are illustrated to
show the orientation of the sample. In this example, for clarity, we show values of 4/2a and # much
larger than the values typically encountered in actual experiments.
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In a typical case, 2 might be 1 A, and a might be 10 A. Therefore, sin @ is 1/20,
or @ is about 3°. A common x-ray camera would have film arranged in a cylinder
28.65 mm in radius. Its circumference is 2z x 28.65 mm. The angle between the h = 0
and h = 1 scattering planes is 20. This is 6°, or 6/360 the circumference of the film.
Therefore, the distance between the two scattering planes as they intersect the film
is 27 x 28.65 x 6/360 =~ 3 mm.

Note that, although the actual crystal spacings are very small, the film is placed
far away from the sample. This magnifies the diffraction pattern until planes are
physically separated by a distance convenient for measuring. In an unknown case,
all one has to do is work the calculation backwards to obtain a. The actual equation
is a = 4/2 sin (360D/4xr), where D is the physically measured spacing on the X-ray
film, and r is the radius of the camera.

The relationship between the crystal lattice and the reciprocal lattice

Real crystals are three-dimensional. The reciprocal lattice that one sees in an x-ray
diffraction pattern also is three-dimensional. It is related in a simple way to the actual
crystal lattice. By measuring the spatial pattern of diffracted spots, it is possible to
compute the cell dimensions and shape of the reciprocal lattice. From this, the corres-
ponding dimensions and shape of the unit cell of the actual crystal lattice can be
derived.

Figure 13-21a shows that each of the vectors a*, b*, and ¢* defining the reciprocal
cell is located along lines formed by the intersection of two planes. For example, ¢*
is formed by the intersection of planes generated by successive values of h for the
von Laue condition a-S = h (and therefore these planes are perpendicular to a) and
planes generated by b - S = k (and thus perpendicular to b). This means that ¢* must
be perpendicular to both a and b, and we can write, in general,

c*=raxbh (13-74a)
b* =gc x a (13-74b)
a* =ph x ¢ (13-74¢)

These constants control the magnitudes of the reciprocal-cell vectors. To deter-
mine the constants, we must use the von Laue conditions that generate the reciprocal
lattice. For example, the condition S - ¢ = [ generates a set of planes spaced by 1/c.
The vector ¢* extends between two such planes, although it is not necessary normal
to them (Fig. 13-21b). However, the projection of ¢* on ¢ must be /e (Fig. 13-21b).
Thus we can write

cre*=cf(l/c) =1 (13-75)

ke View down on 1/a plane

1/e

(b)

Figure 13-21

Geometrical properties of the reciprocal lattice. (a) Reciprocal-lattice vectors lie at the intersections of
sets of parallel planes. For example, ¢* extends between two planes spaced 1/|c| apart, but it is formed
by the intersections of planes perpendicular to a (spaced 1/|a| apart) and planes perpendicular to b
(spaced 1/[b| apart). (b) Demonstration that ¢* and ¢ are not necessarily parallel.

Similarly, one can show thata-a* =l and b - b* = 1.

When Equation 13-74 is inserted into Equation 13-75, the result is | =¢ - ¢* =
re - a x b, from which we can evaluate r. Carrying out equivalent manipulations for
a* and b*, we obtain

r=1/(c-axb) g=1/(b-¢c x a) p=1/{a-b xc¢) (13-76)
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_Using the properties of the triple scalar product (see Box 8-2), each of these quantities
is equal to the volume of the parallelopiped formed by the three vectors a, b, and c.
Thus, r = q = p = 1/V, where V is the volume of the unit cell of the crystal. Using
Equations 13-74, 13-75, and 13-76, we can construct the reciprocal cell if the actual
unit cell of the crystal is known. Figure 13-22 shows two examples.

In practice, observations of the geometric pattern of diffraction spots allow
measurement of the reciprocal lattice vectors a*, b*, and ¢*. Then one must com pute
the unit-cell vectors. The procedures are quite similar to that just outlined. Note,
for example, that b* and c* lie in a plane perpendicular to a ( Fig. 13-21). Therefore,
a =r'b* x ¢*, and similar equations exist for b and ¢. To determine ', one uses
the constrainta - a* = 1. Then# = 1/(a* - b* x c*) = 1/V'*, where V'* is the volume of
(tjhe r;ciprocal cell. Thus, the unit cell is constructed from the measured diffraction

ata by

a=(1/V*)(b* x ¢*) (13-77a)
b = (1/V*)(c* x a¥) (13-77b)
c=(1/V*)(a* x b¥) (13-77c)
s ///
et /
t‘f/_/_/__df// 1 (

(a) (b)
Figure 13.22
Comparisons of direct and reciprocal unit cells. (a) For an orthorhombic crystal. (b) For a triclinic

T;}‘ﬁsst;&; [After G. H. Stout and L. M. Jensen, X -Ray Structure Determination (New York: Macmillan,
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A necessary consequence of Equations 13-74 and 13-77 is that the volumes of unit
cells and reciprocal cells are inverse (see Guinier, 1963, p. 88):

V=1/V* (13-78)

Determination of the space group

In addition to determining the unit cell, it is useful to establish the space group of
the crystal. This shows if there is any internal symmetry, and whether one can use
this symmetry to reduce the portion of the structure that must be solved. There is
no general way to find the space group but, for many biological molecules, one can
sharply narrow the possibilities by simple examination of the intensity of diffraction
spots in the reciprocal lattice. Particular crystal classes show symmetries in the
diffraction pattern that correspond to symmetries in the space group. For example,
a twofold rotation axis in the crystal leads to a mirror plane in the diffraction pattern
intensities.

Even more informative are systematic absences of intensity at certain points of
the reciprocal lattice for many space groups. Consider a space group with a twofold
screw axis along c. This axis rotates x to —Xx, rotates y to — y, and translates half of
the unit-cell distance along ¢. Then, for each atom atr = x;a + y;b + z;¢, there must
be an identical atom at r' = —x;a — y;b + (z; + 1/2)e. In calculating the structure
factor, one can group the identical atoms by pairs. From Equation 13-70,

N2
Fm{h,k,!}= Z j}(S)(QZ::i[hxj+kyj+z,-}+elxi{-hx,-‘kyj+12j+l.’2]} [13_79)

i=1

When h = k = 0, the structure factor becomes

Ni2
Fol0,0,1)= Y f{(S)[e™4(1 + e2!2)] (13-80)
i=1

Whenever [ is odd, the exponential in the last term becomes equal to — 1, and so the
scattering amplitude vanishes. Thus, there will be no diffraction in the special case
h=0, k=0, | = odd. If such absences are not sufficient to uniquely determine the
space group, sometimes a statistical analysis of the pattern of intensities can com-
plete the assignment.

Crystallographic estimation of molecular weight

Once the lattice and space group are known, it frequently is possible to determine
the molecular weight of the molecules that compose the crystals. The density of the
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crystal, p., can be measured experimentally. Then the weight W of one unit cell can
be computed as

W=pV (13-81)
where V is the volume of the unit cell determined from the diffraction pattern.
In general, protein and other macromolecule crystals can be viewed as con-

taining three components: anhydrous macromolecule (m), free solvent (s), and bound
water (w). The weight of one unit cell will be the sum of the three components:

PV = puV + puVe + o5V, (13-82)
where V refers to the volume of each component, and p is its density. Usually, p, is
known experimentally, and p,, can be taken as the density of pure water.

We want to compute the weight of macromolecule per unit cell, p,,V,,. Thus,
we must eliminate the unknown quantities ¥, and ¥, from Equation 13-82. The

volume of bound water, ¥,,, can be written in terms of the hydration d,, in grams
water per gram macromolecule.

Vw = ‘SIPmewa {13'83)

Hydration values are known approximately for proteins and nucleic acids (Chapter
10). The total volume of the unit cell is

V=V,+V,+V, (13-84)
Using Equation 13-83, the volume of free solvent can be written as
Vo=V = Vull + 6,pn/ps) (13-85)

Inserting Equations 13-83 and 13-85 into Equation 13-82, and solving the
resulting expression for p,, V,,, we obtain

Vipe — ps)
1 = py/pm + 811 = py/py)

Wm = Pme = (13'86)

Thus the weight of macromolecule per unit cell (W,) can be calculated if the anhy-
drous density (p,,) is known. Usually it is a good approximation to equate p,! with
the partial specific volume (¥,) measured for the macromolecule in solution.

_ If there is a single macromolecule per unit cell, then the molecular weight is
Just M = N,W,, where N, is Avogadro’s number. If the space group indicates n’
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asymmetric units per unit cell, the molecular weight of an asymmetric unit is
M = NoW,/n’ (13-87)

Alternative methods for determining the molecular weight of molecules in a crystal
are discussed by B. W. Matthews (1975).

Often an estimate of the molecular weight is already available from hydro-
dynamic measurements or primary structure data. Then n’ can be computed from
a measurement of W,,. This value must always be an integer. Therefore, once an
estimate of n’ is available, it can be used to refine the value of the molecular weight.

Using the space group for information on macromolecule symmetry

In most cases, the number of molecules per unit cell () is equal to the number of
asymmetric units (n’). Here we consider the special case where the macromolecule
is an oligomer of identical subunits. For example, a molecule with five subunits
might have Cs symmetry. But this symmetry can never correspond to a symmetry
element of the space group, because there is no space group with a Cs rotation axis.
Therefore, the asymmetric unit must contain all five subunits.

On the other hand, in many cases, a molecule with C, or C, rotational symmetry
crystallizes so that its axis is also a symmetry axis of the motif. Then it is possible
that the number of asymmetric units per cell will be an integral multiple of the
number of subunits per unit cell, rather than a multiple of the number of molecules.
This relationship permits one to infer the presence of rotational axes of symmetry
in the macromolecule. Note, however, that it is not necessary for all rotation axes of
a molecule simultaneously to be rotation axes of the crystal. Therefore, the estimate
of symmetry is a minimal estimate.

An example is aspartate transcarbamoylase, which was treated in Chapter 2. In
one crystal form, this enzyme crystallizes in a space group with eight asymmetric
units per cell, but there are only four molecules per cell. This indicates the presence
of a twofold rotation axis. In a second crystal form, the space group has six asym-
metric units per cell, but the cell dimensions allow for only two molecules per cell.
Thus, a threefold rotation axis exists in the molecule. Because each subunit must be
an asymmetric object, the only way that both of these axes can exist simultaneously
is for the molecule to have six (or some integral multiple of six) subunits of each
type. For aspartate transcarbamoylase, the subunit structure is cq4rg, and a model of
the symmetric arrangement is shown in Figure 2-49,

Varying scattering geometry to measure diffraction pattern

Reciprocal lattice points are precisely those locations in space that satisfy the
von Laue conditions for scattering. Whenever the crystal and incident beam (§,) are
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oriented so that the scattering vector S contacts a reciprocal lattice point, diffracted
intensity is observed along the vector § = 1S + §,. In making measurements, one
has the choice of varying the orientations of the crystal, the detector, or the incident
beam. Usually it is the crystal that is allowed to move. The reciprocal lattice is fixed
in space for a fixed crystal orientation. If the crystal is rotated through an angle
about an axis, the reciprocal lattice will rotate the same angle about the same
laboratory axis.

For given x-ray wavelength, crystal orientation, and incident x-ray beam, all
possible scattering vectors extend from the origin to the surface of the sphere of
reflection (Fig. 13-23a). The sphere can be generated from Figure 13-3a by allowing
all possible orientations of S. It has a diameter of 2/4 because this is the largest
possible value of S|, occurring at § = 90°. The surface of the sphere passes through
the origin of the reciprocal lattice. Here, h = k = [ = 0, the scattering vector S has
length zero, and 6 = 0°; all radiation is forward scattered.

The sphere of reflection will enclose a set of reciprocal lattice points. However,
diffraction will be observed only when these points intersect the surface of the sphere.
Clearly, if the reciprocal lattice is literally composed of points, the probability of
this occurring is infinitesimal. Fortunately, the actual radiation used in diffraction
experiments is a distribution of wavelengths. This means that a spherical zone of S
applies, rather than just a surface. Furthermore, in an actual crystal, zones of unit
cells differ very slightly in orientation. This effect, called mosaicism, means that the
reciprocal lattice points will be of a finite size. Nevertheless, not many lattice points
will intersect the surface of the scattering sphere simultaneously (Fig. 13-23a).

(b)
Figure 13-23

Experimental restrictions on the observation of x-ray diffraction. (a) For a fixed geometry and x-ray
wafelength. scattering will be observed only when the surface of the sphere of reflection intersects
reciprocal-lattice points. (b) Even if all possible geometries are sampled, only that portion of the
reciprocal lattice that lies within a sphere of radius 2// (the limiting sphere) can be examined.
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To collect sufficient diffraction data to solve a crystal structure, one _musi mea-
sure as many diffracted rays as possible. Therefore, what is usua!ly don_e is to _rotatc
or oscillate the crystal in a systematic way. This causes successive lattice points to
intersect the scattering sphere and permits the resulting diffraction to be m.easured
(Fig. 13-24). Note that it is the discontinuous nature of lhe reqprocai lattice that
makes it difficult to collect diffraction data for a three-dlmensyonal crystal. In a
two-dimensional sample, the reciprocal lattice is a set of lines (Elg‘ 13-12). Most of
these will intersect the sphere of reflection somewhere, and so a single sample geom-
etry can yield many diffraction spots (Fig. 13-11).

x
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(b)

Figure 13-24 o .
The effect on observed diffraction of rotating the sample. {a). One sample ca.'wmatmn where a .Pal.r
scattering vectors (black arrows) intersect the reciprocal lattice. Note that, if thel scat_tf:red radiation "
(colored arrows) is viewed as originating from the center of the sp_here (?f reﬁact:on_. H mterslects the same
reciprocal-lattice point as does S.  (b) An alternative geometry, in which only a single reciprocal-lattic
point is sampled.
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Several methods for collecting scattering data

The spatial pattern of diffracted rays that emerges as one rotates a crystal is not
necessarily a simple one. However, proper choices of rotation axes can lead to fairly
regular patterns of diffracted spots. For example, suppose that the incident beam is
perpendicular to axis b, and the crystal is rotated about this axis. In a rotation
camera, a cylinder of film surrounds the sample (Fig. 13-25a). Diffracted rays passing
through a given k level of the reciprocal lattice (say, h,0,1) will all fall on the same
line of the film. However, the order of spots, as a function of h and [ values, is not
regular, and the overall pattern is quite compressed. A rotation photograph projects
a whole layer of the reciprocal lattice onto a single line. A typical example is shown
in Figure 13-25b.

Axis of rotation
or oscillation

(a) X-rays

(b)
Figure 13-25

The rotation camera. This camera projects a plane of the reciprocal lattice onto a line of the film.
(2) Schematic diagram of a rotation camera. (b) Example of a rotation photograph. [From G. H.
Stout and L. M. Jensen, X -Ray Structure Determination (New York: Macmillan, 1968).]
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ould like to have is a way of !:o‘llecting diﬁrgction data
organized just like the reciprocal lattice. One way to do this s the preceslszgn ‘::mte;;
In essence, this camera rotates the sample and the_ film in sut.th a couple g -

diffraction spots from all individual lines of the _rcc1procal lattice appe;}ar as prope i
spaced lines on the photographic film. The details of operation of suc 13 ?amer;\ e:r

complex, and the interested reader can find Fhem elsewhere. The results are pho E-
graphs that each show one whole plane of reciprocal space. A set o‘fsuch photographs
permits one to reconstruct all accessible data about the diffraction pattern. Figure
13-26 shows an example. Two-dimensional s:canmng_ﬁlm densnomete_rs are use_d_ to
convert the x-ray photograph into a series of indexed integrated scattering intensities.
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Figure 13-26 . e
A precession photograph. An entire plane of the reciprocal lattice 1s displayed m}hout Fi]stccrlli’?r:iousu
sample is a tetragonal crystal of lysozyme. Note the presence of a fourfold rotation axis and va
mirror-symmetry planes in the diffraction pattern. [Courtesy of C. C. F. Blake.]
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An alternative to the precession camera, now in much more common use, is the
automated diffractometer. Once the crystal class and unit cell of the sample are
known, its absolute orientation in space can be determined. Then, it is possible to
predict the sample and detector geometry needed to produce a spot with particular
indices h, k, I. This information is given to a computer, which finds the spot, measures
the intensity, rotates the sample and detector to where the next spot should be, and
so on. The x-ray intensity can be measured directly by solid scintillation detectors.

The limiting sphere of the reciprocal lattice

The reciprocal lattice, in principle, is infinite. Each of the indices h,k, [ varies from
— o0 to + co. The Fourier inversion needed to calculate the electron density distribu-
tion from x-ray structure factors is an infinite sum over all three indices (Eqn. 13-39).
It would not be practical to collect data over an infinite reciprocal lattice. More
significantly, it is not even possible, because the finite wavelength of the x rays used
limits the largest values of the indices h, k, | that yield diffraction intensity.

Return to Figure 13-23a and note the position of the sphere of reflection. Rota-
tion of the crystal about any of the three laboratory axes will bring reciprocal lattice
points into contact with the spherical surface, but cannot possibly reach any recip-
rocal lattice points that lie a distance farther from the ori gin than the sphere surface.
The longest possible scattering vector has a length 2/A. Thus, even if all possible
geometries are tried, no reciprocal lattice points farther from the origin than 2//
can be sampled.

This limitation defines a sphere of radius 2/4, centered at the origin (Fig. 13-23b).
The sphere is precisely twice the diameter of the sphere of reflection. It is called the
limiting sphere. All reciprocal lattice points contained within the limiting sphere are
measurable by a proper choice of experimental geometry. But no points outside of
the limiting sphere can be detected. The only recourse would be to decrease the
wavelength of the x rays and thus increase the diameter of the limiting sphere.

Limitations on the resolution of structures calculated
from x-ray diffraction data

What is the result of our inability to measure scattering throughout the whole
reciprocal space? Larger distances in reciprocal space correspond to smaller dis-
tances within the real crystal lattice. Therefore, with only a finite set of diffraction
data, the ability to discriminate fine details of the electron density distribution is lost.
In short, the resolution of the structure determination is decreased. It is useful to
examine this statement more quantitatively.

What fraction of the data within the limiting sphere must be collected in order
to produce a final structure determined to a given resolution? A vector S in reciprocal
Space is ha* + kb* + Ic*. Its length is S|; the dimensions are A~!. Therefore, IS|
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corresponds to a distance d = 1/|S|. One can v:stin*}att’:§ that_a collection of all dii’_(rac_
tion data up to a value of S| ought to contain the information needed to determine a
structure with a resolution of around 1/[S| A. .

The implications of limited resolution are best seen b‘y'a purely lheprencgl
example. Figure 13-27a shows a section of f§ sheet. For smp]ac:ty, we shall view th!s
as projected into the a-b plane. (See Box 13-5 for a discussion of how a projection is
carried out mathematically.) The unit cell illustrated in Figure 13-27a repeats to
form an infinite two-dimensional lattice. The structure factor produced by x-ray
scattering from this array can be calculated exactly using the two-dimensional analog
of Equation 13-70:

Fo(hk) =} fi(S)e?m®xikep (13-88)
F)

The indices h and k can be evaluated for any integral values we want, from — oo
to + oo.

Figure 13-27b shows part of the resulting set of structure factor data. Note that
this plot illustrates both the phase and the amplitude of the structure factor. Because
the two-stranded f sheet projected into two dimensions has a center of symmetry,
the structure factor is real rather than complex, and the phase term reduces to just
a sign (+ or —) as described earlier in the chapter. o

Given a set of x-ray scattering data such as that shown in Figure 13-2?_b, we
can calculate the structure that produced it by using Equation 13-39. In two dimen-
sions, the result is

pa)=(1/A) S S Fulh ke~ 2mitieto (13-89)

h=—-w k=-x

where A is the area of one unit cell. However, in practice, we cannot measure values
of F(h, k) with h and k extending all the way out to + co. Suppose that S| cqu]tfl be
measured only out to 1/4 A~'. This restricts h an_d k to v_al_ues th_at fall w:th‘m a
circle of radius [S| = [ha* + kb*| drawn about the origin. (This is the innermost circle
drawn in Fig. 13-27b.) It restricts h and k to values of — 1, 0, and 1. If Equation 13-8;
is used with just these terms, it produces an image of the structure at about 4
resolution. The result (Fig. 13-27c) suggests two strands of peptide, but obscures all
molecular details. ‘ )

Extending the data set used to larger values of |S| prgduces hlghv:l:-resolunon
images (Fig. 13-27d.¢). Note that in these images some regions of negative electron
density (dashed contours) are included. These occur beFausc the data set yscd_is
still finite. A perfect image of the structure can be obtained only when an mﬁ‘nlte
data set is available. Because such a set cannot be obtained in practice, corrections
are used to compensate for the truncation of the series in Equation 13-89.

¥ From the theory of image formation, if all scattered waves are measured with wav.elengths of d A or
more, one should be able to resolve structural features separated by >0.6d A. In reality, x-ray data are
not perfect, and a more realistic estimate is d A.
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Figure 13-27

Electron density maps as a function of resolution. (a) Two strands of poly-L-alanine antiparallel § sheet
within a two-dimensional unit cell. C, and 2, symmetry axes of a planar projection of the structure are
indicated. (b) Calculated structure factor data for a two-dimensional crystal, formed by projecting the
structure shown in part a onto the a-b plane. The circles show the data that would be sampled for
analysis at resolutions of 4 A, 2 A, and 1 A (indicated by increasingly large circles). The filled dots
indicate F(h, k) > 0; the open dots indicate F(h, k) < 0. The size of each dot is proportional to |F(h, K)|.
(c) An electron density map at 4 A resolution, calculated from part b. (d) An electron density map at

2 A resolution, calculated from part b. (e) An electron density map at 1 A resolution, calculated from
part b. [After R. D. B. Fraser and T. P. McRae, in Physical Principles and Techniques of Protein
Chemistry, part A, ed. S. J. Leach (New York: Academic Press, 1969).]

Experimental limitations on resolution

The example just discussed illustrates the limitations of reconstructing a structure
even if perfect data were available. Experimentally, the wavelength of radiation used
limits sampling of the reciprocal lattice to values of |S| < 2/4.

Why not always collect data sufficient for structure determination at the highest
resolution allowed by this limiting sphere? There are three practical considerations.
A given crystal will always have some disorder; thus, the x-ray data corresponding
to short distances may be nonexistent. The amount of computation needed to com-
pute the structure rises sharply with the number of data points. And the number of
diffraction spots that is equal to the number of reciprocal lattice points contained
within a sphere of radius S| grows as the volume of the sphere.

The number of reciprocal lattice points within a sphere of radius S| is approxi-
mately equal to the number n of reciprocal cells contained within the sphere. If V*
is the volume of one reciprocal lattice cell, and (4/3)n[S|* is the volume of the sphere,
then

n = (4/3)n|S]’/V* = V(4/3)n/d* (13-90)

where V is the volume of the real unit cell, and d = [S[ -1 is the resolution. Therefore,
the number of diffraction spots that must be measured increases as the cube of the
desired resolution.

Two factors decrease the minimal number of diffraction spots or reciprocal
lattice points needed to contain all structural information for a certain resolution.
As shown in Equation 13-18, the fact that the electron density is real results in a
center of symmetry for the diffraction pattern: Fi (h, k, 1) = F¥(—h, —k, —1), where the
asterisk indicates the complex conjugate. Thus only one hemisphere of the limiting
sphere must be measured. Furthermore, in most crystal classes, there is additional
symmetry in the diffraction pattern when plotted in reciprocal space (Table 13-1).

A tetragonal crystal will have a fourfold rotation axis. The diffraction pattern
of such a crystal is completely defined by only one octant of reciprocal space. Con-
sider a crystal of cytochrome ¢ in the tetragonal class. The unit-cell dimensions are
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a=b=>585A and c = 42.3 A. The unit-cell volume is abc = 144,700 A*. Equation
13-90 indicates that, for a limiting sphere sufficient to resolve structure to d A, the
number of reflections contained is n = 606,400/d*. Because of the tetragonal class,
the number of unique diffraction spots is only one-eighth of this: 75,800/d>. In
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i is impli i diffraction spots must be
practice, this implies that, for 4 A resolution, about 1,200
measured. This 1l:umber increases to 9,500 for 2 A resolution, and to 75,800 for 1 A
resolution. Clearly, for large unit cells such as those found in macromolecular

crystals, the amount of work needed to improve resolution can be quite formidable.

Box 13-5 PROJECTIONS OF ELECTRON DENSITY DISTRIBUTION

Many times it is convenient to work with a projection of the electron density in a plane rather
than with the entire three-dimensional electron density distribution. Suppose we choose a
plane perpendicular to an arbitrary direction q. Any vector r to a given position in the crystal
can be expressed as the sum of a component along q and a component d perpendicular to q:

r=d+qq

where  is a unit vector, and ¢ is the magnitude of the projection along q.
The electron density distribution of the crystal is

o) = [* dSF(S)e™25 " = fl dASF(S)e~ 278 " dg~2xias
Its projection onto a plane perpendicular to q is simply the integral of p(r) over all g:
pdd)= [ dq [, dSF(g)e2ms dp-2nas a [ asF(g)e=s-a [, dgem2as-
The second integral is just the Dirac delta function, 4(S - §). Therefore, it vanishes unless

S-§ =0 or, in other words, unless S is in a plane perpendicular to §, whereupon the second
integral is unity. So, if S, represents all scattering vectors perpendicular to §, then

pld) = J.j“ © dS,F(S,)e™ 28 4 (A)

The projection integral is carried out only in a plane of reciprocal space perpendicular to the
projection axis. If an inverse Fourier transform is performed,

FS) = [ ddp d)esea (®)

Equations A and B are quite useful. They imply that, if one measures the x-ray scattering
in a plane of reciprocal space, F(S,), the electron density of a projection of the structure onto
that plane can be computed. Alternatively, any plane in reciprocal space will contain infor-
mation only about the electron density of the molecule projected onto a plane. It is common
to choose a projection along crystal axes. For example, suppose we choose q to be the ¢ axis.
Then, after inserting the von Laue conditions, Equation A becomes

PN =(/A) S S Flhk0je- 2ty

n=-m k=—m

Note that this is the projection of the electron density onto a plane perpendicular to the ¢
axis. That plane is not necessarily the a-b plane unless the crystal symmetry is such that a
and b are perpendicular to ¢. A4 is the area of the projection of the a-b face of the unit cell
perpendicular to the ¢ axis, as shown in the figure.

Unit cell

Projections of electron density. A unit cell
containing a hollow molecular cylinder.
The molecule projects into a hollow ellipse
. in a plane perpendicular to ¢. This ellipse
Planar projection  ¢can be further projected onto a line.

A=a-bsina

/

S~ / Linear projection

~

With many molecules, properly chosen projections may have an apparent symmctg not
visible in the structure of the whole. Examination of the x-ray diffraction corresponding to
such projections often can help simplify the determination of the structure. When crystal-
lographers show diffraction patterns, they virtually always display data for one plane throggh
the reciprocal lattice. Usually, this is a plane in which the index of one reciprocal-cell direction
is zero—that is, b, k, 0 or h,0,1 or 0, k, . .

In a comparable way, a row of points of the reciprocal lattice will contain _the data
needed to calculate the projection of the electron density onto a line. That line will be the
intersection of the planes perpendicular to the two projection directions, as shown in t_hc
figure. For example, where a, b, and ¢ are all mutually perpendicular, the zero layer line
(h,0,0) describes the projection of the electron density along the a axis.
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13-4 DETERMINATION OF MOLECULAR STRUCTURE
BY X-RAY CRYSTALLOGRAPHY

The phase problem

We hgve seen that it is relatively easy to determine the properties of a crystal lattice
from its measured diffraction pattern. However, the central problem in x-ray crystal-
lography is to determine p(r), the electron density distribution within the unit cell.
In principle, we solved this problem with Equation 13-39:

p(x,3,2)=(/NV) ¥ ¥ % F(hkl)e™2rithx+iy+ia (13-39)
h=-w k=—-w I=-mw

However, an enormous practical deterrent exists. As mentioned earlier (Eqn. 13-12)
each F(h, k, ) structure factor is a complex number |F|e, consisting of an amplitudé
|F| and a phase term e'%. Only the square of the amplitude, |F|? can be observed
experimentally. The phase angle ¢ can have any value between 0 and 2.

In the‘ special case of a crystal with a center of symmetry, the phase is much
more restricted. For such a crystal p(r) = p(—r). As shown earlier, F(h,k, ) is real;
the phase can be either 0 or 7, and ¢** is + 1. This means that only the sign of each
term in the Fourier synthesis of the electron density is unknown. However, even in
these cases, there are 2" possible choices of phase for a set of n diffraction spots.

For‘biologica] samples, the inability to measure phases experimentally poses a
truly serious problem. Not only is the number of diffraction spots large, but also
such crystals cannot have centers of symmetry because they contain asymmetric
f:arbon atoms. Certain techniques we shall describe can help to infer partial phase
information. Sometimes chemical insight or other previously known information
about the molecule must be included in order to assist the structure determination.
The methods usually are sufficient to permit phase estimates accurate enough to
compute a three-dimensional structure. It must be borne in mind that occasionally
the methods described below can converge on an incorrect structure.

Phases are more important than amplitudes

Because one has measured amplitudes but not phases, it is of interest to ask which
ofthese: two factors is most crucial in establishing the correct structure. This can be
de;ermmed by taking a known structure and calculating the correct structure factors
|F|®. If these are then inserted back into Equation 13-90, naturally an accurate image
of t_he t.electron density distribution appears. This is shown for a two-dimensional
Projection of a portion of 8 sheet in Figure 13-27e.

_ Suppose instead that all the correct amplitudes are used, but each phase ¢ is
arbitrarily assigned at the same value, 0°. The resulting Fourier synthesis (Fig. 13-28a)
bears no resemblance to a f sheet. Next, suppose all amplitudes are set at the same

(a) (b)

Figure 13-28

Relative importance of intensities and phases in computing an electron density map from diffraction data.
The sample and data are the same as those shown in Figure 13-27. (a) Correct amplitudes were used in
this Fourier synthesis, but all phases were set equal to zero. (b) Correct phases were used in this
Fourier synthesis, but all amplitudes were set equal to the same average value. [After R. D. B. Fraser
and T. P. MacRae, in Physical Principles and Techniques of Protein Chemistry, part A, ed. S. J. Leach
(New York: Academic Press, 1969).]

equal value, |F| = (Y,|Fy/*)"/?, where the sum is taken over all the square of all of
the amplitudes of the diffraction pattern. This corresponds to an average over all
measured intensities. If these are combined with the correct phases in a Fourier
synthesis, the result (Fig. 13-28b) clearly has substantial resemblance to a f sheet.
Thus, we have the unfortunate situation that the unmeasurable quantities are actu-
ally more useful than those that can be obtained experimentally.

General considerations in solving a crystal structure

The problem of solving a structure starts with an enormous number of unknowns:
the location of each atom in the unit cell, the type of the atom and therefore the
expected atomic scattering factor, and the phase associated with each diffraction
spot. There is also a considerable amount of available data: the diffraction intensities,
the space group and unit cell of the crystal, and usually a significant amount of
information about the molecule being examined (for example, partial or complete
chemical structure, and perhaps even some conformational data).

The most general goal is to find a structure for the molecule that represents a
best fit to the available diffraction data and does not violate, without due cause, our
chemical intuition and the set of available structural data. Putting it this way makes
it clear that x-ray structure determination is not in practice an absolute technique.
In most macromolecular structure cases, one must rely on other information besides
diffraction data. That is, there are not enough pure x-ray data available to establish
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a unique location and identity for each atom in the structure. Even if all the phases
of the scattering factors were experimentally measurable, there might not be enough
information. One must marvel, then, at the courage of the first scientists to tackle
macromolecular crystal structures.

Steps in determining the structure of a small molecule

Here we illustrate some of the procedures used to determine the structure of a small
molecule. These are not necessarily the most powerful methods currently available,
but they provide a useful comparison with our later listing of the techniques used
on large molecules.

1. One attempts to prepare suitable crystals, and then determines the space

ngrm}l,pkanf the unit-cell dimensions, and collects a set of amplitude data
0( ] )” ¢

2 Qne attempts to find the locations of a few of the atoms. This can be done by
direct methods.(see Blundell and Johnson, 1976), or by a search for a few
heavy atoms using the Patterson function discussed later.

3. Once the position of a few atoms is known, the contribution Fy that these
atoms make to the total scattering can be calculated by using Equation 13-70:

Fu(h k1) =} fi(s)e?=ixsthostiz) (13-91)
J

where the index j runs over all atoms of known position. Note, however, that
the structure factor observed ex perimentally (F,) is the sum of contributions
from the known atoms and from all atoms yet to be found (F,):

Folh k1) = Fy(h, k,1) + F (h, k. 1) (13-92)

What is crucial, however, is that, because we calculated it, Fy(h, k, I) contains
phase as well as amplitude data.

4. The [_)hase of Fy(h,k,1) can be used in several ways to estimate the phase
associated with Fy(h,k,[). Then a Fourier synthesis can be performed to
compute an estimate of the electron density distribution from the known
heavy atom positions:

@ o0 o

plx, y,z) = Z ) Z ,=Z_: | lFo(h, k, “Ie.'-m.me—znfm+ky+1:; (13-93)

h=—0 k= —
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Here, the structure factor has been explicitly divided into amplitude and
phase terms. Note that it is essential to use measured amplitudes. If both
calculated phases and amplitudes are used in Equation 13-93 (that is, if
Eqn. 13-91 is simply inserted into Eqn. 13-93), all that can come out for
p(x, y, z) is precisely the known atom positions that were originally put into
Equation 13-91 to compute Fy(h, k, ).

5. The electron density distribution calculated by Equation 13-93 with even
partial phase information will show some definite maxima corresponding to
the locations of new atoms or groups of atoms. These in turn can be used in
Equation 13-91 to compute more accurate phases, which then are used in
Equation 13-93 to compute a new electron density map. This process, called
a Fourier refinement, continues alternately until all atoms consistent with
one’s original or revised expectations have been found.

6. The structure at this point is still a very approximate one. The original subset
of atoms used to start the bootstrap process rolling probably are not placed
all that precisely. The electron density distribution that finally results is not
always all that sharp. It usually is impossible to assign precise coordinates
to all atoms. Furthermore, experimental errors in observed F(h, k, [) affect the
data, and these must be dealt with in a systematic way. Thus, the sixth and
final phase of x-ray structure determination is to allow the molecular struc-
ture to vary somewhat in an attempt to maximize the agreement between the
computed structure and the observed data. One way of doing this, called a
least-squares refinement, is illustrated later.

In computing p(x, y,z) from Equation 13-93 in practice, only a finite set of
values of x, y, and z can be used. It is common to compute p for planar sections
through the crystal (that is, to vary x and y, but leave z constant). Even then, only
discrete values of x and y are used. From the resulting pattern of density for each
plane, smooth contours are drawn representing areas of equal density. Usually, one
interpolates available data to bring this about. Individual two-dimensional sections
are produced by a computer. These can be drawn on transparent sheets and stacked
up to give a three-dimensional image of the structure. Figure 13-29 shows an exam-
ple. Alternatively, computer-generated displays can be viewed on a cathode ray
tube from any desired perspective.

Calculating the Patterson function from measured scattering

The scattering intensities actually measured in an x-ray diffraction experiment are
given by

I(S) = |[F(S)|* = FS)FX(S) (13-94)

where the asterisk indicates the complex conjugate. If we knew F(S), we could



Figure 13-29

A rlhreeldr'mensr'mm! electron density map of ribonuclease S, constructed by plotting density contours on
lucite sheets and then stacking the sheets. [Provided by Frederick Richards. ]

Fourier-transform it to obtain the electron density distribution of the entire crystal.

If in§tead we Fourier-transform I(S) directly, the result is called the Patterson
function:

P= [T, I8)e 5 ds = [ dSFS)FHS)e 25 (13:95)

This equation is the Fourier transform of the product of two functions, F(S) and

F¥(8). Therefore (by Eqn. 13-52) it is equal to the convolution of the Fourier trans-
forms of F(S) and F*(S).
The Fourier transform of F(S) is

[, dse™2"F(S) = pir (139

(as in Eqn. 13-8). What is the Fourier transform of F*(S)? Because p(r) is real, F%(S)
1s just (from Eqn. 13-7)
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F*S)={ " dre*s (¢ ! = [® dre "5 () = © dre*s Tp(—r) (13-97)
- P ( } -0 R

Therefore, the Fourier transform of F*(S), by analogy to what is shown in Equations
13-9 through 13-11, is just p(—r). This is the electron density inverted through the
origin. Thus

P @(—r) = J‘: drp(r)p(u + r) (13-98)

The physical idea behind the convolution integral helps generate some feeling for
the properties of the Patterson function. Figure 13-30 shows a simple case. It is a
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Figure 13-30

The Patterson function for a three-atom structure. (a) Four unit cells of the lattice; the molecule at the
origin is shaded. (b) The same four unit cells, inverted through the origin. (c) Construction of the
convolution of the arrays shown in parts a and b. The position of each atom in part b is used as the
origin to lay down an image of the structure in part a. For example, note that, when atom 2 in part b is
the origin, atom 1 in part a is displaced from the origin, but atom 2 in part a winds up at the origin.
Therefore, an equivalent description of the convolution is simply to lay down successive images of part
a with each atom in turn at the origin. (d) The overall convolution, adding the various contributions
shown separately in part c. The numbers by each point indicate the way in which that point arose. For
example, 1-2 means that an image of atom 2 resulted when the structure was laid down with atom 1 at
the origin. [After J. P. Glusker and K. N. Trueblood, Crystal Structure Analysis: A Primer (London:
Oxford Univ. Press, 1972).]



two-dimensional crystal containing one three-atom molecule per unit cell. Figure
13-30a shows the structure of the crystal, and Figure 13-30b shows the crystal inverted
through the origin. We want the convolution of these two structures. First, consider
Just a single unit cell of the crystal and a single unit cell of the inverted structure. The
convolution is formed by choosing each atom in the inverted structure one at a time,
Lay down an image of the structure of the original unit cell, by superimposing the
origin (lower left corner) of the cell on top of this atom, and weight this image by the
electron density of the chosen atom.

Note that, when the origin of the original cell is superimposed on an atom in the
inverted structure at —r, the corresponding atom at r in the original structure now
is located at the origin of the inverted cell. Therefore, the convolution can be con-
structed by ignoring the inverted structure, shifting the contents of a cell to place
each atom in turn at the origin, and adding up weighted images of the structure
(Fig. 13-30c).

There are three atoms in the structure. The image with each atom at the origin
has three atoms. So, a total of nine atom images will appear in each unit cell of the
convolution; three fall right at the origin (Fig. 13-30d). In general, for a molecule with
N atoms in the unit cell, the Patterson function will have N2 peaks in its unit cell.
N of these peaks will occur at the origin, and the remaining N(N — 1) somewhere
within the unit cell. It is clear that the Patterson function will be increasingly cumber-
some to use or interpret as N grows.

Periodic repetition of Patterson functions

The convolution described by Equation 13-98 actually is operated over the whole
crystal and not over just one unit cell. This fact has a simple consequence. Consider
a lattice with only a single atom at each unit cell vertex. If one particular atom is used
to superimpose an image of the whole crystal, the result is to place an atom at every
vertex of every unit cell. Choosing any other atom results in exactly the same image.

The same argument applies in a molecular crystal. Choose one atom in a par-
ticular cell to lay down an image. Choose the corresponding atom in a different unit
cell to lay down an image. The resulting images are coincident, except that the crystal
is displaced in space by an integral number of unit cells. Thus, like the electron density,
the Patterson function repeats periodically throughout the crystal. All the information
of interest can be obtained by concentrating on a single unit cell. With actual data,
the intensity I(S) is not a continuous function, but is sampled only at the reciprocal
'!attioe points. Thus, by analogy with Equation 13-39, the integral in Equation 13-95
1s replaced by a sum:

o0 © o

P(x, ¥, z) = Z z Z [F(h, k’ I}lze—ZNith +ky+1z) (13_99]

h=—w k=-w l=-m
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Correspondence of peaks in Patterson function
and vectors between atoms

An alternative description of the Patterson function helps give a fe_elling for the
structural information it contains. Note first that, if we change the origins used for
the unit cells, the resulting Patterson function remains unaltered. That function still
is constructed by placing each atom in turn at the origin of a cell. Hence, all of the
peaks in the Patterson function must represent internal structural aspects of the
unit cell. . .

Suppose the unit cell has three atoms, located atry, r,, _and r3. When an image is
laid down by shifting the atom at r; to the origin, the peaks in the image are plaoec_l at
r, —ry, atr, —ry, and at ry — r;. Therefore, these peaks in the Pazterson- function
are simply the vectors from each atom in the structure to atom r;. When r, is used as
the origin, we get peaks for vectors from all atoms to r,, and so on. So the Patlerso_n
function is simply the set of all vectors between pairs of atoms in tl}e structure. I't is
clear why this set does not depend on the choice of an origin. Using this physical
description, the Patterson function can be rewritten as

P= Z Z pip(r; — 1y) (13-100)
ik

where each index j and k is summed over all atoms in the unit cell with electron
density p. . ‘

The Patterson map contains more than enough information to detern_nn_e the
structure. The problem is that there is no efficient or easy strategy to use this mfor-
mation. Unfortunately, the peaks in the Patterson function are not labeled. There is
no simple way of deciding which pair of atoms a given vector in the map represents.
One must find a way to deconvolute the Patterson function to extract the strucj‘ture.
If just a few atoms are involved, this can easily be done by br}l?e force. Pflternatwe]y,
if the positions of a few atoms are already known, superposition techniques can be
used to deconvolute the Patterson function (see Blundell and Johnson, 1976; Stout

and Jensen, 1968).

Using Patterson maps to locate heavy atoms in small molecules

For complex molecules, the difficulty in interpreting the Patterson map is a direct
consequence of the large number of interatom vectors. Suppose, ‘however: that the
structure contains two or more heavy atoms per unit cell. The atomic scattering factor
is proportional to the number z of electrons (Eqn. 13-23). Thus observed inten-

sities, and the resulting Patterson peaks, from atoms i and j are proportional to z;z;

(corresponding to the p;p; terms in Eqn. 13-100). This means that vectors between

)




paifs of heavy atoms are the most dominant feature of a Patterson map. With a
lumte_d number of heavy atoms, it usually is possible to find out enough about their
locations to proceed with further refinement and structural analysis.

Most space groups contain molecules related by symmetry operations within
the unit cell. If each molecule has a heavy atom, the Patterson vector between two
symmetry-related atoms will fall in an easily identifiable region of the Patterson map.
Consider the example shown in Figure 13-31. This is a monoclinic crystal in space

a I—x—F-}->
b% \&r\ _‘(\ o
\
¢ \
(a) (b}
Figure 13-31

Locating heavy atoms. (a) A unit cell of a crystal in space group P2,.
There are two molecules per unit cell, with each molecule containing
one heavy atom. (b) Patterson function calculated for the sample
shown in part a. Only the heavy atom-heavy atom vectors are shown.
The Harker section is colored.

group P2, with two molecules per unit cell. There is a twofold screw axis parallel to
direction b. If there is a heavy atom at position xa + y’b + z'c, then the other heavy
atom must be located at —x'a + (y' + 1/2)b — z’c. The heavy atom-heavy atom
vector must be located at the position 2x'a + (1/2)b + 2z'¢ in the Patterson map.
Thus x’ and 2’ can be determined by looking for a peak in the plane of the Patterson
map at (1/2)b.

This procedure still leaves y' undetermined. However, for the P2, space group,
ll}l& problem is not serious. There is no unique origin along the b axis, and therefore
Y’ can be chosen to have any arbitrary value.

Planeslor lines where symmetry-related Patterson vectors appear are called
_Harker sections. If one or more Patterson vectors can be assigned by examining these,
it sometimes is possible to use superposition methods to find others. Each Harker
section will contain not just the heavy atom-heavy atom vectors, but also all the other
vectors related by the same symmetry operation. It will not contain any light atom-
he:fwy gtom vectors except for coincidences. The contrast afforded by the heavy-atom
pair will pc z; versus z; for each light-atom pair. This raises the question of how heavy
an atom is needed. A general rule of thumb is that z7 2 ¥, z7, where the sum is taken
over all light atoms. For a typical light atom, z; is 7. Thus a single heavy atom such as
mercury with z, = 80 could be found in a structure as large as 130 light atoms. It could
not be found in a Patterson map of a typical protein with 1,000 to 10,000 atoms.

—
13-5 DETERMINING THE STRUCTURE OF A MACROMOLECULE

Testing agreement between calculated structure and observed data

How can one tell if a calculated structure is in good agreement with the measured
x-ray diffraction? The most common measure of the agreement is the residual index R:

R = E"Fo| = lFoalc“J"{ZIFDI (13-101)

where |F,,;c| represents structure factors computed from the model of the total struc-
ture by Equation 13-70. Thus the factor R essentially measures how the observed
experimental data |Fo| compare with the data that would be expected for the calcu-
lated structure, |F /.

If the structure is very approximate, it may be simply a random arrangement of
atoms of the correct numbers, types, and symmetry within the unit cell. In this case,
it has been shown that R will be 0.59 for a space group without a center of symmetry,
and 0.83 if a center is present. A very rough rule suggests that R = 0.45 means that
the trial structure is not completely useless; R = 0.35 means definite convergence on
the right track; and R = 0.25 means that most atoms are correctly placed to within
the order of 0.1 A. Small organic structures often can be refined to R < 0.05. Protein
R values usually are large at early stages in the structure determination. This is
because solvent and thermal motion effects usually are not taken into account until
later stages.

Note that an R value of 0.25 actually implies a degree of disagreement between
observed and calculated amplitudes that would be considered intolerable in most
techniques. It probably is fair to say that the quantity of x-ray data makes up for the
lack of quality of individual data points.

13-5 DETERMINING THE STRUCTURE OF A MACROMOLECULE
The method of multiple isomorphous replacements

The methods described earlier for small molecules are not successful with proteins
or nucleic acids. These large molecules generally do not contain conveniently placed
heavy atoms. Even where such atoms do occur naturally, the complexity of the
structure demands different approaches. The steps in a typical macromolecular
crystallographic study are the following.

1. One attempts to prepare suitable crystals of the native macromolecule. (This
is the most difficult and time-consuming stage in protein or nucleic acid
crystallography. In many cases, macromolecular crystals form that appear
beautiful morphologically, but they have so much disorder that high-resolu-
tion diffraction data are unobtainable.) Using the crystals, one determines the
space group and unit-cell dimensions, and then collects a set of scattering
amplitude data.
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2. One attempts to prepare several different heavy-atom isomorphous derivatives.

These are crystals with the same unit cell, space group, and macromolecular
structure as the parent crystal, except that one or more heavy atoms have been
introduced at specific loci. For each derivative, one collects a new set of
scattering amplitude data.

3. One attempts to find the locations of the heavy atoms in the crystal. A popu-
lar way to do this is the difference isomorphous Patterson synthesis we shall
discuss.

4. One attempts to refine the positions assigned to heavy atoms, either by use
of difference Fourier refinement techniques somewhat like those described
for small molecules, or by more elaborate methods.

5. By comparing the structure factor data of the parent crystal with the corre-
sponding data of one or more heavy-atom isomorphous derivatives, it is
possible to estimate the phases of each F(h, k, I) of the parent crystal. In general,
the more heavy-atom derivatives available, the more accurate the phase
estimates will be,

6. By using the phases estimated for the parent crystal, it often is possible to
refine the positions of the heavy atoms further using least-square or difference
Fourier techniques. This procedure in turn leads to better estimates for the
phases of the parent crystal.

7. Using the estimated phases and observed amplitudes of each F(h,k,[), one
calculates an electron density map using Equation 13-93.

8. A model is built of the electron density map. Usually at this state, only low-
resolution data (typically 5.5 to 7 A) have been used, and so the map does not
show well-resolved structural details. Then steps 4 through 8 are repeated
with data at higher resolution (2.5 to 3 A) until it is possible to construct a
molecular model.

9. Sometimes, one attempts to refine the structure. For example, one can calculate
phases from the atom positions in the molecular model by Equation 13-70
and use them instead of the phases determined in stages 5 and 6. The refinement
can involve Fourier or least-squares techniques, and can treat just the x-ray
data or can also include information about known energetics of protein
conformation.

Most of these stages are discussed in more detail in the following subsections.

Preparation and properties of macromolecular crystals

For crystallographic studies on a macromolecule of 50,000 mol wt, one needs crystals
about 0.3 mm in each dimension. To form these, one generally must prepare a super-
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saturated solution of the macromolecule and control the rate at which crystal nuclea-
tion and growth occur. Solubility can be altered by varying the pH, salt concentration,
types of salts present, and temperature of the solution—or by adding organic solvents.

One convenient way to control the rate of change of many of these parameters
is dialysis. Another is vapor diffusion. Here a droplet of macromolecular solution is
allowed to equilibrate through the vapor phase with a reservoir of solution. If, for
example, the reservoir has a higher salt concentration than the sample, the result
will be a gradual removal of solvent from the sample. Further details about these and
other techniques are given by T. L. Blundell and L. N. Johnson (1976).

Protein and nucleic acid crystals differ from small-molecule crystals in one
important aspect. They contain a considerably quantity (typically 50%) of liquid
solvent. Cases are known in which protein or nucleic acid crystals are more than
two-thirds solvent by weight. A typical crystal has much less solvent than this, but it
usually still resembles a two-phase system. A solid phase is composed of individual
macromolecules that usually are touching each other in only a few places. In between
is a series of open channels filled with solvent. Figure 13-32 shows an example.

The larger amount of solvent in crystals offers several advantages. It permits
small molecules to be diffused into the crystals. As we shall see, this facilitates the
incorporation of heavy atoms. It allows substrates or ligands to be introduced into a
preformed crystal and thus makes possible the study of the structure of macromole-
cule-ligand complexes. Indeed, some enzymes actually are quite active in the crystal-
line state. Finally, the large amount of solvent present makes it likely that the structure
determined for the crystalline molecule will closely resemble its structure when free
in solution.

One disadvantage arises from the large solvent content. Some of the solvent
quite close to the macromolecule is well-ordered. It contributes to the observed x-ray
scattering, and it must be taken into account in solving the structure. On the other
hand, once this is accomplished, it provides important clues to how macromolecules
interact with solvent.

Preparation of isomorphous heavy-atom derivatives

The multiple isomorphous replacement technique has been used to solve almost all
protein and nucleic acid structures known to date. It requires a set of three or more
crystals of the sample: the parent crystal, and at least two other crystals identical in
space group and molecular structure except for the presence of one or more heavy
atoms. In general, the heavy atoms either can replace atoms normally present in the
structure, or can be additions to the structure. We shall restrict our attention to the
latter case because it is somewhat easier to treat mathematically, but ultimately both
cases are fairly equivalent.

One approach to preparing an isomorphous derivative would be to attach
covalently a heavy metal to the macromolecule in solution, and then to subject it to
crystallization conditions. In practice, this approach is not necessarily effective. The
factors that promote formation of good crystals are so fickle that frequently even a
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small chemical alteration of the structure will either block crystallization or lead to a
crystal that no longer is isomorphous. Therefore, almost always one starts with a
preformed crystal of nonmodified macromolecule. Reagents containing heavy atoms
then are allowed to diffuse in the crystal. This technique provides fair assurance that
crystal packing and molecular structure remain largely unaltered. Table 13-2 lists
some of the types of reagents used, and Table 13-3 summarizes the results.

Table 13-2
Representative heavy-atom labeling reagents

Reagent Binding sites
AgNO, SH groups
Xe Noncovalent
Kl + 1 Tyrosines
PCMB: CI-—Hg—@—COO“ SH groups
Na,PtCl, Methionines, histidines, and others
CI—Hg—@-—SOZF Active-site serines
Hg(Ac), SH groups, histidines
UO,(NO,), or UO,(Ac), Carboxyls
Mersalyl: HO—Hg—CH 2(I:H—CH,—NH—CCJ Histidines, SH groups
CH,0
i
NaOOC—CH,

Source: After D, Eisenberg, in The Enzymes, 3d ed., vol. 1, ed. P. D. Boyer (New York: Academic
Press, 1970).

Figure 13-32

A section through a crystal of insulin. Each wedge-shaped unit is one monomer. These monomers
associate into dimers, which in turn aggregate into hexamers. The hexamers pack into the crystal. Note
the large solvent channels and the relatively few direct contacts between hexamers. All atoms except
hydrogen are shown. [From T. L. Blundell, D. C. Hodgkin, G. G. Dodson, and D. A. Mercola, Adv.
Protein Chem. 26:279 (1972).]




Table 13-3

Representative protein crystal structures determined with heavy-atom isomorphous derivatives

Number
>cule Number of Space Molecules per of heavy .
Protein M»:Ijgll:t N S‘;llll‘:lil‘;lrle:‘ gﬁn‘;; asymmetric unit atoms used Resolution
1.4 A
Metmyoglobin, sperm whale 17.800 P2, 11 : e
Oxyhemoglobin, horse 64,500 -4 C2 1/2 ! ;x .\
Ferricytochrome ¢, 12,400 1 P4, 1 2 28,
horse heart
5 20A
Carboxypeptidase A, beefl 34,600 1 P2, .l’ - o
a-Chymotrypsin, beef 25,000 1 P2, 2 i ;.8 A
Papain 23,000 1 P2,2,2, 1 : :
3 28/
Nuclease, S. aureus 16,800 1 P4, 14 ; .
9] 2.0 4
Lactate dehydrogenase, 135,000 4 1422 1
dogfish i
20A
Lysozyme, hen egg 14.600 1 P4,2,2 1 8 0 A

Source: After D. Eisenberg, in The Enzymes, 3d ed., vol. |, ed. P. D. Boyer (New York: Academic Press, 1970).

Once an isomorphous derivative is available, diffraction data are collected from
it and compared with those from the unmodified crystal. The reciprocal lattice
dimensions and symmetry should be unaltered, but the observed intensities of some
of the reflections can change markedly (Fig. 13-33). These differences can make it
possible to estimate the phases of the observed structure factors. H owever, it first is
necessary to locate the heavy atoms: the next few subsections describe this process.

Structure factors for heavy-atom isomorphous derivatives

The electron density distribution of the heavy-atom isomorphous derivative is just
the sum of the electron densities of the parent crystal and of the heavy-atom sub-
stitutions. Thus the structure factor Fpy of the heavy-atom isomorphous derivative

must be related to the structure factor F p of the parent crystal and the structure factor
Fy of the heavy atoms along simply by

Feu(h,k, 1) = Fy(h, k, 1) + Fy(h,k, l) (13-102)

because the additional scattering in the derivative is due simply to the presence of the
heavy atoms.

Note, however, that all three quantities in Equation 13-102 are complex numbers.
The significance of this equation can best be seen by expressing each number as a
vector in the complex plane as described in Figure 13-4. To add two complex numbers,

Figure 13-33

Isomorphous replacement. Two precession photographs of triclinic lysozyme crystals are superimposed,
slightly out of horizontal register. The left spot of each pair is from a native lysozyme crystal: the right
spot is from a crystal after diffusion of HgBr,. This is a photograph of the (0, k, ) plane of the reciprocal
lattice. Note the differences in intensities. [ From R. Dickerson, in The Proteins, 2d ed., vol. 2, ed. H.
Neurath (New York: Academic Press, 1964).]

one simply adds the real and imaginary components separately. Therefore, repre-
sented as vectors, two complex numbers combine just as vectors do, component by
component. The result is still a vector in the complex plane, as illustrated in Figure
13-34. One such vector equation holds for each value h, k, | of the structure factors.

If any two of the vectors shown in F igure 13-34 are known, the third can be
calculated unambiguously. The principle obstacle in macromolecular crystallography

is that only the lengths of two of the vectors, |Fp| and |Fpyl, are directly measureable
experimentally.

Location of heavy atoms by a difference Patterson map

An ordinary Patterson map (Eqn. 13-95) cannot be used to locate the heavy atoms
in a macromolecular crystal. We showed earlier that the contrast between heavy
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Structure factors plotted in the complex plane, Fp
for a parent-crystal diffraction spot, a heavy- 5 Real

atom isomorphous addition, and the expected
derivative diffraction spot.

atom-heavy atom vectors and other vectors will be insufficient. However, when
both an isomorphous heavy-atom derivative and a parent crystal are available, it is
possible to calculate a difference isomorphous Patterson map between them, using
the measured structure factor amplitudes |Fey(h, k, I)| and |Fy(h, k, 1)|.

A true Patterson map of just heavy-atom vectors would be given by Equation
13-95 as

Pa=(/¥) ¥ 3 3 |FuhkDPe e (3403
h

=—wk=-wil==—-m

we cannot calculate this map directly because |Fy(h, k, [)| is not experimentally mea-
surable. However, it turns out that |Fy| often can be approximated fairly well by

|Fyl = ||Fpul — |Fe (13-104)

Thus we can calculate an estimate of |Fy| from the measured amplitudes of the crystal
and a heavy-atom isomorphous derivative. Then an isomorphous difference Patterson
function AP is calculated:

oo -] oo
AP=(1/V) ¥ ¥ 3 |Foul— |Fpl|?e2nithx+kr+iz) (13-105)

h=-w k==-w l=-x

In an ideal case, it can be shown that this function will display the heavy atom-heavy
atom vector at one-half the expected intensity plus some contaminating noise due to
light atom-light atom vectors (see Blundell and Johnson, 1976).

The accuracy and usefulness of Equation 13-105 depend on the validity of
Equation 13-104. This in turn depends on relative phases and amplitudes of the three
structure factors involved. We discuss a particular simplified case in the following
subsection. Here, note the following observation. When the two vectors F py and Fp
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in Equation 13-102 are parallel, then the phases cancel, and Equation 13-104 is exact.
As long as the three vectors are near-parallel, Equation 13-104 should be an excellent
approximation. The largest values of ||Fpy| — IFP|| will tend to be those that arise
when Fpyy and Fp are parallel. Thus, conveniently, the largest terms that enter Equa-
tion 13-104 will be those most likely to contain good estimates of |Fy|. By selectively
including only the large terms in Equation 13-105, we often can produce an improved
heavy-atom difference Patterson map. From the heavy atom-heavy atom vectors, we
can attempt to find the actual heavy-atom locations by the methods described in
Box 13-6.

If Equation 13-104 is to be useful, the presence of the heavy atom in the iso-
morphous derivative must cause a change in scattering intensity sufficient to yield
measurable differences between |Fpy| and |Fp|. For example, a single mercury atom
with 80 electrons will produce an average change of 30, between |Fp| and |Fey| in
a 40,000 d protein. Thus, it is more than sufficient for the calculation of a difference
Patterson map.

Using centrosymmetric projections to locate heavy atoms

A crystal of biological material cannot contain a center of symmetry because the
molecules contain asymmetric carbon atoms. However, it frequently is possible to
calculate a centrosymmetric projection (Box 13-5). For example, if a structure has a
twofold screw or rotation axis, projection onto a plane perpendicular to this axis
will result in a center of symmetry. In this two-dimensional projection, the phases of
the structure factor must be either 0 or =, so that all structure factors are either parallel
or antiparallel vectors. This greatly simplifies the use of Equation 13-102.

In a centrosymmetric projection, the structure factors for the parent crystal,
heavy-atom isomorphous derivatives, and heavy atoms must be related by one of
the arrangements shown in Figure 13-35. So long as Fpy and Fp point in the same
direction, it is apparent that |Fy| = ||[Fpy| — |F||, which allows |Fy| to be calculated
directly from experimental data. Only in those cases where |Fy| is much larger than
|Fp| does Equation 13-104 become incorrect. These cases, which are called crossovers,
are very rare and do not seriously compromise most heavy-atom isomorphous
difference Patterson projections.

Figure 13-36 shows an example of three difference Patterson projections ob-
tained for heavy-atom derivatives of cytochrome ¢. These were obtained by using
Equation 13-105. The two relatively simple maps (Fig. 13-36a,b) result from a Pt
and a Hg derivative. The more complex map (Fig. 13-36¢) was obtained from a crystal
into which both metals had been substituted. This map shows Hg—Pt vectors as
well as Hg-Hg and Pt-Pt vectors. From these maps, estimates of both the Pt and Hg
coordinates can be obtained (see Box 13-6).

In some cases, the heavy-atom positions found from a difference Patterson map
are used directly to determine preliminary protein phases, as shown in the next sub-
section. In most cases, they must be refined first. (Refinement techniques are discussed
in subsequent subsections.)
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Figure 13-35

Structure factors in a centrosymmetric projection. Shown as vectors are all of the possible
arrangements of parent (P), heavy atom alone (H), and isomorphous derivative (PH) structure
factors. A vector pointing from left to right is assigned a positive sign (zero phase angle).

Using heavy-atom positions to estimate phases of the structure factor

From the coordinates and identity of each known heavy atom, we can compute both
the phase and amplitude of its contribution to the structure factor, using Equation
13-70. This computation yields Fy. The structure factor of a heavy-atom isomorphous
derivative, Fpy, must be related to that of the parent crystal, Fp, and to Fy; simply
by Equation 13-102.

Once the heavy atom is found, Fy is known completely. However, only the
amplitudes |Fpy| and |Fp| can be measured. Using all three quantities, it is possible
to restrict the phase of Fp to only two possibilities (Fig. 13-37a). The possible values
of Fy lie on a circle of radius |Fy| centered at the origin. Possible values for Fpy; will
lie on a circle of radius |Fpy| but, to satisfy Equation 13-102, the center of this circle
must be displaced from the origin by the known vector F,;. Then the two circles inter-
Sect at two points. At each intersection, corresponding to phases of ¢, and ¢,, the
conditions prescribed by Equation 13-102 are met.

The most common resolution of the remaining uncertainty in phase is to use a
second isomorphous heavy-atom derivative. One estimates the position of the heavy

Figure 13-36

Difference Patterson maps, calculated for projections of crystals of cytochrome ¢ into the x—y plane.
The origin is at the upper left of each map. All maps are drawn to the same scale; contour intervals are
marked at the lower right-hand corners; the height of the peak at the origin is indicated at the upper
left-hand corners. The zero contours are dashed. The x and y coordinates are indicated; they run only
from the origin to one-half the unit-cell dimensions. Single-weight Patterson peaks are shown by X,
double-weight Patterson peaks by %. (a) A platinum derivative. (b) A mercury derivative. (¢) A
derivative containing both heavy metals: platinum-mercury cross-vectors are shown by #. [From
R. E. Dickerson et al., J. Mol. Biol. 29:77 (1967).]
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atoms, computes Fy, then uses the analog of Equation 13-102: Fpy. = Fp + Fy.. The
process of selecting a phase for Fp is repeated again by comparing |Fow| and |Fp
using the known Fy. (Fig. 13-37b). In an ideal case, one of the two circle intersections
will correspond either to ¢, or to ¢,, and the other will be some different value ¢..
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Thus, because Fp can have only one phase, it must uniquely be the angle derived in
common from the two isomorphous derivatives.

In real life, the experimental data are not perfect; nor can the heavy atoms be

located precisely. Therefore, the points of intersection of circles drawn from two

Box 13-6 AN EXAMPLE OF THE INTERPRETATION
OF A DIFFERENCE PATTERSON PROJECTION

The difference Patterson map shown in Figure 13-36a was calculated for a projection into a
plane perpendicular to the ¢ axis of a tetragonal crystal of cytochrome ¢ (a = b = 5845 A;
c=4234 A):

AP(x,y) = (1/4) i )E [|Fexlh, k, 0)] — |Folh, k, 0)|]2¢™ 2xithx +4»
"

=—w k=—wm

where |Fpy and |Fy| are the square roots of the measured intensities of the heavy-atom iso-
morphous Pt derivative and the parent crystal, respectively. Thus, AP(x, y) can be calculated
from data collected for a single layer of the reciprocal lattice.

The space group of these crystals is P4;. The asymmetric unit is one molecule of cyto-
chrome c. There are four molecules per unit cell, and these are related by a fourfold screw
axis. The projection of the structure perpendicular to the ¢ axis places all four molecules in
the a-b plane, where they are now related by a fourfold rotation axis. Because of this axis,
the two-dimensional structure also has a center of symmetry.

We can use the symmetry to predict what the difference Patterson map should look like
for a single heavy atom located at identical positions on each of the four molecules. For
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convenience, we choose the origin of the coordinate system right at the fourfold axis. Then,
if the position of one heavy atom is xa + yb, the others must be located as shown in part a
of the figure. The corresponding heavy atom-heavy atom vectors will be

rp=x+yy—x rp=(-x-yx-y)
ra = (2x,2y) ra; = (—2x, —2y)
Fa=xX—yx+Y) = -—x-x-)
ra;3=(x—yx+y rp=((—x-x-y)
rys =(—2y,2x) T4z = (2y, —2x)
r=(—x—ypx-y ri3=x+yy—x

plus four heavy-atom self-vectors, which will lie at the origin.

The resulting difference Patterson map will be that shown in part b of the figure (for the
relative values of x and y shown in part a of the figure), where the number adjacent to each
peak gives its relative weight. Notice that the map has the same fourfold rotational symmetry
as the structure that generated it. Concentrate just on the quadrant at lower right, and com-
pare the result with Figure 13-36a. Notice the doubly-weighted peak near the vertical axis.
This peak must correspond to the nearly vertical vector that forms two sides of the square of
heavy atoms in the structure. The singly-weighted peak (near the lower right of Fig. 13-36a)
is produced from a diagonal of the square. The hint of a peak near the horizontal axis arises
from the nearby doubly-weighted vector in the upper right-hand quadrant of the map. Thus,
a square structure of heavy atoms is fully consistent with the observed difference Patterson
map. Once the vectors have been assigned, their locations yield the values of x and y, and
thus the actual heavy-atom positions.

It would be a useful exercise for the reader to interpret the Hg difference map in Figure
13-36b and then, using the results of both maps, to attempt to explain the results shown in
Figure 13-36¢ for the Hg, Pt double derivative.
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Figure 13-37

Phase determination by isomorphous replacement. Structure factors are plotted in the complex plane, as in
Figure 13-34. (a) A single heavy-atom derivative. The circle with radius F, p represents the parent
crystal, with measured intensity and unknown phase. The circle with radius F ey Tepresents the
isomorphous heavy-atom-containing crystal, with measured intensity and unknown phase. The vector
Fy is calculated from the heavy-atom position that had been determined from a difference Patterson
synthesis. Because Fy is calculated, both its phase and its amplitude are known. Equation 13-102 will
be satisfied by Fyp, Fy, and Fpyy when F, lies at the origin, but Fpy is located at the end of F,; as shown.
Therefore, the two circles are displaced, and they intersect at two positions: A and B. These positions
define two possible values for the phase of Fp: ¢, and ¢,. (b) Inclusion of a second heavy-atom
derivative. Its scattering amplitude yields a circle (colored ) of radius Fpy. centered at the end of the
vector Fy,, which is calculated from the known position of the heavy atom. This circle also intersects
Fp circle at two places: B and C. Because one intersection (B) is the same as an intersection found with
the first heavy atom, the only phase choice for F p consistent with both derivatives is ¢,. [After D.
Eisenberg, in The Enzymes, 3rd ed., vol. 1, ed. P. D. Boyer (New York: Academic Press, 1970), p. 1.]

different isomorphous derivatives may not coincide exactly. Then, to resolve ambi-
guities, it usually is desirable to have additional derivatives to strengthen the accuracy
of phase assignment and to guard against apparent agreement that is accidental.
Naturally, the more derivatives available, the more accurately the phase angles are
likely to be chosen. Statistical procedures for choosing the best phase estimates from
multiple isomorphous derivatives are described by Blundell and Johnson (1976).
Once estimates of the phases of Fy are available, one can use Equation 13-93 to
calculate an electron density map of the macromolecule by inserting the measured
amplitudes |Fy(h, k, I)| and calculated phases ®ua- However, in most cases, this map

will not be very accurate unless the estimates of the heavy-atom positions are first
refined.
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Phase estimates with a center of symmetry

Suppose one can prepare only a single isomprphous derivative. The prognosis _is
not completely hopeless. In many cases, a projection of the crys:.ta! onto a plar_le will
have a center of symmetry. The advantages of centrosymmetric projections in cal-
culating the amplitude of Fy, were described earlier. Here we show how such projec-
tions also assist the calculation of the phase of Fp. Note that only a single layer of
reciprocal space is needed to compute the projections, so the structure problem now
is purely two-dimensional. .

Whenever a center of symmetry exists, the resulting phases can be only 0 or ,
and so the only uncertainty remaining for Fp is the sig_n. The measured c_han_ge in
amplitude of one diffraction spot due to a heavy-atom isomorphous substitution is

All the possible arrangements of Fpy, Fp, and Fy are shown in Figure 13-35. When
the sign of AF (measured) is compared with the sign 'of Fy (calculated from the
known heavy-atom positions), an interesting generalization emerges. Exccpt for two
of the rare crossover cases, whenever the sign of AF is the same as the sign otf Fy,
the sign of Fp must be positive (¢ = 0). Whenever AF and Fy; have opposite signs,
is negative (¢ = m).

& ]sThlgls, eve(n(ﬁwith)only a single isomorphous derivative, nearly all of the phases
of a centrosymmetric projection of a structure can be computed correct_ly‘ Then th_e
electron density of the projection, p(x, y) can be calculated by a Fourier synthesis
exactly analogous to Equation 13-93. X-ray crystalloggaphers frquenlly use pro-
jections because they can be calculated at earlier stages in the analysis, and be_cause
less computer time is required to do two-dimensional sums than to_do three-dimen-
sional ones. However, bear in mind that a projection does not uniquely define the
three-dimensional structure that produced it.

Narrowing heavy-atom positions with parent-crystal phase estimates

If we knew the phases of each of the diffraction spots of a parent crysta_l and of alf
heavy-atom isomorphous derivative, we could ca]cula.te‘an electron c!cnsny map 0
each by using Equation 13-39. However, sometimes it is useful to clls_pla)r just thef
locations of the heavy atoms. This can be done using a difference Fourier synthesis:

Ap(x, y,2) = pern — Pp

=(1/V]§ i f

h==w k==-w Il=-m

X [lFPH{h k, l)|ei¢vpih.k.!] _ IFP(ha k, I).eiép(h.k.n]e— 2mifhx +ky +1z) {13_107)
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Here each structure factor has been explicitly shown as a phase plus an amplitude.
The amplitudes, |Fpy| and |Fp|, are measured. The phases of the parent crystal, ¢,
are estimated as shown in the preceding sections and are used for both amplitudes.

In principle, we could in similar fashion estimate the phases of the derivative,
Ppn, and use these in Equation 13-107; however, this would lead to problems.
Fourier syntheses are dominated by phases, not by amplitudes (Fig. 13-28). Calcu-
lated phases of the derivative would contain a heavily weighted contribution from
the heavy atoms. The resulting Fourier synthesis would simply give back the same
heavy-atom positions one started with, and nothing would have been accomplished.
Even the estimates of the parent-crystal phases, ¢p, are heavily contaminated with
the heavy-atom phases.

In practice, when several heavy-atom derivatives are available, it is best to use
parent phases estimated from one or more derivatives to compute the difference
Fourier to find other derivatives; these are called cross-phase difference Fouriers,
Figure 13-38 shows an example for the same cytochrome ¢ derivatives discussed
earlier. The Pt and Hg atoms show up clearly above a weak background. However,
their apparent positions are not yet the true positions in the crystal.

A least-squares refinement of a structural model

There are adjustable parameters used in the calculation of an x-ray scattering pattern.
In a least-squares refinement, one attempts to find the values for these parameters
that minimize the difference between observed structure factor amplitudes and those
calculated from any particular model or technique. We first illustrate this in the
general case, and then show the specific application to isomorphous heavy atoms.

The experimental data are measured structure factor amplitudes |Fy|. The
calculated |F| values usually come from Equation 13-70. They are a function of all
the structural parameters of the tentative model. These are the x, y, and z coordinates
of each atom, and the atomic number of each atom.

In addition, for high-resolution struct ures, there is another effect we must Worry
about. Atoms are not fixed in space, even in a crystal. They are vibrating, and the
amplitudes will vary for each atom. The X-ray scattering will be an average of the
position of each atom. It can be shown that, for isotropic thermal motion, the atomic
scattering factor will have the form f = f,e #15/* where S is the scattering vector,
and B is related to the mean square amplitude of the atomic vibration, {u), by
B = 872 u)2. This relation introduces another parameter. The thermal factor f can
be guessed from knowledge of the atom type, but in the most rigorous structure
determination it too will be a variable. Furthermore, real vibrations are anisotropic
and thus must be represented by a thermal ellipsoid defined by six parameters. So a
total of anywhere from three to nine parameters, P;, are needed for each atom: a
very large number (n) of parameters are needed for the entire asymmetric unit.

Figure 13-38 s
Cross-phase difference Fourier maps, calculated for the same crystals‘ol"cytochrome ¢ as.ll]:o?eh i u;;; e
in Figure 13-36. All three maps are on the same scale; contours are indicated at Iow{:;’ rlg"t‘. EIEh
major peaks are indicated at lower left. The origin is at upper Iel'!; only cnc-halfz? un|t‘cc ;n ea o
direction is shown. (a) Difference map calculated with Pt ampl |tudf=s and protein pha_scs‘ . cl;:rnu
from Hg derivative. A true Pt site is indicated by X, a quesli(?nablc site by +, and a false “.“" Tvr(_’:.The
(b) Difference map calculated with Hg amplitudes and pr_oteln Phascs calculatcd_for Pt derivativ e.\;eral
mercury site is at lower left. (c) Map for double derivative, using .average protein phases from se

sets of metal derivatives. [From R. E. Dickerson et al,, J. Mol. Biol. 29:77 (1967).]
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Ip a least-squares refinement, one wants to adjust these parameters to minimize
the cj_lﬂ'erence between observed and calculated structure factor amplitudes. In
practice, the actual quantity minimized is

oo o o0
D= % ¥ Y WullFolhkl)| - |[KcF (b, k, 1)[]? (13-108)
h==w k=—w I=—au
where_ Wik is a weighting factor measuring one’s estimate of the reliability of a given
experimental or calculated point, and  is a scaling parameter. For each parameter
P;, one establishes the condition 0D/0P; = 0. This leads to n equations in the n
unknown parameters. Solving these equations simultaneously produces the least-
squares fit. -
_For an example of how such a calculation is set up in matrix form, see Section 8-1
Thc_e important thing is that an n x n matrix must be inverted. For linear equations.
a mpgle matrix inversion suffices. However, the equations that result from diﬂ'eren-‘
tiating Equation 13-108 are not linear in the unknown parameters. Therefore, an
nerativeft;chnique must be used. This involves inverting an n x n matrix, tal;ing
the rpsgltmg parameters, reinserting them into the equations, and repeating the
matrix-inversion process. This routine is performed over and over again until the
parameters converge on values that minimize D.

Least-squares refinement of heavy-atom positions

In the isomorphous replacement technique, |Fp| and |Fpy| have been measured, F
has been calculated from an estimate of the heavy-atom positions, and ¢, has I;ee:
calculated as described earlier. If all these results were correct, then F P; Fp, and
F n Would form a triangle as shown in F igure 13-34. However, because of e;‘ro]:-:s the
triangle usually is not closed. ,

We can calculate the structure factor expected for the heavy-atom derivatives as
Frncate) = [Fyle™™ + |Fplei (13-109)

E: improve the lqcation of ‘the heavy atoms, one attempts to minimize the difference
tween th_e amplitude of this calculated structure factor and the observed amplitudes.
The equation used, by analogy to Equation 13-108, is

Y Z Z_ 2 Wasal | Feu(h, k, |- | Feneate(h, k, n[1? (13-110)

Such an approach is not necessaril
: y the best one for every crystal, and alternative
approaches are discussed by Blundell and Johnson (1976).
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Once the heavy-atom positions have been refined, they are used to calculate
a final set of phases for the parent crystal. Then, at last, the stage is set for a Fourier
synthesis of the entire structure using Equation 13-93,

Anomalous dispersion of heavy atoms

One additional technique for exploiting the presence of heavy atoms has seen in-
creasing use in protein and nucleic acid crystallography. This technique is anomalous
dispersion. It occurs when the frequency of the x rays used falls near an absorption
frequency of an atom. In practice, the technique is most useful for atoms heavier
than sulfur.

Until now we have treated the atomic scattering factor f'as a real number. In
actuality, f is a complex number because the phase shift upon scattering is not neces-
sarily an integral or half-integral number of oscillations:

J(S) = folS) + if i(S) (13-111)

The term f7 is significant only when the x-ray frequency is close to an atomic absorp-
tion frequency. It is related to the extinction coefficient of that particular atomic
absorption.

When f(S) was considered to be real, one of the implications was Friedel’s law
From Equation 13-18b, for parent-crystal atoms unaffected by anomalous dispersion,
we can write

|Folh,k, )| = [Fe(—h, —k, —I)| (13-112)

However, for crystals containing heavy atoms, this relationship no longer holds.
The breakdown of Friedel’s law can be used in a number of different ways (see Blundell
and Johnson, 1976). For example, suppose two different x-ray frequencies are used,
one allowing anomalous dispersion and one not. The difference in scattered intensities
should represent the anomalous scattering, and this is restricted to the heavy atom.
Then an analog of the isomorphous methods described above can allow calculation

of phases.

Interpretation of the electron density map

Here we describe some typical stages in the solution of the crystal structure of a
protein (see Fig. 13-39), Several heavy-atom derivatives have been prepared and
located. Isomorphous replacement has been used to estimate phases for all Fp(h, k, 1),
and an electron density map has been calculated using these phases and all data
to a certain resolution. The resolution chosen will be a function of the order of the
actual crystal and of how isomorphous the derivatives are. Reliable phases are needed



Figure 13-39

:‘-"rofe:'fr.efecrran density maps as a function of resolution. The maps are calculated from measured
mlen_smcs anq esl!matcd phases. The protein is a diisopropyl fluorophosphate derivative of bovine
tl;ypsm, The view is down 1llm J axis of the active site. A ball-and-stick model of the final best estimate
:: ::;struclure‘ |.5; repeated in each map; note l_hc phosphate at lower right and the active-site histidine
er center; above these two features is a disulfide bond. (a) A map at 6.0 A resolution, contoured

from 0.05e A~ % in steps of 0.05 ¢ A~*  (b) A map at 4.5 A resolution, contoured from 0.10 e A~ in
steps of 0.10 e A~>. (c) A map at 3.0 A resolution, contoured from 0.35 ¢ A~ in steps of 0.30 ¢ A™3.
(d) A map at 1.5 A resolution, contoured from 0.50 ¢ A~ in steps of 0.50 ¢ A=, All maps are

shown as stereo pairs. [ Courtesy of John L. Chambers. For further details, see his unpublished
Ph.D. thesis, Calif. Institute of Technology, 1977.]
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to justify the vastly increasing effort of usin i i
_ g more and mo
attempt to obtain higher resolution. R
If the result is around a 6 A map, the macromole
; ! ; cule usually appears as a blob
of elcl:lctr_on_ densny b;1 Figure 13-39a shows a typical example. At this resolution, it
usually is impossible to recognize the polymer chain b it
ot poly ain backbone for a protein or

Even at 6 A resolution, however, considerable us i i

: ition, : eful information emerges. One
can learn a fairly detailed shape, and can spot crevices or subunits: o helgices will
appear as rods. If heavy-ato_m-l.abeled ligands or substrates are available, difference
Fouriers can allow deterpllnatlon of the locations of their binding sites. If these
resu:ts seem rel:asonable, it usually is worthwhile to attempt to proceed to higher
resolution analysis, providing that the quality of the data on available i ‘
derivatives justifies this. Heble Bomarphous

_ At3.0A resolutlon,_ it is possible to trace the path of the polymer chain backbone

EjFlg._l3-39c:}‘ In a protein, onl'y the large amino acid side chains show up as discrete

e_nsuy peaks. It w_ould_ be difficult to construct a meaningful molecular model at
this stage. In nucleic acids, double helices will show up readily.

At 25A resoll_ltlon, almost all protein side chains are visible. The carbonyl
group of each peptide shows up as a protrusion from the main chain, and so it is
possible to fix the orientation of each peptide plane. ,

If the amino acid sequence is known, one ¢ begt

_ ( | ; an begin to construct a model of
the_ protein. Varroqs techmq_ues exist for doing this. The simplest is a Richards box
Whl.(l}h uses a_half-m‘lvarecl mirror to superimpose a wire model of the structure onlc;
a pile of lucite sections where the electron density map is plotted. Coordinates for
?l:oms thep are reac! off the model. Newer methods use computer searches to trace
Ne most likely continuous paths of electron density and fit a peptide chain to these.

ote that bpth approaches’have the built-in assumption that the geometry of the
?:sp(:llds chain l(;:xce;ln for dihedral angles) is known. This is a far cry from high-

ution small-molecule x-ray crystallography, wh i
s i i graphy, where one determines bond lengths
a The l;:;lglnal fit qf the peptide chain to the electron density map at 2.5 to 3.0 A

aknc:; very precise. Many groups cannot be centered on the electron density
E: sth at prgsqmably represent them. (See Fig. 13-39c for a typical example.) How-
F :rl‘, e pr]eh{nmary model now can be used for one or more cycles of refinement.
diﬂe:xam% ¢, in real-space refinement, one adjusts the model to try to minimize the
s etr;:;e me;gfienAp(x, ¥ z) calculated from the x-ray data and p(x, y, z) calculated
it el. Alternatively, one can use Fourier refinement or least-squares
examAi hlgfher resolution, individual atoms begin to be seen (see Fig. 13-39d for an
i cﬁ :_ o ;j 1.5 A map). Here it is actually possible to identify many amino acid
o dms rectly from tl_le electron density map. In fact, crystal-structure work has
S :'d a nufnber of serious errors in predetermined amino acid sequences. The
e molreel i(}:{l‘:;un: pn; can ?ee, the more accurate a model one can build and, in turn
likely 1t 1s that a further improvement in the el i , ’

g o b o p e electron density map can result

13-5 DETERMINING THE STRUCTURE OF A MACROMOLECULE

Energetics of protein conformations in interpretation
of the electron density map

A question of serious concern among crystallographers is how much knowledge
about conformational analysis of proteins should be incorporated into the process
of solving crystal structures. As shown in Chapter 5, we know with fair likelihood
what ranges of dihedral angles are preferred by peptides. We know much about the
forces that govern the interactions of nonbonded residues. Given a trial structure
determined from a Fourier synthesis, this conformational knowledge could, by an
energy minimization, be used to compute a structure more consistent with the body
of acquired thermodynamic information.

M. Levitt and R. Diamond have shown that alternate cycles of Fourier and
conformational energy refinement can be synergistic and can lead to convergence
to a better structure. This is reasonable. The fact that a crystal forms implies that
it must be in a crystal-wide free energy minimum. Alternatively, one can use con-
formational energies, not to try to obtain a minimal energy structure, but just as a
guide on how to shift atoms slightly in the trial structure. A shift that simultaneously
improves the fit of that atom to the calculated electron density map and also lowers
the conformational energy is likely to be a step in the right direction.

Difference Fourier syntheses in studying
ligand—macromolecule interactions

Difference Fouriers are extremely useful for comparing two structures. For example,
the difference Fourier map of an isomorphous derivative and the parent should
contain just the electron density of the added heavy atoms, as discussed earlier.
Similarly, difference Fouriers have been used to locate substrate-binding or ligand-
binding sites on proteins. Here the idea is to measure the diffraction intensities of
the liganded protein. Then one calculates a difference Fourier using these measured
intensities and calculated phases of the unliganded protein. The result can be just
the electron density of the bound ligand, plus any difference in density due to changes
in structure induced by the ligand binding. Naturally, the technique will work only
so long as these differences are not too large.

The difference Fourier technique for locating a bound ligand works well because
the presence of the ligand changes the phase of most structure factors relatively little.

We can write (by analogy to Eqn. 13-102)
Fpo=Fp+ Fy (13-113)

where PL stands for the parent-ligand complex, and Fy is the structure factor of
the ligand. Figure 13-40 shows this vector equation graphically. Here, Fp is known,
and |Fpy| is known. As long as F. < Fp and F, < Fyp,, the possible values of Fpy
must lie within a small range of phase angles. Thus, as a first approximation, the

parent phase ¢p is a good estimate of ¢py.
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Figure 13-40

Effect on observed structure factors of an added ligand. The parent-crystal
structure factor Fp is presumed to be known. Then, so long as the ligand
structure factor |Fy | is small, the phase of Fy is a good approximation of
the phase of the ligand complex, Fp, .

A difference Fourier map thus can be calculated by analogy to Equation 13-107:

o o o
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(13-114)

This map will show peaks that correspond to the position of the bound ligand. It
also will show adjacent positive and negative regions of electron density that cor-
respond to the movement of an atoms induced by ligand binding. Figure 13-41 shows
this schematically in the one-dimensional difference Fourier.

_An explicit justification for the validity of the difference Fourier map in repre-
sent.mg'the structure of the bound ligand can be seen by examining a centrosymmetric
projection. The true structure of the bound ligand is

a

) IFL{h\ k, nlel'd:;,(k.k.l}e‘—lm'[hx +ky+iz) “3_115]

pxyD=1Y) 3 Y
k

=-—w k=-x I=

We need to know how well |F e is approximated in Equation 13-114 by
‘_JF pLl — |Fp|le’™. In the centrosymmetric case as long as |F, | is small, Equation 13-114
IS exact, as you can see by applying the same arguments used in Figure 13-35. For
the aneraI case, it is known that Equation 13-114 will correctly represent the electron
density of the ligand, except that the peaks will be only half the correct height, and
that there will be some noise in the data. ’
Much of our knowledge about the structure of enzyme active sites comes from

difference Fourier calculations on crystals containing bound substrates or bound

Pr. — Pe
—_—
)]
/”

Figure 13-41

Using difference Fourier syntheses to study ligand binding. Such syntheses can be used to identify ligand
binding sites and any conformational changes that accompany addition of the ligand. Shown are
one-dimensional schematic drawings of the parent electron density map (pe), the map that would be
computed by solving the structure of the ligand complex (pp, ), and a difference Fourier {pp, — pp) that
could be calculated in a relatively simple fashion (see text). Note that ligand atoms simply lead to
increased density, whereas atom movements yield adjacent peaks and troughs in the difference Fourier.
[After T. L. Blundell and L. N. Johnson, Protein Crystallography (London: Academic Press, 1976).]

inhibitors. The availability of this technique means that, in many cases, the deter-
mination of a macromolecular crystal structure is not so much the end of a massive
effort as it is a starting point in the study of macromolecular function.

Summary

The x-ray scattering from an atom depends on its position in space and on the number
of electrons it contains. The x-ray scattering from an array of atoms can be computed
by summing the contributions of individual atoms. Periodic arrays of identical atoms
restrict the observation of significant scattered intensity to only a discrete set of
experimental geometries. Arrays of molecules can be treated in the same way as



X-RAY CRYSTALLOGRAPHY

arrays of atoms. A crystal is a three-dimensional periodic array that consists of a
unit cell replicated in space. The vertices of the cell define a crystal lattice. The period-
icity of the array restricts observable scattering to a very limited set of geometries,
which form the reciprocal lattice of the crystal.

The x-ray scattering can be described as the Fourier transform of the electron
density of the object that generated it. Thus, if one could measure both the phase
and the intensity of the scattered radiation, one could directly perform an inverse
Fourier transfer and reproduce the structure. Unfortunately, all one can measure is
the intensity. In principle, the pattern of scattered intensities still contains sufficient
information to reconstruct the array that generated it. However, this information
is not as easy to use or interpret. The inverse Fourier transform of the scattered
intensity is called the Patterson function. It is a map of all interatomic vectors. Thus,
if the structure contains n atoms per unit cell, there will be n? vectors per unit cell of
the Patterson function.

The structure of macromolecular crystals usually is solved by the technique of
multiple isomorphous replacement. Heavy-metal derivatives of a parent crystal are
prepared, and the scattered intensities of the parent and the derivatives are compared.
A difference Patterson map calculated directly from the intensities mostly shows
just heavy atom-heavy atom vectors. This allows a preliminary estimate of the heavy-
atom positions. Using these positions and the differences between scattered intensities
of the parent crystal and the derivatives, it is possible to estimate the phase of the
scattered radiation. Once this estimate is available, the estimates of the heavy-atom
positions can be made more precise. The procedure is repeated, or other refinement
techniques are used. Finally, phases are available accurate enough to use in con-

junction with the measured intensities to compute an image of the structure.

Problems

13-1. Calculate the x-ray structure factor of the array of identical atoms shown in Figure 13-42,
and compare it with the calculations in the text for similar arrays. Extend the result to
the infinite array. Atoms are shown as circles, lattice points as dots.

Origin

Figure 13-42
Array of atoms for Problem 13-1.

13-2. Calculate the x-ray scattering intensity expected from the infinite t:vg;;iir;:}en:lr::;l
crystal shown schematically in Figure 13-43, where [a| = R, and [b| = 4R. Yo y

®
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R e =R

O
b
o O o
Figure 13-43
® L Crystal array for Problem 13-2.
O O 0O O

e © o
O O

assume that the atomic scattering factor of the central atom of each molecule is t:]w}fe
that of the other two atoms. Ignore the dependenoe.of fon S, _Y01:1 ghould ?c ar e ;:;
denonstrate that, if the intensity is plotted on the reciprocal latl{ce, it is c‘ons'c.mtf 01;( ar
values of h but varies periodically with k, such that the strongest intensity is sccnl lou;l_c;
0.4,8,...,and the weakestfork = 2,6, 10,... HINT: Calculate tha: rleCTproca a 1th‘;
c;lculate the scattering expected for one molecule placed at the OIlgI][.I,ﬁlhel:l useuzure
principles of convolutions to compute the s{ructure factor of the cry:.ta ; fina S}:: sqesteﬂ
the amplitude to calculate the intensity. [This problem was adapted from one sugg

by Bruno Zimm.]

13-3. Starting from the vector diagram in Figure 13-34, derive the following expressio.n f(:;
. the difference between the amplitude of the parent crystal (P) and that of a heavy-ato

isomorphous derivative (PH):
[Feu| — |FF| = [FHI cos(¢dpn — Pu) — 2|F?| sin*[(¢pp — den)/2]

Under what conditions can a comparison of the differences in observe.d inter;sn;es be
used to obtain a good estimate of the heavy-atom structure-factor amplitude |Fy|?

13-4, Draw the molecule that would produce the Patterson map shown in Figure 13-44: (As-
. sume that all atoms are equal.) If you can’t see how to do this, first choose a few arbitrary
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Figure 13-44

Patterson map for Problem 13-4,

small molecules and construct their Patterson m i i
. . aps. Multiple-weighted peaks in-
dicated in the figure; others have a weight of one. ghted peaks are in

f% one.-dimensional crystal has a unit cell 4 A long. Measured x-ray scattering intensities—
ignoring t.he c!ependence of f(5) on S—are shown in Table 13-4. An isomorphous “heavy”-
atpm derivative can be prepared, in which one atom with an atomic scattering factoryof
5 is added per unit cell; its scattering intensities also are shown in the table.

Table 13-4

Measured X-ray scattering
intensities for problem 13-5

. [Folh)]* [Fenh)[*
0 49 144

1 5 20

2 25 0

3 5 20

4 49 144

5 5 20

6 25 0

2

35 20

a. Try to find the location of the heavy atom by using |Fy| = ||[Fpy| — |Fp|| in a difference
Fourier syntl.lcsis. Convince yourself that only the diffraction spots at h =0, 1, 2, 3
?;ed be oon_s.ldered. Assume for the moment that all phase terms are + 1, and ;;e;fo;m

e calculation only for x = 0, R/4, R/2, and 3R/4, where R is the length of the unit cell.

b. Because the result in part a gives two intensity maxima as possible positions for the
heavy atom, calculate the contribution each makes to the structure factor. Use the
phases calculated from each position, along with the intensities estimated as in part
a, to repeat the difference Fourier. Is there any improvement?

c. Because the information that |Fy| = 5has been given, use the isomorphous replacement
replacement technique outlined in the text to estimate the phases of |Fy(h)| for the
two possible positions of the heavy atom. Now, using the criterion that p(x) must be
real for all x, select among these phases for four acceptable choices, and perform a
Fourier synthesis of the |Fyp(h)| data to yield the structure. Note that each synthesis
produces the same structure, except for changes in the origin of the unit cell and the

direction of positive x.
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