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Cryo EM Micrograph of Single Particles
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What is Observed 
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Main Assumptions 

1) All particles in the specimen have identical 
structure

2) All are linked by 3D rigid body transformations 
(rotations, translations)

3) Particle images are interpreted as a “signal” part (= 
the projection of the common structure) plus “noise”

Important requirement:
even angular coverage, without major gaps.
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How to Get Even Angular Coverage 
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Particle Picking
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Particle Picking
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Automated Particle Picking 

Example: CCF-based with local normalization

(i) Define a reference (e.g., by averaging projections over full Eulerian
range);
(ii) Paste reference into array with size matching the size of the 
micrograph;
(iii) Compute CCF via FFT;
(iv) Compute locally varying variance of the micrograph via FFT 
(Roseman, 2003);
(v) “Local CCF” = CCF/local variance
(vi) Peak search;
(vii) Window particles ranked by peak size;
(viii) Fast visual screening.
Advantage of local CCF: avoid problems from background variability
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Performance 

© Joachim Frank



Results

Many algorithms exist
Recent review (current state of the art):
Potter C. S. et al. J Struct Biol. (2004)Aug;145:3-14
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Classification of Images

• EM images of protein are very noisy and, therefore, the primary process of 
single-particle analysis is the classification of images according to their Euler 
angles, the images in each classified group then being averaged to reduce 
the noise level (Frank et al., 1978; van Heel and Frank, 1981).

• Classification methods are divided into those that are “supervised” and 
those that are “unsupervised”:

• Supervised: divide or categorize according to similarity with “template” or 
“reference”. Example for application: projection matching

• Unsupervised: divide according to intrinsic properties. Example for 
application: find classes of projections presenting the same view

Note: explained in Frank book, chapter 3.
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Classification
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Unsupervised Classification (Clustering)

• Classification deals with “objects” in the space in which they are 
represented.

• For instance, a 64x64 image is an “object” in a 4096-dimensional 
space since in principle each of its pixels can vary independently.
Let’s say we have 8000 such images. They would form a cloud with 
8000 points in this space.

• Unsupervised classification is a method that is designed to find 
clusters (regions of cohesiveness) in such a point cloud.
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Dimensonality Reduction

• Role of Multivariate Statistical Analysis (MSA): find a space (“factor 
space”) with reduced dimensionality for the representation of the “objects”. 
This greatly simplifies classification.

• Reason for the fact that the space of representation can be much smaller 
than the original space: resolution limitation (neighborhoods behave the 
same), and correlations due to the physical origin of the variations (e.g., 
movement of a structural component is represented by correlated 
additions and subtractions at the leading and trailing boundaries).

• MSA very similar to Principal Component Analysis (PCA).

• Self-Organizing Map (SOM) and Topology-Representing Network (TRN) 
are neural net based approaches to dimensionality reduction.
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Factor Space / Principal Components:

Find new coordinate system, tailored to the data
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Example

Brétaudière JP and Frank J (1986) Reconstitution of molecule images
analyzed by correspondence analysis: A tool for structural interpretation.
J. Microsc. 144, 1-14.
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Simulated Noisy Data
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Eigenimages Extracted from Data (MSA)
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Note: explained in Frank book, chapter 4.



Expansion in Factor Space

Avrg + F1
Avrg + F1+F2
Avrg + F1+F2+F3
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Hierarchical Ascendant Classification
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Hierarchical Ascendant Classification
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Note: Many other clustering techniques exist…



3D Reconstruction 

Projection Theorem:

The 2D Fourier transform of the
2D projection of a 3D density is a
central section of the 3D
Fourier transform of the density
perpendicular to the
direction of projection.
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3D Reconstruction 

Projection Theorem:

The 2D Fourier transform of the
2D projection of a 3D density is a
central section of the 3D
Fourier transform of the density
perpendicular to the
direction of projection.

This holds in Fourier Space.



Angular Reconstitution 

van Heel et al, Quarterly Reviews of Biophysics 33, 4 (2000), pp. 307–369. 

Real Space:

Common Line 
Projection 
Theorem

Two different 2D 
projections of the 
same 3D object 
always have a 1D 
line projection in 
common.



Sinograms

van Heel et al, Quarterly Reviews of Biophysics 33, 4 (2000), pp. 307–369. 

Determine relative 
orientations with 
common lines!



Angular Reconstitution 

1) Unsupervised classification, to determine classes of particles 
exhibiting the same view

2) Unsupervised <-> Reference-free
3)   Average images in each class -> class averages
4)   Determine common lines between class averages

• stepwise (van Heel, 1967)
• simultaneously (Penczek et al., 1996)

Issues:
• unaveraged images are too noisy
• resolution loss due to implicit use of view range
• handedness not defined – tilt or prior knowledge needed



Reference-Based Projection Matching

adapted from an image by Joachim Frank

Reference <-> supervised



Reference-Based Projection Matching
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Angular Coverage
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good                                               poor



What if Particles are Aligned with Grid?
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Solution: Tilt of Specimen
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Random Conical Tilt
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Random Conical Tilt
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• Premise: all particle exhibit the same view
• Take same field first at theta ~50 degrees, then at 0 degrees [in 
this order, to minimize dose]
• Display both fields side by side
• Pick each particle in both fields
• Align particles from 0-degree field
This yields azimuths, so that data can be put into the conical 
geometry
• Assign azimuths and theta to the tilted particles
• Proceed with 3D reconstruction



Random Conical Tilt 
for Multiple Orientations
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1) Find a subset (view class) of particles that lie in 
the same orientation on the grid: unsupervised 
classification of 0-degree particles

2)   Missing cone problem: do several random 
conical reconstructions, each from a different 
subset (view class), find relative orientations, 
then make reconstruction from merged 
projections set.



Missing Cone Artifacts
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Reconstruction Algorithms

(a) Fourier interpolation
(b) Weighted back-projection
(c) Iterative algebraic reconstruction



Fourier Interpolation
Obtain samples on a regular Cartesian grid in 3D Fourier space by 
interpolation between Fourier values on oblique 2D grids (central 
sections) running through the origin, each grid corresponding to a
projection.
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Fourier Interpolation
Sample points of adjacent projections are increasingly sparse as
we go to higher resolution:

Speed (high) versus accuracy (low). Can be used in the beginning
phases of a reconstruction project.
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Back Projection
Simple back-projection: Sum over “back-projection bodies”, each 
obtained by “smearing out” a projection in the viewing direction:
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Weighted Back Projection

Weighted back-projection: as before, but “weight” the 
projections first by a function that is tailored to the angular 
distribution of directions (R* weighting, in X-ray terminology), 
then inversing the Fourier transform.

For general geometries, the weighting function is more 
complicated, and has to be computed every time.

Weighted back-projection is fast, but does not yield the 
“smoothest” results. It may show strong artifacts from angular 
gaps.
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Iterative Algebraic Reconstruction

The discrete algebraic projection equation is satisfied, one 
angle at a time, by adjusting the densities of a starting 
volume. As iterations proceed, each round produces a 
better approximation of the object.

The algorithm comes in many variants. It allows constraints 
to be easily implemented.

It produces a very smooth reconstruction, and is less 
affected by angular gaps.
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Comparison (w/ Missing Cone)
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Sources for Limited Resolution

•Instrumental: partial coherence (envelope function)
•Particles with different height all considered having same defocus
(envelope function)
•Numerical: interpolations, inaccuracies
•Failure to exhaust existing information
•Conformational diversity



Conformational Diversity:
Heterogeneous Particle Population

© Joachim Frank



Example: Low Occupancy of 
Ternary Complex 

reconstruction using all data          empty ribosome (control)
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Problem Solved by Supervised Classification 
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The Reconstruction Process
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Typical Refinement - SPIDER
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Typical Refinement - IMAGIC
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Typical Refinement - EMAN
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Preliminary Model
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Projections
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Classification
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2D Alignment

Idea: Rotate both objects, while translate one object along the 
positive x axis, until match is found.

Resampling the objects in Polar coordinate.  
The given density objects are expanded in 
Fourier series:
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2D Alignment
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2D Alignment

Where:

The 2D Fourier transform of correlation function:

The correlation function becomes:
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2D Alignment

Particle Image Reference Image
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Class Averages

© Steve Ludtke



Iteration 1
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Iteration 2
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Iteration 3
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Iteration 4
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GroEL Reconstruction at 6.5Å

© Steve Ludtke



Comparison with Xtal Structure
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Caveat: Model Bias
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Caveat: Model Bias
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Caveat: Model Bias
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Caveat: Model Bias
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Caveat: Model Bias

better reference model and
more iterations!
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CTF Correction 
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CTF Correction 
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CTF Correction 
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CTF Correction - SPIDER
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CTF Correction - IMAGIC
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CTF Correction - EMAN
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Resources 

Textbook:
Chapters 3,4,5 in: Joachim Frank, Three-Dimensional Electron 
Microscopy of Macromolecular Assemblies (1996, Academic 
Press)


