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What 1s Observed
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Main Assumptions

1) All particles in the specimen have identical
structure

2) All are linked by 3D rigid body transformations
(rotations, translations)

3) Particle images are interpreted as a “signal” part (=
the projection of the common structure) plus “noise”

Important requirement:
even angular coverage, without major gaps.
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How to Get Even Angular Coverage
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Automated Particle Picking

Example: CCF-based with local normalization

(i) Define a reference (e.g., by averaging projections over full Eulerian
range);

(i) Paste reference into array with size matching the size of the
micrograph;

(i) Compute CCF via FFT;

(iv) Compute locally varying variance of the micrograph via FFT
(Roseman, 2003);

(v) “Local CCF” = CCF/local variance

(vi) Peak search;

(vii) Window particles ranked by peak size;

(viil) Fast visual screening.

Advantage of local CCF: avoid problems from background variability
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Classification of Images

 EM images of protein are very noisy and, therefore, the primary process of
single-particle analysis is the classification of images according to their Euler
angles, the images in each classified group then being averaged to reduce
the noise level (Frank et al., 1978; van Heel and Frank, 1981).

» Classification methods are divided into those that are “supervised” and
those that are “unsupervised”:

» Supervised: divide or categorize according to similarity with “template” or
“reference”. Example for application: projection matching

» Unsupervised: divide according to intrinsic properties. Example for
application: find classes of projections presenting the same view

Note: explained in Frank book, chapter 3.
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Supervised Classification
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Classification

Unsupervised Classification
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Unsupervised Classification (Clustering)

 Classification deals with “objects” in the space in which they are
represented.

* For instance, a 64x64 image is an “object” in a 4096-dimensional
space since in principle each of its pixels can vary independently.
Let’s say we have 8000 such images. They would form a cloud with
8000 points in this space.

» Unsupervised classification is a method that is designed to find
clusters (regions of cohesiveness) in such a point cloud.

Unsupervised Classification

—————
________
-
-
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Dimensonality Reduction

* Role of Multivariate Statistical Analysis (MSA): find a space (“factor
space”) with reduced dimensionality for the representation of the “objects”.
This greatly simplifies classification.

» Reason for the fact that the space of representation can be much smaller
than the original space: resolution limitation (neighborhoods behave the
same), and correlations due to the physical origin of the variations (e.g.,
movement of a structural component is represented by correlated
additions and subtractions at the leading and trailing boundaries).

« MSA very similar to Principal Component Analysis (PCA).

 Self-Organizing Map (SOM) and Topology-Representing Network (TRN)
are neural net based approaches to dimensionality reduction.

© Joachim Frank



Factor Space / Principal Components:

Find new coordinate system, tailored to the data
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Example

(Iarge mnuth) (5mall mcruth)

(round heads) EE EE
 long headsjmg Eﬂ

( looking to the left ) (looking to the right)

. .

Brétaudiere JP and Frank J (1986) Reconstitution of molecule images
analyzed by correspondence analysis: A tool for structural interpretation.
J. Microsc. 144, 1-14.
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Simulated Noisy Data

10 copies of the 8 types of heads + random noise Averages
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Eigenimages Extracted from Data (MSA)

Factor 1

Factor 3

Note: explained in Frank book, chapter 4.
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Expansion in Factor Space
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Hierarchical Ascendant Classification
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Hierarchical Ascendant Classification

Note: Many other clustering techniques exist...
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3D Reconstruction

Projection Theorem:

@ . OBECT The 2D Fourier transform of the
2D projection of a 3D density is a

e ™~ .
] .0 raecrone. CENLral section of the 3D
Fourier transform of the density

perpendicular to the
direction of projection.
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DeRosier & Klug, Nature 217 (1968) 133

\ |/ 3D Reconstruction

Projection Theorem:

The 2D Fourier transform of the
2D projection of a 3D density is a
central section of the 3D

Fourier transform of the density
perpendicular to the

direction of projection.

This holds in Fourier Space.



Angular Reconstitution

Real Space:

Common Line
Projection
Theorem

Two different 2D
projections of the
same 3D object
always have a 1D
line projection in
common.

Fig. 11. The angular reconstituton technique is based on the common line projection theorem seacing
that two different ewo-dimensional (2D projeceions of che same 3D object always have a one-
dimensinnal {11} line projection in commaon. From the angles between such commaon line projections,
the relatve Buler-angle orientations of ser projeceons can be determined & pesersors (van Heel, 1987).
For an eneirely asymumeeric parcicle like this 505 ribosomal subunit, ac lease three different projeceions
are required to solve che orientdon problem. For details see main text.

van Heel et al, Quarterly Reviews of Biophysics 33, 4 (2000), pp. 307-3609.



Determine relative
orientations with
common lines!

Fig. 13. Sinograms and sinogram correlation functions. This ilustracion provides a graphical overview
of the relations between a 2D class average (noise-reduced projection images), their *sinograms’, and
the sinogram correlaton funceion between two sinograms. The images shown here (@, #) are class
averages deduced a large data set of Herpes Simplex Vims Type 1 (HSV1) cryo-EM images. Each line
of the sinogram images (v, ) is generated from the 2D projection image by summing all 1D lines of
the 2D images, from top t0 boctom, after rotation of the image over angles ranging from 07 w0 3607
Equivalently, the lines of the sinograms are 1D projections of the 2D images in all possible directions
ranging from 0% to 360° Each point of the sinogram correladon funceion coneains the correlation
coethcient of two lines of the two sinograms one is comparing (¢).

van Heel et al, Quarterly Reviews of Biophysics 33, 4 (2000), pp. 307-3609.



Angular Reconstitution

1) Unsupervised classification, to determine classes of particles
exhibiting the same view

2) Unsupervised <-> Reference-free

3) Average images in each class -> class averages

4) Determine common lines between class averages
e stepwise (van Heel, 1967)
e simultaneously (Penczek et al., 1996)

Issues:

e Unaveraged images are too noisy

e resolution loss due to implicit use of view range

» handedness not defined — tilt or prior knowledge needed



Reference-Based Projection Matching

Systematically generated projections
of existing reconstruction
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Reference-Based Projection Matching

© Joachim Frank



Angular Coverage

good poor

180
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What If Particles are Aligned with Grid?
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Solution: Tilt of Specimen
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Random Conical Tilt




Random Conical Tilt

* Premise: all particle exhibit the same view

» Take same field first at theta ~50 degrees, then at O degrees [in
this order, to minimize dose]

 Display both fields side by side

 Pick each particle in both fields

* Align particles from O-degree field

This yields azimuths, so that data can be put into the conical
geometry

* Assign azimuths and theta to the tilted particles

* Proceed with 3D reconstruction

© Joachim Frank



Random Conical Tilt
for Multiple Orientations

1) Find a subset (view class) of particles that lie in
the same orientation on the grid: unsupervised
classification of O-degree particles

2) Missing cone problem: do several random
conical reconstructions, each from a different
subset (view class), find relative orientations,
then make reconstruction from merged
projections set.

© Joachim Frank



Missing Cone Artifacts

Reconstruction Reconstruction
Using top view Using side view
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Reconstruction Algorithms

(a) Fourier interpolation
(b) Weighted back-projection
(c) Iterative algebraic reconstruction



Fourier Interpolation

Obtain samples on a regular Cartesian grid in 3D Fourier space by
Interpolation between Fourier values on oblique 2D grids (central

sections) running through the origin, each grid corresponding to a

projection.
*

o— N

Z
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Fourier Interpolation

Sample points of adjacent projections are increasingly sparse as
we go to higher resolution:

74

Speed (high) versus accuracy (low). Can be used in the beginning
phases of a reconstruction project.
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Back Projection

Simple back-projection: Sum over “back-projection bodies”, each
obtained by “smearing out” a projection in the viewing direction:

© Joachim Frank



Weighted Back Projection

Weighted back-projection: as before, but “weight” the
projections first by a function that is tailored to the angular
distribution of directions (R* weighting, in X-ray terminology),
then inversing the Fourier transform.

For general geometries, the weighting function is more
complicated, and has to be computed every time.

Weighted back-projection is fast, but does not yield the
“smoothest” results. It may show strong artifacts from angular

gaps.

© Joachim Frank



Iterative Algebraic Reconstruction

The discrete algebraic projection equation is satisfied, one
angle at a time, by adjusting the densities of a starting
volume. As iterations proceed, each round produces a
better approximation of the object.

The algorithm comes in many variants. It allows constraints
to be easily implemented.

It produces a very smooth reconstruction, and is less
affected by angular gaps.

© Joachim Frank



Comparison (w/ Missing Cone)

Simple back-
projection

Weighted back- | 8 & 4 BRE) & Iterative algebraic
projection E™ B . "\ J° 3 reconstruction

© Joachim Frank




Sources for Limited Resolution

sInstrumental: partial coherence (envelope function)

*Particles with different height all considered having same defocus
(envelope function)

Numerical: interpolations, inaccuracies

Failure to exhaust existing information

«Conformational diversity



Conformational Diversity:
Heterogeneous Particle Population

Current approach: assume all conformers are
"similar". Treat problem in first approximation
as a problem with a single conformer. Then try
different models as references to see if
population segregates.
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Example: Low Occupancy of
Ternary Complex

reconstruction using all data empty ribosome (control)
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Problem Solved by Supervised Classification

Ternary Complex

10,471 :
individual images individual images
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The Reconstruction Process
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Typical Refinement - SPIDER
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Typical Refinement - IMAGIC
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Typical Refinement - EMAN
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Preliminary Model
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Projections
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Classification
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2D Alignment

Resampling the objects in Polar coordinate.
The given density objects are expanded in
Fourier series:

f(r,g)=> f,(r)e™
g(r, ) =Y §,(r)e™
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ldea: Rotate both objects, while translate one object along the

positive x axis, until match is found.
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2D Alignment
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2D Alignment

The correlation function is a function of 2 rotations and 1

distance: ¢(g,4'; p) = J' f(4)-g(4"; p)

R2

fF(p)r,B) = f,(r)em™”
g4 p)(r, B) = G,(re" )

Here:

The correlation function becomes:

c(p. ¢ p)=> ™ (p)
Where:

| (p) = j:[ e (e““ﬂ'm)dﬂ] f,(r)-rdr

Y
h?,(8)
The 2D Fourier transform of correlation function:

e(m,n; p) = Iy (p) =27 [ (07 ,)p f(r)r dr

© Yao Cong
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2D Alignment

Particle Image

Rotate ¢ (

f(r,5)

Reference Image

g(r.5)

Rotate ¢
Translate p

For each p, update
Max. Corre. value +
corresp. ¢ and ¢’

c(¢.4" p) = FFT,5(C)

~

Precomputing  h;", (m)

Compute Fourier Transform of Correlation

¢(m,n; p) = 27:_[: (ﬁr”,p)m f (r)rdr

Compute Correlation




Class Averages
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lteration 1
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lteration 2
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lteration 3
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lteration 4
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GroEL Reconstruction at 6.5A

© Steve Ludtke



Comparison with Xtal Structure

Cryo-EM
Cryo-EM X-ray with ribbon
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Caveat: Model Bias

Base Noisy

25 100 250 1000 2000

© Steve Ludtke



Caveat: Model Bias

10% contrast) | Align to

25 100 250 1000 2000
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Caveat: Model Bias

Noisy (~10% contrast) | Align to

25 100 250 1000 2000
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CTF Correction
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CTF Correction
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CTF Correction - SPIDER

Defocus 1 :”
Defocus 2 w -
Detocus 3 w.
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CTF Correction - IMAGIC
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CTF Correction - EMAN
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Resources

Textbook:

Chapters 3,4,5 In: Joachim Frank, Three-Dimensional Electron

Microscopy of Macromolecular Assemblies (1996, Academic
Press)



