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Periodic Array of 2N+1 Identical Atoms
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Atomic Form Factors
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Periodic Array of 2N+1 Identical Atoms

Multiplying both numerator aild

denominator by ¢™>?

sin[(2ZN+1)7S.a]
sin(TS.a)

2 2 (sin[2N+1)7S.a] |
I (S)= ‘FTO(S)‘ =|f(S)‘ {sm[( N+1)rS.a]

sin(TS.a)

= £(S)




Fringe Function and Diffraction

{sin[(2N+1)1tS.a] 1

Sin(TS.a) —=— Fringe function

N=16

2 2
L(S)=[F (S) =[f(S)]|

N=1

INS Plots:

| 1. I = 0 everywhere except
integral S.a

2.1, only whenS.a=0
i.e. S is in a plane_L to the
long atomic axis




Condition for Diffraction Maximum

in[(2N+1)7S.a] 1
sin(TS.a)

L,(9)= S =l {

Usually, when (.1 < |sin(TES.a)‘ < 1.0

the value of sin[(2N+1)7S.a] oscillates between
0 and 1. Then

sin[(2N+1)7S.a]
sin(7TS.a)

-10 <

< 10.




Condition for Diffraction Maximum

in[(2N+1)rS.a] ]
sin(TS.a)

2(s
1,(9)= () =li) {

But when sin(tS.a) = 0, using the expansion

for sin(x), the ratio becomes (2N+1) which
is very large for macromolecules.

Thus, ITO(S) is large only when

S.a=n wherenis0,1, 2...

von Laue condition



Miller Indices in a Lattice
Miller indices (h,k,l)
Indices that characterize a set of parallel

planes having intercepts a/h, b/k and ¢/l
on the three axes.
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Two Conditions for Diffraction

1.|S| = 2 sinel/A

Geometrical interpretation So

1

Ewald sphere
of reflection

’S ‘ Scattering vectors that satisfy this
sin® = ——| condition diffract.




Two Conditions for Diffraction

2. Geometric interpretation of von Laue
condition

in[(2N+1)7S.a] |

sin(S.a)

2(s
L,(9)=[E,5) =[s) {

S.a=n wherenis0, 1, 2...

von Laue condition



Visualizing the Two Conditions for Diffraction

Diffracted intensities are observed only when both the
sphere of reflection and the von Laue conditions are
satisfied together

(B)

Ewald sphere
of reflection

Intersection of (A) and(B)
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Observable Part of Ewald Sphere

Satisfy both sphere of reflection and von Laue
conditions

If the wavelength/ and the incident direction S are
fixed, only a limited portion of the Ewald sphere can
diffract. Limiting sphere: 2/ A

To increase the diffracting region,
the incident direction and/or the
wavelength needs to be changed.

Leads to many experimental data collection strategies.



Scattering in 3 Dimensions

(%

atoms

1-d: F(S) =Z n(S) MISX“ (Single summation over x)
n atoms
3-d: F(S) =an(S) eZTEiS.(xna +yb+z,c)

n
(Triple summation over x, y & z)

Using von Laue conditions S.a = h etc. ,

atoms

ES) =Zf (5)eT ki)

i kvs] (Fourier series and
F(S) EEZf(S) ik *tls) ot a transform)

P (x,y,z) = NVZZE:(S) 2T i(hx+ky+z)



Argand Diagram of Structure Factors

t

7%
Fhk

|F| =[A2 + Bz] : Measured B = Flsin¢

experimentally ® -

(b =tan" (B/A) : Unknown / A= [Flcoso

The circle indicates that F is a vector
quantity with an amplitude and a phase

Signs of both A and B important in determining the
magnitude and quadrant of ¢



Crystal Lattice and Convolution

1-d convolution

Thus the convolution of f(x) with 6(x-a)
just shifts f(x) by a distance a.



Crystal Lattice and Convolution

Periodic lattice:
Lattice function L(x) = Z O (x-na)

7\

Crystal = L P(u) Z O (u+na)
(i-d)

3-d convolution

L(r) =i O (r-na-mb-pc)

N =
Crystal =L P(u) = Zp (u+na+mb+pc)
(3-d) m,n,p =-00

Crystal = Convolution of unit cell with lattice



Unit Cell and Symmetry

Lattice: repetition of unit cells by pure translation

Contents of the unit cell:

Contents cannot be ~b ‘ ~b l‘
arbitrarily arranged but ‘ ] ‘ .
there must be an asymmetric

unit that is rotated oD ‘ o0 -‘
(and possibly fractionally translated) 0 e
to generate the complete unit cell ‘ ‘
contents

2-d lattice
Possible rotational symmetry among the asymmetric units

1, 2, 3, 4, 6-fold: 5-fold not allowed by translational symmetry
Mirror reflection not allowed in biological molecules
Fractional translations: 2, 1/3, 2/3, 1/4, 3/4, 1/6,
of the unit cell dimensions



Unit Cell Types Determined by Symmetry

Point groups: All possible rotations and reflections

among the asymmetric units
32 Point groups

Crystal systems: Point groups + translation symmetry
restricts types of the unit cell possible
(7 crystal systems)

Restrictions on the unit cell
lengths and angles



7 Crystal Systems and 14 Bravais Lattices

System Lattice

Triclinic P
Monoclinic P
Orthorhombic B G,
ILF

Tetragonal Pl

Trigonal/ R,P
Rhombohedral

Hexagonal P

Cubic PLF

c
ca Y

Min symmetry
None (1-fold)

2-fold along b

2-folds along a,b,c

4-fold along c

3-fold along ¢

6-fold along ¢

3-fold along body
diagonals

Unit cell
abzc o=B=y
azb#c o#Y p+#90

azb=zc

a=b=c

a=b=c
=B=Y#90

a=b=zc
oL=6=90 Y=120

a=b=c

Centering ‘



Different Lattices and Centering

Triclinic &
Monoclinic

AT

C

Orthorhombic
P I

Tetragonal

Cubic

©
http://www.uwgb.edu/dutchs/
symmetry/bravais.htm



Applying a Screw Operation

2-fold through origin:

100
0-10 Xy Y,Z Xy =Y, -Z
00-1

2-fold serew axis 24

§ symbol when axis 1s perpendicular to the page

—= symbol when axis 1s parallel to the page

2, along [001] and passing through origin:

(X, Y. Z) (-X -y 7 +Z)
2 along [001] and passing through (1/4, 0, 0): \I S r ]
(s X -y Y% +2) |

(x, ¥, 2) 0,00 S
(1/4,0)



Example of a Space Group

r r 1/4 -

Yot )

( O+

(+

b
| xy,z) (%-x,-y,z+ %) (-X,yt%,-z+ %) (x+ "%, -yt , -2)

a

P2.2.2 from International tables (#19)




Bragg’s Law of Diffraction

The atoms in a
crystal can be

considered as a 6
series of parallel ~F
planes. °

To observe diffraction, path difference
between reflected beams from adjacent
planes must be an integral number of

wavelengths




Phase Solution

Aim: Determine Q, for each reflection

- Isomorphous replacement
- Anomalous scattering
- Molecular replacement

(Note: A.s. not explained here, similar to l.r., but using special wavelengths to break Friedel
symmetry, see http://www.bmsc.washington.edu/scatter/AS_tutorial.html)



Isomorphous Replacement

IF,d {

IFPHI IF“'
IFPI |Fll| \ IFPI
Dp
|Foul = F,| = |F, | —
(Fig. b)
(Fig. a) |Fpl 7 [FE I

Soak in heavy atoms into the crystal

If the derivatized structure remains similar, hope to get vector
relationships between F,, F, and F,,

No simple relationship between
the structure factors for the
general non-centrosymmetric
reflections (Fig. b)



Patterson Functions to Locate Heavy Atoms

-2TUiS. T

P =|F(S)E dr

P =fI(S)e -2TiS. T dr

- f FOFSE ™ dr

7
= P(r)P(-r)

The Patterson is a convolution of the electron
density with its image that is inverted through the
origin



Patterson are Inter-Atomic Distance Maps

N N
I, o | Fhlz =Ee 2Tlih. kae-ZTC ih.r,
i k
N
2TTih. (r-
= Z‘; fke th- (- 1)
J

Thus, the Patterson functions, computed using the
intensities as coefficients, map the inter-atomic vectors

In real space: P =fp(r) o(r+u)d’r

unit cell ]



Pattersons Determine Heavy Atom Vectors

For large N, Patterson maps become uninterpretable

Orthorhombic P2.2 2 :

(X,%,2); (V2-X,-Y,1/2+2); (2+X,1/2-y,-2); (-X,1/2+y, Y2-7)
Patterson peaks:

Difference Patterson: Ye2x -2y Y (H)
Coefficients: |F,|’- | Fy[ A 1%-2y -2z (H)

, . 2x v, %2z (H)
Peaks at inter-atomic vectors U,V,W: 2% 1, 1,-27 (H)
U V A\ Peak type 1 h+2y -2z (H)
0.404 0.453 0.5 Harker L -2x 2y 2 (H)
0.5 0.048 0.199 Harker
042 0.108 0.986 General (NH) H: Harker section peak

Solve for x,y & z using the Harker peaks:
X=0.048 ;y=0.774 3z = -0.099 = 0.900 (translate by 1.0)

These are the heavy atom coordinates



Patterson Heavy Atom Peaks May
Solve Structure

Hypothetical 2 molecule structure:
(10 Carbon atoms + 1 Br atom) / molecule

Patterson peak htoe< 2., 7.,

Br-Br peaks will be the highest
Determine the coordinate of Br

| F — F Kknown + F unknown
h~ Lh h —~=iffm (Due to rest of structure)

t

(due to the heavy atoms
in the unit cell)

Compute partial electron density map, fill up
the missing density and iterate



Single Isomorphous Replacement (SIR)

~n

For a given Imaginary
reflection hkl ' axis
(Vector addition of Sfs)

Known: |Fu|, |F, | and |F,.l

|F,| circle center:
Origin O

|F,| : contribution of
heavy atom to
structure factor
amplitude

P, and P,, the points of intersection of the two |FPH| circle centered
circles, represent the two possible values of the about the end of

phases for the given reflection hkl
the vector -|I,|



Resolving Phase Ambiguities in SIR

P, and P,, the points of intersection of the two flmaginary

axis
circles, represent the two values of the phases
for the given reflection hkl

P,
[l
How to choose the | Real axis

best phase? 19

¢ P +P,
(Large phase error
if F, is relatively
small)

|

Prepare multiple heavy-atom derviatives



Multiple Isomorphous Replacement (MIR)

Imaginary
axis

Known: |F,|, |Fm,2| andIFPlll,ZI

Real axis

L

Contribution of 2 separate
heavy atoms to the structure
factor amplitude

P, represents the only possible phase for the given

reflection hkl |F.u..| circles centered

about the ends of
the vectors -|F,,, .|



Errors iIn MIR Phases

But
1. Random and systematic errors in measurement of

intensities
2. Errors in estimation of heavy atom positions
3. Errors due to lack of isomorphism

How to treat these errors?



Errors iIn MIR Phases

Assumptions:

1. All errors are Gaussian

2. Errors in heavy atom position and that due to lack
of isomorphism can be considered together

K.

= [Ful - E |+ [E]}

O,,: Errors in experimental observations

G, : Combined errors in F, and lack of
isomorphism



Errors iIn MIR Phases

, 2 2
Total error in F,,: 0=[0.+0, |

exp



Errors iIn MIR Phases

|Eil

|E|
L bp =m- (o + dn)

Probability distribution P(®) = Cexp (—6%02)

where C is a normalization constant such that

J‘lv"(¢)d¢ =1



Errors iIn MIR Phases

Probability distribution P(¢®) = Cexp (- GZOZ)

Using i ) )
cosp= F, +F - (F,*+€)

2F,F,

it is possible to calculate the probability
distribution for each phase of each derivative

For all derivatives

P©®) =[[P@) = Cexp) , (-5 /o)
L i




Best MIR Phase

Probability distribution of the MIR phases
2
P©) =IIP¢) = Cexp) (€ /o))
] i

Best phase for a given reflection? P(d)

For a unimodal distribution,
the phase angle$ at which
P(¢) is maximum, is the best
phase angle.




Best MIR Phase

Usually P(¢) is bimodal, and P(d))
the centroid of the phase
probability gives the best phase /\ /\
o 0
f P(¢)exp(id)do
— 0

(I) best 21T

fP(Cb)d(l)

]



Figure of Merit of a Phase

2T
IP(¢)exp(i¢)d¢ The Figure-of-merit (m)
(bbest = n of a phase is defined

IP( b)dd as the mean of the cosine

of the phase error

Y P(@)cos 4)

T Y

where A = By~ @

= < coSs A¢i>

The FOM weighted Fourier coefficient is
mF expi¢, .



Molecular Replacement

 Similar structure exists (sequence identity)
MIR not required

 Orient the known structure as closely as
possible to the unknown structure

* Place the known structure as correctly as
possible

 Rotational and translational parameters will
give a good set of starting phases



Molecular Replacement

~N D
G c N

Model Data
Human lysozyme Dinosaur lysozyme



Rotation Conventions

Rossman




Patterson Rotation Functions

RK.$,0) = J' P () P . (<,0,0u)du

l"min

model: Atomic model of known structure (Human lysozyme)

data: Unknown structure (Dinosaurus lysozyme)

Real space: Rotation of inter-atomic vectors
Reciprocal space: Convolution of SF **2

Determine the best(k ¢ ) at which R shows a
maximum

Orient the model through these angles



Orientation of Unknown Molecule

~n D

G c A

Model Data
Human lysozyme Dinosaur lysozyme
Crystallographic symmetry

One asymmetric unit in
unit cell (P1 symmetry)

Position of unknown molecule wrt symmetry axes?



Position of Molecule: Translation Function

T(u) =f Pu.(u) P (utr)du

model: Atomic model of known structure (Human lysozyme)

data: Unknown structure (Dinosaurus lysozyme)

Real space: Rotation of inter-atomic vectors
Reciprocal space: Convolution of SF **2

Determine the best position r at which T shows a
maximum for the oriented model



Intra- and Inter-Molecular Vectors

n D

G cC N

Model Data
Human lysozyme Dinosaur lysozyme
Crystallographic symmetry

One asymmetric unit in
unit cell (P1 symmetry)

Rotation fn; Match intra-molecular vectors
Translation fn: Match inter-molecular vectors



Another Translation Function
N D
C — C")
Model | | Data |

Human lysozyme Dinosaur lysozyme

One asymmetric unit in Crystallographic symmetry

unit cell (P1 symmetry)

Packing function: Discrepancy between the calculated
and observed Sk's

Position which gives the minimum discrepancy factor
is the best position of the molecule in the unit cell



Averaging Using Inherent Symmetry

Unit cell

L

0.0

s Particle + unit cell
symmetry

= Symmetry preserved in
diffraction space

No of faces : 12 (5-folds)
No of edges : 30 (2-folds)
No of vertices : 20 (3-folds)



T=3 lcosahedron

B 7 A4

A5
C5

B9 Al

B5

C9

A9 C1

A B8

B6
C7
cC8

B 7 A7

Ab

B3

A 3G

A2 B2

C10
C2

B 1 B10 Al10

Cé6 ATl

C11
B12
B11

A12 C12
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\ Amplitude

Averaging

Noise

Signal

ANaVavAY

Position




Averaging and lterative
Improvement of Phases

A

Amplitudes + [N Noisy initial SEEVIIELEE Cleaner atomic
initial phases Atomic map map

FTINV

A

Better phases FT

(Combine with sl DBe€tter atomic Average

maps

Amplitudes)




Poor Initial Phases







Display of Electron Density

Electron density maps are displayed as iso-contour
figures

Electron density sections

7184559854634143




Refinement of Atomic Model

Poor initial phases => F_, does not agree with F

IE,| - [F]
Discrepancy or R-factor = Z ‘ i is high
LI
hkl
?d:l‘:“ atom.lc.:l.l(;del Blf;teez Compute F, with the
O The poor Initia = | ctter atomic model
electron density

~

Fourier invert F s and
refined phases to get
more well defined
electron density




Refinement Is Like Curve Fitting

Fit the best 2-parameter curve through 9 points

No. of observations: 9
No. of parameters: 2

Observational equations

Ax =y, where A is a (9x2)
matrix that gives the best
estimate of the parameters x
to match the observational
column vector y

Minimize (y-Ax)'(y-Ax) to get
the best estimates of the parameters x



Normal Equations in Refinement

Observational equations: AU = b
A: Matrix that calculates the F_s from the positional
and the thermal parametersy

b: Experimentally obtained structure factors F_ s
Residual vector: r = b - AY

Minimize the objective function M =r'r
oM
o

Normal equations

=0>=> A'AV =A'D

Observational equations are non-linear in parameters:

A(o¥) =b A'Asy=A'b Conjugate Gradient



Full LSQ Refinement not Possible

Refinement parmeters: Positional and thermal

Protein of 30kDa: ~300 residues => ~3000 atoms
(3 positional + 1 thermal parameter) / atom
12000 refinement parameters.

Unit cell: 80x70x40 A => ~16000 reflections within
the 2A Ewald sphere

Overdeterminacy ratio = # observations / # parameters
= 16K/12K ~ 1.4 (Inadequate for LSQ refinement)

Introduce geometric and energy restraints/constraints
(Restrained/constrained least squares refinement)



Anisotropic B-valuesThermal Ellipsoids

o 2
Bisotropic = const * <u-<>

http://www.crystalimpact.com/diamond/v2feature-ellipsoids.htm



R:.. IN Refinement of Atomic Models

[IF... - IE |
Discrepancy or R-factor = z

|

Q: How good does this model predict the data
that 1t has not seen?
Curve fitting analogy: Does a 4t pt lie on a 3-pt
quadratic curve?

R:: Choose a random 5-10% test data sub-set
and calculate R-factor for this test set.

If the model Is good, R, should closely follow
R of the remaining data set.



Refined Electron Density

Trp

Poorly defined ed

Uninterpreted
density

Conformers in
Lys, Asn...

http://www.usm.maine.edu/~rhodes/



Manual Editing Using Graphics

@M&@@

é

Disordered Lysine

Manual model editing Is necessary



Concluding Remarks

- X-ray diffraction may be analyzed by
FT/series. Alternative methods also reported

- Phases may be determined using several
methods

- Phases may be improved by averaging and/or
refining the atomic model with model fitting

- Well-refined models are essential to correctly
Interpret biological functions
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