THE UNIVERSITY of TEXAS

ScHooL oF HEALTH INFORMATION

ScieEncEs AT HousTon

Complex Numbers, Convolution,
Fourier Transform

For students of HI 6001-125
“Computational Structural Biology”

Willy Wriggers, Ph.D.
School of Health Information Sciences

http://biomachina.org/courses/structures/01.html

Complex Numbers: Review

A complex number is one of the

form:
a+ bi
where
i =+—1
a: real part

b: imaginary part

Complex Arithmetic

When you add two complex numbers, the real and
imaginary parts add independently:

(a+ bi)+ (c+di)=(a+c)+(b+d)i

When you multiply two complex numbers, you cross-
multiply them like you would polynomials:

(a+bi)x(c+di) =ac+ a(di)+ (bi)c+ (bi)(di)
= ac + (ad + be)i + (bd)(i?)
=ac + (ad + bc)i - bd
= (ac - bd) + (ad + bc)i

Polynomial Multiplication

p(x) = 3x*+2x+4
p(x) = 2x2+5x+1

P1(x) py(x) = X+ W+ X+ x+t

The Complex Plane

Complex numbers can be thought of as vectors in the complex plane
with basis vectors (1, 0) and (0, ©):

,Imaginary

I

1 ' Real

Magnitude and Phase
The length of a complex number 1s 1ts magnitude:
|a+bi| =a’ +b°
The angle from the real-number axis 1s its phase:
¢ (a+ bi)=tan'l(b/ a)

When you multiply two complex numbers, their magnitudes
multiply

212,] = 24|z,
And their phases add
P(z12) =9 (z) Tt 9(2,)

The Complex Plane: Magnitude and Phase

,Imaginary

Complex Conjugates

If z=a + bi is a complex number, then its complex conjugate is:

Z'=a - bi

The complex conjugate z* has the same magnitude but opposite phase

When you add z to z*, the imaginary parts cancel and you get a real number:

(a + bi) + (a - bi) =2a

When you multiply z to z*, you get the real number equal to |z|*:

(a + bi)(a - bi) = a? — (bi)* = a*> + b?

Complex Division

Ifz,=a+biz,=c+di,z=2z,/z,

the division can be accomplished by multiplying the numerator and
denominator by the complex conjugate of the denominator:

_(a+bi)c—di) (ac+bd y bc—ad

Z

(c+dic—di) \P*+d ¢ +d

Euler’s Formula

Remember that under complex multiplication:
= Magnitudes multiply
= Phases add

Under what other quantity/operation does multiplication result in an addition?

= Exponentiation: c¢? = ¢**? (for some constant c)

If we have two numbers of the form m-c? (where ¢ is some constant), then
multiplying we get:

(m.ca) (n.cb) — n’I'n’Ca+b

What constant ¢ can represent complex numbers?

Euler’s Formula

* Any complex number can be represented using Euler’s formula:

2 = |2[ei#@ = |z|cos(¢) + |z[sin(4)i = a + bi

«— >~ ——>
1

Imaginary

a = |z|cos(¢@)
b = |z[sin(¢)

Powers of Complex Numbers
Suppose that we take a complex number
z=|zet?®
and raise 1t to some power
2= [le 9O
= |z|n ein #(2)

z" has magnitude |z|" and phase n ¢ (z)

Powers of Complex Numbers: Example

e What is i for various n?

Imaginary

n=1,5

n=0,4,8
1 Real

Powers of Complex Numbers: Example

« What is (e™*)" for various n?

Imaginary

n=>2

Harmonic Functions
* What does x(¢) = ¢'“* look like?

* x(#) 1s a harmonic function (a building block for later analysis)

“Imaginary Angular frequency

Harmonic Functions as Sinusoids

Real Part Imaginary Part
ER(eia)t) S(eia)t)

cos(ar) sin(@)

Questions: Complex Numbers

Convolution

Convolution of an mput x(¢) with the impulse response /(¢) is
written as

x(2) * h(?)

That is to say,

o0

x(£) * h(t) = j x(D)h(t—1)dr

—00

Convolution of Discrete Functions

For a discrete function x[j] and impulse response /4[j]:

1% hlj1=") x[k]-h[j — k]
k

One Way to Think of Convolution

x(£) * h(t) = j x(D)h(t-1)dr
x[j1# Al j1= D x[k]-h[j k]
k

Think of 1t this way:
= Shift a copy of / to each position 7 (or discrete position k)

= Multiply by the value at that position x(7) (or discrete sample
x[k])
= Add shifted, multiplied copies for all 7 (or discrete k)

NN X RN

0] Alj—0] =
1Al —1] =
2] hlj-2] =
3] Al =3] =
4] hlj—4] =
x[j]* hljl =

Example: Convolution — One way

Xl=01 4 3 1 2]
Ail=01 2 3 4 5]

D X[k hlj — &]
k
[

NN X RN

Example: Convolution — One way

Xl=01 4 3 1 2]
Ail=01 2 3 4 5]

0]A[j-0]=[1 2 3 4 5
1] AL~ 1] = |

2] hlj - 2] =

3] Al - 3] =

4] h[j 4] =

x{j] # hlj] =

D X[k hlj — &]
k
[

NN X RN

Example: Convolution — One way

Z x[k
k
|

X1=1 1 4 3 1 2]
Ail=01 2 3 4 5]

0]A[j-0]=[1 2 3 4 5

Aaj-11=[4 8 12 16 20

2] hlj 2] =

3] hj 3] =

4] hlj—4] =

x[j] * hlj] = | Alj — k]

NN X RN

Example: Convolution — One way

301 2]
3 4 5

3 4 5

8 12 16 20

36 9 1215

xjl=11 4

Ajl =1 1 2
0]Ai-01=1[1 2
1hi-11=1[__ 4
2lhj =2 =1 _
3] hj 3] =
4] hlj—4] =
x[j] * hAlj] =

D X[k hlj — &]
k
[

NN X RN

Example: Convolution — One way

4 3 1 2]
2 3 4 5]

2 3 4 5
4 8 12 16 20
3 6 9 1215

1 2 3 4 5

=1 1

=11
0] hlj—0] = [I
1JAG-11=1 _
20 A 21 =1 _
31 Al 3] =
4] h[j 4] =
x{j] # hlj] =

D X[k hlj — &]
k
[

NN X RN

Example: Convolution — One way

1= 1 4 3 1 2]

Ail=01 2 3 4 5]
0]A[j-0]=[1 2 3 4 5
1Aj-11=[4 8 12 16 20
21h[j-21=[3 6 9 1215
3] h[j - 3] = 1 2 3 4 5
4] h[j—4] = 2 4 6 8 10
x[j] = hlj] =

D X[k hlj — &]
k
[

NN X RN

>
=

1

Example: Convolution — One way
Xj1=7 1 4 3 1 2]
Ajil=1 1 2 3 4 5]
01A[[—-0] =] 1 2 3 4 5
A—-11=] 4 8 12 16 20
D1A[-21=] 3 6 9 1215
31 A -3] = 1 2 3 4 5
4] hlj—4] = 2 4 6 8 10
x[j] * hlj] = 2, x[k] hlj — K]

6 14 23 34 39 25 13 10 |

Another Way to Look at Convolution

X j1=hlj1= D x[k]-h[j—k]
k
Think of 1t this way:

= Flip the function / around zero
= Shift a copy to output position j

= Point-wise multiply for each position & the value of the
function x and the flipped and shifted copy of %

= Add for all £ and write that value at position j

Convolution in Higher Dimensions

In one dimension:

o0

x(£) * h(t) = j x(D)h(t-1)dr

—00

In two dimensions:

o0 OO

I(x,y)*h(x,y)= j J.[(Tx,fy)h(x—fx,y—Ty)dfxdfy

Or, in discrete form: —©—®

I[x,y]*h[x,y]=ZZ[[],k]h[x—],y—k]
ko J

Example: Two-Dimensional Convolution

1 1 2 2

1 1 1
1 1 2 2

* 1 2 1 =
11 2 2

1 1 1
11 2 2

see homework assignment!

Properties of Convolution
 Commutative: f* g=g* f
» Assoclative: f* (g*h)=(f*g)* h
 Distributive over addition: f* (g + h)=f* g+ f* h

e Derivative:

%(f*g)=f'*g+f*g'

Convolution has the same mathematical properties as
multiplication

(This 1s no coincidence)

Useful Functions
* Square: I1 (7)

* Triangle: A (7)

* Gaussian: G(¢, s)
 Step: u(?)

* Impulse/Delta: o (7)

* Comb (Shah Function): comb, ()

Each has their two- or three-dimensional equivalent.

Square

1 if||<a
[T (¢) =+

kO otherwise

-a a
What does f(¢) * 11 (¢) do to a signal f(¢)?
What 1s I1 (¢#) * I1 (¢)?

Triangle

r |
Aa(t)=<1 ‘A‘ if t‘Sa

0 otherwise

Gaussian

Gaussian: maximum value = 1

G(t,0) = e%f

Normalized Gaussian: area=1

G(t’ O') — \/%O- e_%o-z

Convolving a Gaussian with another:

-O O

G(t,01)*G(t,0,) = G(t,\/alz — 0'22)

Step Function

u(t) =

1 ifr>0
0 otherwise

What 1s the derivative of a step function?

Impulse/Delta Function

e We’ve seen the delta function before:

siy=1* Tr=0 d T5(t)dt 1
— an —
0 otherwise -

 Shifted Delta function: impulse at t =k

ift=k

otherwise

5(t—k)={zo

« What is a function f(¢) convolved with o (7)?

* What 1s a function f(¢) convolved with o (7 - k)?

Comb (Shah) Function

A set of equally-spaced impulses: also called an impulse train

comby, ()= &(t — hk)
h 1s the spacing

What is f(#) * comb,(¢)?

3h2h ch O h 2h 3h

Convolution Filtering
* Convolution 1s useful for modeling the behavior of filters
« It 1s also useful to do ourselves to produce a desired effect

 When we do it ourselves, we get to choose the function that the
input will be convolved with

 This function that is convolved with the input 1s called the
convolution kernel

Convolution Filtering: Averaging

Can use a square function (“box filter”) or Gaussian to locally
average the signal/image
« Square (box) function: uniform averaging

= Gaussian: center-weighted averaging

Both of these blur the signal or image

Questions: Convolution

Frequency Analysis

Here, we write a square
wave as a sum of sine e Fourier Domain

WSS same e Signals (1D, 2D, ...)
| decomposed into sum of signals

One term: \

—T / = with different frequencies
S T

A
Two terms: 7)
I/
Vi "/‘\\ J,z"\ AN

=

T / T i
=7 X = % _// L //
i
“\ y/ \
) \
A

-

=
Il

|
i A
Three terms: ﬁ S \N
]

/0 O Y / ¥ it
NG R O N TRE N
1I I.II Il
\ / \

W ar. \
AN iy
|

© http://www.physics.gatech.edu/gcuo/UltrafastOptics/PhysicalOptics/

© http://www.cs.sfu.ca/~hamarneh/courses/cmpt340 04 1

Frequency Analysis

* To use transfer functions, we must first decompose a signal into its component
frequencies

 Basic idea: any signal can be written as the sum of phase-shifted sines and
cosines of different frequencies

» The mathematical tool for doing this is the Fourier Transform

image wave magnitudes wave phases

© www.dai.ed.ac.uk/HIPR2/ fourier.htm

General Idea of Transforms

Given an orthonormal (orthogonal, unit length) basis set of vectors
1€
Any vector in the space spanned by this basis set can be
represented as a weighted sum of those basis vectors:

\7 = Z akgk
k
To get a vector’s weight relative to a particular basis vector ¢,:
a, =Vv-e

Thus, the vector can be transformed into the weights a,

Likewise, the transformation can be inverted by turning the
weights back into the vector

Linear Algebra with Functions

The inner (dot) product of two vectors is the sum of the point-
wise multiplication of each component:

u-v=>) ulj1-v[/]
J
Can’t we do the same thing with functions?

frg=| (g (x)dx

Functions satisfy all of the linear algebraic requirements of
vectors

Transforms with Functions

Just as we transformed vectors, we can also transform functions:

Vectors {¢,[/]}

Functions {e(7)}

4= fe, = | f0E ()it

Transform |a; =V -¢; :Zv[j]'ek[j]
J
Inverse V= Z ayey

k

f(@) = are, (1)
k

Basis Set: Generalized Harmonics

The set of generalized harmonics we discussed earlier form an
orthonormal basis set for functions:

{eiZﬁst}

where each harmonic has a different frequency s

Remember:

et = cos(2 7zst) + i sin(2 7zst)

The real part is a cosine of frequency s

The 1imaginary part is a sine of frequency s

The Fourier Series

All Functions {e,(7)} Harmonics {7}

ak — f . eizmkf

Transform |g = f.¢, = jf(t)e;: (¢)dt _ Tf(t)e_im"tdt

Inverse f(t)= Zakek (1) f(@)= Zakeizmkz
k k

The Fourier Transform

Most tasks need an infinite number of basis functions
(frequencies), each with their own weight F(s):

Fourier Series

Fourier Transform

ak — f . ei27ZIS'kt

F(S) _ f . ei27zst

Transform % . % .
— jf(t)e—l27mktdt — J‘f(t)e_lzsztdt
Inverse f(t)= Zakeizmkt f(t)= IF(S)eizmktdS
k _ o

The Fourier Transform
To get the weights (amount of each frequency): F

F(s)= Of £ (0)e ™ d

F(s) 1s the Fourier Transform of f{z): #f(t)) = F(s)

To convert weights back into a signal (invert the transform):

)= TF(s)eiz’mds

f(t) is the Inverse Fourier Transform of F(s): #1(F(s)) = f(t)

Notation

Let Fdenote the Fourier Transform:

F=%f)

Let #! denote the Inverse Fourier Transform:

f=F\(F)

How to Interpret the Weights F(s)

The weights F(s) are complex numbers:

Real part How much of a cosine of frequency s you need
Imaginary part How much of a sine of frequency s you need
Magnitude How much of a sinusoid of frequency s you need

Phase What phase that sinusoid needs to be

Magnitude and Phase

Remember: complex numbers can be thought of in two
ways: (real, imaginary) or (magnitude, phase)

Magnitude: |F|= \/ R(F)* + 3(F)*
R(F)
I(F)

Phase: (F) =arctan

image |F|

© www.dai.ed.ac.uk/HIPR2/ fourier.htm

Periodic Objects on a Grid: Crystals

 Periodic objects with period N:
= Underlying frequencies must also repeat over the period NV

= Each component frequency must be a multiple of the
frequency of the periodic object itself:

1 2 3
N N N’
o If the signal 1s discrete:

= Highest frequency 1s one unit: period repeats after a single sample

= No more than N components

1 2 3 N
N N N N

Discrete Fourier Transform (DFT)

If we treat a discrete signal with N samples as one period of an
infinite periodic signal, then

—1271st

Fls]=— Zf N

and
[2TTSt

N-1
= ZF[S]@ N
s=0

Note: For a periodic function, the discrete Fourier transform is the same as
the continuous transform

= We give up nothing in going from a continuous to a discrete
transform as long as the function is periodic

Normalizing DFTs: Conventions

Basis Transform Inverse
Function
: 1 N-1 _i2mst N-1 127st
SIS | Fs] - Zof[r]e N A= ZOF[s]e N
t= g=
1 i2nst 1 JZRS% A i2ns7
NS =——= Y flde V| fll=—= Y Flsle /N
JN N 5 JN S
1 i2'rcs% N-1 _i2nsy 1 N-1 12mst
—e /N| Fls]=) fltle flt]=— > Flsle /N
N =0 N s=0

Discrete Fourier Transform (DFT)

7 1 N-1 —z2nstN
[s] ﬁgf[f]e
N-1 (2Tt
flt1=) Flsle /A
s=0

Questions:

= What would the code for the discrete Fourier transform look
like?

= What would 1ts computational complexity be?

Fast Fourier Transform
developed by Tukey and Cooley in 1965

If we let
we le P y
WN =€ N
the Discrete Fourier Transform can be written
1 N-—1
Flsl=— > fl11- Wy
N =0

If N is a multiple of 2, N = 2M for some positive integer M,
substituting 2M for N gives

Fast Fourier Transform
Separating out the M even and M odd terms

F[s]= 1{ Z f12t]- W;]fjfu— Z 12t +1]- S<2"‘+1)}

2
Notice that
Wzsjf/[zt) —zzns(zt%M _ e_izm% _ Wﬁ‘
and —l2ns(2t+1/ _lzm _lzm
i - Wi
So,

F[s]= 1 ij\f 1261 WS+ iﬁf fI2t+11-WEWs
-] A ~ M M ~ M"T2M

Fast Fourier Transform

F[s]= 1 ij\f 1261 WS+ iﬁf fI2t+11-WEWs
-] A ~ M M ~ M"T2M

Can be written as
|
F[S] = E even (S) + FOdd (S)WZSM }

We can use this for the first M terms of the Fourier transform of
2M 1tems, then we can re-use these values to compute the last M/
terms as follows:

1
F[S+M] :E even(S)_Fodd(S)Wst}

Fast Fourier Transform
If M 1s 1tself a multiple of 2, do 1t again!

If N is a power of 2, recursively subdivide until you have one
element, which 1s its own Fourier Transform

ComplexSignal FFT(ComplexSignal) {
1T (length(f) == 1) return T;

M = length(f) 7/ 2;
WM = enr(-I * 2 * Pi / M) // A complex value.

even FFT(EvenTerms(f));
odd FFT(OddTerms(f));

for (s = 0; s < M; s++) {
result[s] even[s] + W _2M*s * odd[s];
result[s+M] even[s] — W 2M*s * odd[s];
+
}

Fast Fourier Transform

Computational Complexity:

Discrete Fourier Transform -> O(N?)

Fast Fourier Transform - O(Nlog N)

Remember: The FFT is just a faster algorithm for computing the DFT — it
does not produce a different result

Fourier Pairs

Use the Fourier Transform, denoted ¥, to get the weights for
cach harmonic component in a signal:

F(s)=F(f() = | f(t)e > di

And use the Inverse Fourier Transform, denoted !, to
recombine the weighted harmonics into the original signal:

@O =FYF(s)) = TF(S)eizmds

We write a signal and its transform as a Fourier Transform pair:

J (1) < F(s)

Sinusoids

Spatial Domain Frequency Domain
A F(s)
cos(2mar) Vs + w) + As — w)]
sin(2mwr) Vo[As + w) - As — w)]i

SR

Constant Functions

Spatial Domain Frequency Domain
f(0) F{(s)
1 o(s)
a ao(s)
O t 0

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm

Delta (Impulse) Function

Spatial Domain

Frequency Domain

A F(s)
5 (f) 1
0 t 0 s

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm

Square Pulse

Spatial Domain Frequency Domain

f9) F(s)

sin(27as)

I1 (¢) 2a sinc(2as) =

spatial Domain Frequency Domain

Adapted from http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html

Sinc Function

* The Fourier transform of a square function, I'1 () is the (normalized) sinc

function: sin(7rx
sinc(x) = (7)

TX

* To show this, we substitute the value of 11 () =1 for —a < ¢ < a into the
equation for the continuous FT, 1.e.

Fo)= [

 We use a substitution. Let u = -12nst, du = -12xns dt and then dt = du / -127@st

1 —i2rsa 1 | |
F S)= eudu — e—l27Z'aS . ez27ms _
() —i27Z'S i2;[sa —i27Z'S |: :|
1 _ |
= [cos(—27as) +isin(—27as) — cos(2was) —isin(2zas)| =
—i27s
1 1

: [—2isin(27as)] =—sin(2ras) = 2a sinc(2as).
—i27s TS

Triangle

Spatial Domain Frequency Domain
f() F{(s)
A (%) a sinc?(as)
A, (1) 1/2 sinc®(s/2)
1 0.5

-172 0 12 0 S

Comb (Shah) Function

Spatial Domain Frequency Domain
A1) F{(s)
comb,(#) = o (t mod h) o (t mod 1/h)
0 t th O 1/ S

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm

Gaussian

Spatial Domain Frequency Domain
f() F{(s)
2 2
e—Tct e—TES
4 ’ 2
—7T| — —7(0os)
e ‘

see homework assignment!

Graphical Picture

(SPATIAL)
SPATIAL DOMAIN - FREQUENCY DOMAIN

http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html

Common Fourier Transtform Pairs

Spatial Domain: f{¢)

Frequency Domain: F(s)

Cosine cos(2mat) Shifted Deltas W[o(s + @) + O0(s — w)]
Sine sin(2mwwr) Shifted Deltas [o(s + w) - O(s — w)]i
Unit Function 1 Delta Function o(s)
Constant a Delta Function a o(s)
Delta Function o(?) Unit Function 1
Comb o(t mod h) Comb o(t mod 1/h)
Square Pulse I (?) Sinc Function 2a sinc(2as)
Triangle A7) Sinc Squared a sinc?(as)
Gaussian 2 Gaussian i

—Tit
e

e

FT Properties: Addition Theorem

Adding two functions together adds their Fourier Transforms:

Hf +g) = Hf) + Hg)

Multiplying a function by a scalar constant multiplies its Fourier
Transform by the same constant:

Haf) = a Hf)

Consequence: Fourier Transform 1s a linear transformation!

FT Properties: Shift Theorem

Translating (shifting) a function leaves the magnitude unchanged
and adds a constant to the phase

It S =/t —a)
F, = Hf)
F, =)
then
F5| = |F]

¢ () = ¢(I)) - 2msa

Intuition: magnitude tells you “how much”,
phase tells you “where”

FT Properties: Similarity Theorem

Scaling a function’s abscissa (domain or horizontal axis) inversely
scales the both magnitude and abscissa of the Fourier transform.

It S =fi(a?)
F, = Hf)
F, =)
then

Fy(s) = (1/a]) Fi(s / a)

FT Properties: Rayleigh’s Theorem

Total sum of squares 1s the same in either domain:

[lr@| ar= [|F)| ds

The Fourier Convolution Theorem

Let F, G, and H denote the Fourier Transforms of signals 7, g,
and A respectively

g=f*h implies G=FH

g=fh implies G=F*H

Convolution in one domain is multiplication in the other and vice
versa

Convolution in the Frequency Domain

One application of the Convolution Theorem 1s that we can
perform time-domain convolution using frequency domain
multiplication:

fxg=FYARS) Q)

How does the computational complexity of doing convolution
compare to the forward and inverse Fourier transform?

Deconvolution
If G = FH, can’t you reverse the process by F'= G/ H?

This 1s called deconvolution: the “undoing” of convolution

Problem: most systems have noise, which limits deconvolution,
especially when H 1s small.

2-D Continuous Fourier Transform

Basic functions are sinusoids with frequency u in one direction
times sinusoids with frequency v in the other:

Fuv)= [[f(xy)e 7 dx dy

Same process for the inverse transform:

o0 o0

fey)= [[Fav)e ™ dx dy

—00 —00

2-D Discrete Fourier Transform

For an N x M 1image, the basis functions are:

2mux/ N i2nvy/ M
hu,v[xay]:e € g

_ e—i27z(ux/N+vy/M)

-1 M-1

F[u V] _ Z Zf x y]e—z2ﬂ(ux/N+vy/M)
NM x=0 y=0

Same process for the inverse transform:

N-1 M-I

f[x,y] _ Z ZF[u,v]ei27z(ux/N+vy/M)

u=0 v=0

2D and 3D Fourier Transforms

The point (¢, v) in the frequency domain corresponds to the basis
function with:

Frequency |(u, v)|

and OR in the

Frequency u 1n x

Frequency v in y Direction ¢ (u, v)

This follows from rotational invariance

Properties
All other properties of 1D FTs apply to 2D and 3D:

= Linearity

= Shift

= Scaling

= Rayleigh’s Theorem

= Convolution Theorem

Rotation
Rotating a 2D function rotates 1t’s Fourier Transform

It

|, = rotatey(f)
= f,(x cos(0) —y sin(0), x sin(0) + y cos(0))

Fy = Ef)
F, = E{)
then
Fy(s) = F,(x cos(0) —y sin(0), x sin(0) + y cos(0))

1.e., the Fourier Transform is rotationally invariant.

Rotation Invariance (sort of)

needs
more
boundary
padding!

© http://mail.udlap.mx/~oldwall/docencia/IMAGENES/chapter2/image 232 1S548.html

Transforms of Separable Functions
If

Jx,) =110 /,(0)

the function f1s separable and its Fourier Transform is also
separable:

Fu,v) = F(u) F(v)

Linear Separability of the 2D FT

The 2D Fourier Transform 1s linearly separable: the Fourier Transform
of a two-dimensional image 1s the 1D Fourier Transform of the rows followed by
the 1D Fourier Transforms of the resulting columns (or vice versa)

N-1 M-I

F[u V Z Zf)C y —z27z(ux/N+vy/M)
NM x=0 y=0

N-1 M-I

— /N —i2nvy/ M
Z foy 2 mux Y
NM x=0 p=0

1 M—1 1 N— . .
ﬁ b Zf[X,y]e_lzﬂMX/N e—zZﬂvy/M
y=0 | x=0 |

Likewise for higher dimensions!

Convolution using FFT

Convolution theorem says

[*g=FU(HS) HQ))

Can do either:
= Direct Space Convolution

= FFT, multiplication, and inverse FFT

Computational breakeven point: about 9 x 9 kernel in 2D

Correlation

Convolution 1s

fO*g)= [f()gt—1)dr

Correlation 1s

fO*g(t)= | f(D)g(t+7)dr

Correlation 1n the Frequency Domain

Convolution
(@) * g(t) & F(s) G(s)

Correlation

f (1) * g(-) > F(s) G(s)

Template “Convolution”

*Actually, 1s a correlation method
*Goal: maximize correlation between target and probe 1image
*Here: only translations allowed but rotations also possible

Maximim

Jext
Example

FOR m
Cross-Correlation

target probe

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html

Particle Picking

*Use spherical, or rotationally averaged probes
*Goal: maximize correlation between target and probe 1image

microscope image of latex spheres

target probe

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html

Autocorrelation

Autocorrelation 1s the correlation of a function with itself:

@ *f-0)

Useful to detect self-similarities or repetitions / symmetry within
one 1mage!

Power Spectrum

The power spectrum of a signal 1s the Fourier Transform of its
autocorrelation function:

P(s) = RS () * f(-1))
= F(s) F(s)
= [F(s)]?
It 1s also the squared magnitude of the Fourier transform of the
function
It 1s entirely real (no imaginary part).

Useful for detecting periodic patterns / texture in the image.

Use of Power Spectrum in Image Filtering

Original with noise patterns Power spectrum showing noise spikes

Mask to remove periodic noise Inverse FT with periodic noise removed

© http://www.reindeergraphics.com/tutorial/chap4/fourier13.html

Figure and Text Credits

Text and figures for this lecture were adapted in part from the following source, in
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519

© 2003 School of Electrical Engineering and Computer Science, Oregon State University, Dearborn Hall, Corvallis, Oregon, 97331

Resources

Textbooks:
Kenneth R. Castleman, Digital Image Processing, Chapters 9,10
John C. Russ, The Image Processing Handbook, Chapter 5

