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Transforms



Transforms

• A transform is a change in the numeric representation of a signal 
that preserves all of the signal’s information

• Transforms can be thought of as a change of coordinates into 
some coordinate system (basis set)

An alternate form of expressing the vector/signal

• They all have the same basic form:
1. Choose your basis functions
2. Get the weights using inner product of signal and basis functions
3. Reconstruct by adding weighted basis functions
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Example: The Fourier Transform
Basis functions: complex harmonics

ei2πst or ei2πsn/N

Transform (calculating the weights of each basis function):

Inverse transform (putting together the weights):
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Various Transforms

Time/frequency analysisVariousWavelets

First-order changesRamp signals of different 
slopes and offsets

Slant

Binary dataSquare pulses of different 
widths and offsets

Haar

Frequency analysis             
(but not convolution)

CosinesCosine

Frequency analysis,   
Convolution

Sines and Cosines (Complex 
harmonics)

Fourier

Good for…Basis FunctionsTransform
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Discrete Cosine Transform



Discrete Cosine Transform (DCT)
• The discrete cosine transform (DCT) is a discrete Fourier-

related transform similar to the discrete Fourier transform (DFT), 
but using only real numbers. It is equivalent to a DFT of roughly 
twice the length, operating on real data with even symmetry 
(since the Fourier transform of a real and even function is real
and even). 

Basis functions: real-valued cosines
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Discrete Cosine Transform (DCT)
Transform:

Inverse transform:

Treat signal as alternating-periodic.

Real-valued transform!
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Discrete Cosine Transform (cont.)
Uses alternating periodicity and ~2x larger unit cell
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DCT in 2D
Basis functions: real-valued cosines

where
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Use of DCT in JPEG Compression
• What linear combination of 8x8 DCT basis functions produces 

an 8x8 block in the image?
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Results (JPEG Example)
• Discrete cosine transform (DCT) on 8x8 blocks

DCT 
coefficients
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Wavelet Transform



Co-joint Representations
• Signals are pure time/space domain — no frequency component

• Sinusoidal (Fourier, DCT) transforms are pure frequency domain 
— no spatial component

• Wavelets and other co-joint representation are:
Somewhat localized in space

Somewhat localized in frequency

• Accuracy in the spatial domain is inversely proportional to 
accuracy in the frequency domain
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• A wavelet is a waveform of effectively limited duration that 
has an average value of zero.

© 2005 Burd Alex, http://cs.haifa.ac.il/hagit/courses/seminars/wavelets/Presentations/Lecture01_Introduction.ppt

Sinusoidal vs. Wavelet
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Sinusoidal vs. Wavelet



• The basic idea of the wavelet transform is to represent any 
arbitrary function ƒ(t) as a superposition of a set of such 
wavelets or basis functions. 

• These basis functions or baby wavelets are obtained from a 
single prototype wavelet called the mother wavelet, by 
dilations or contractions (scaling) and translations (shifts).

• The wavelet transform is a tool for carving up functions, 
operators, or data into components of different frequency, 
allowing one to study each component separately.

© Hongjun Xu, http://coursemain.ee.ukzn.ac.za/enel4iph2/notes/Lec_8.ppt

Wavelet Transform



*
,( , ) ( ) ( )ss f t t dtτγ τ = Ψ∫

where * denotes complex conjugation. This equation shows how 
a function ƒ(t) is decomposed into a set of basis functions          , 
called the wavelets. 

)(, ts τΨ

• The variables s and τ are the new dimensions, scale and 
translation (position), after the wavelet transform.

• The Continuous  Wavelet Transform (CWT) is defined as the 
sum over all time of the signal multiplied by scaled, shifted 
version of the wavelet function: )(, ts τΨ
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Continuous Wavelet Transform



• The wavelets are generated from a single basic wavelet         , 
the so-called mother wavelet, by scaling and translation:
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s is the scale factor, τ is the translation factor and the factor   
s-1/2 is for normalization across the different scales.

• It is important to note that in the above transforms the 
wavelet basis functions can be chosen by the user (if certain 
mathematical conditions are satisfied, see below). 

• This is a difference between the wavelet transform and the 
Fourier transform, or other transforms. 
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Mother Wavelet



Scaling
• Scaling a wavelet simply means stretching (or compressing) it:
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• Low scale a compressed wavelet rapidly changing details
high frequency ω

• High  scale a stretched wavelet slowly changing details

low frequency ω
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Shift

© Hongjun Xu, http://coursemain.ee.ukzn.ac.za/enel4iph2/notes/Lec_8.ppt

• Translating a wavelet simply means delaying (or hastening) its onset.



stands for the Fourier transform of )(ωψ )(tψ

• The admissibility condition implies that the Fourier transform

of          vanishes at the zero frequency, i.e.( )tψ 0)(
0

2 =
=ω

ωψ

• This means that wavelets must have a band-pass like spectrum. 
This is a very important observation, which we will use later on to 
build an efficient discrete wavelet transform.
• A zero DC (zero frequency) component also means that the 
average value of the wavelet in the time domain must be zero,

0)( =∫ dttψ must be AC, i.e. a wave.)(tψ
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Wavelet Properties
2
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Admissible Mother Wavelet Examples



The Inverse CWT
• The original (1D) function can be reconstructed from the 2D CWT
with the inverse CWT:

2
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• In practice the CWT is not efficient due to the redundancy of the 
2D representation (the basis functions are not orthogonal):

1D 2D

© http://users.rowan.edu/~polikar



• The discrete wavelet is written as
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j and k are integers and s0 > 1 is a fixed dilation step. The 
translation factor τ0 depends on the dilation step. The effect of 
discretizing the wavelet is that the time-scale space is now 
sampled at discrete intervals. We usually choose s0 = 2 
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Redundancy Removal: Discrete Wavelets
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• Orthogonality:



• The wavelet has a band-pass like spectrum
From Fourier theory we know that compression in time is 
equivalent to stretching the spectrum and shifting it upwards:
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This means that a time compression of the wavelet by a factor 
of 2 will stretch the frequency spectrum of the wavelet by a 
factor of 2 and also shift all frequency components up by a 
factor of 2. 

Suppose a=2
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Band-Pass Spectrum



• To get a good coverage of the signal spectrum the 
stretched wavelet spectra should touch each other.

• Touching wavelet spectra resulting from scaling of the 
mother wavelet in the time domain.

• Summarizing, if one wavelet can be seen as a band-pass 
filter, then a series of dilated wavelets can be seen as a band-
pass filter bank. 

© Hongjun Xu, http://coursemain.ee.ukzn.ac.za/enel4iph2/notes/Lec_8.ppt

Band-Pass Spectrum



• Ηow to cover the spectrum all the way down to zero?
• The solution is not to try to cover the spectrum all the way 
down to zero with wavelet spectra, but to use a cork to plug the
hole when it is small enough.
• This cork then has a low-pass spectrum and it belongs to 
the so-called scaling function. 
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The Scaling Function



• We can decompose the scaling function in wavelet components:

∑=
kj

kj tkjt
,
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• admissibility condition for scaling functions

1)( =∫ dttϕ

• In practice, scaling functions and wavelets correspond to each other, 
and choice is not completely free if good reconstruction properties are 
desired.
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Scaling Function Properties



• Haar  function

• Daubechies function

© 2005 Burd Alex, http://cs.haifa.ac.il/hagit/courses/seminars/wavelets/Presentations/Lecture01_Introduction.ppt

Scaling / Wavelet Pairs



• Compact support
finite number of filter parameters / fast implementations 
high compressibility
fine scale amplitudes are very small in regions where the 
function is smooth / sensitive recognition of structures

• Identical forward / backward filter parameters
fast, exact reconstruction
very asymmetric

© 2005 Burd Alex, http://cs.haifa.ac.il/hagit/courses/seminars/wavelets/Presentations/Lecture01_Introduction.ppt

I. Daubechies, Comm. Pure Appl. Math. 41 (1988) 909.

Daubechies Wavelets



• Mallat was the first to implement discrete wavelets in a well 
known filter design called “two channel sub band coder”, 
yielding a Fast Wavelet Transform or DWT

• The outputs of the different filter stages are the wavelet- and 
scaling function transform coefficients. 

• The choice of scales and positions based on powers of two --
so-called dyadic scales and positions -- yields a very 
efficient and accurate analysis.

DWT as a Filter Bank



• Approximations: High-scale, low-frequency components of 
the signal

• Details: low-scale, high-frequency components

Input Signal

LF

HF

© 2005 Burd Alex, http://cs.haifa.ac.il/hagit/courses/seminars/wavelets/Presentations/Lecture01_Introduction.ppt

Approximation and Details



Downsampling

© Hongjun Xu, http://coursemain.ee.ukzn.ac.za/enel4iph2/notes/Lec_8.ppt

• At each filter the sampling rate remains constant, this is 
achieved through 2x downsampling of both HF and LF 
signals: 



• Iterating the decomposition process, breaks the input signal 
into many lower-resolution components: Wavelet 
decomposition tree:

© 2005 Burd Alex, http://cs.haifa.ac.il/hagit/courses/seminars/wavelets/Presentations/Lecture01_Introduction.ppt

Multi-Level Decomposition
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• Reconstruction (or synthesis) is the process in which we 
assemble all components back 

Upsampling
(or interpolation) is 
done by zero inserting 
between every two 
coefficients
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Reconstruction
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Haar DWT in 1D



One-Level DWT for 2D Images

H1

H2

H1

H2

2

2

2

2

H1

H2

2

2

Row-wise operations Column-wise operations

Hi

∑
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L

k
i khknxny

0
][][][

x[n] y[n] 2

Keep one out of two pixels

Filter Decimator

Input Image

LL
Component

HL
Component

LH
Component

HH
Component

(Low pass)

(Low pass)

(Low pass)

(High pass)

(High pass)

(High pass)
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Multi-Level DWT for 2D Images

LL HL1

LH1 HH1

2D-DWT

2D-DWT

LL HL2

HH2LH2
HL1

LH1 HH1
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Haar DWT in 2D
The Haar transform can be used in lossy image compression 

Original image Reconstructed image 

© 2005 http://symbolcraft.com/graphics/haar/

The second image was created with the following procedure. A 2D Haar wavelet transformation 
of the first image was created, 75% of the resulting wavelet data was zeroed out (the 75% of the 
difference coefficients with the smallest absolute values), and then the second image was 
reconstructed from the modified wavelet data. The resulting image contains only 25% of the 
information found in the original, but is still quite recognizable. Zeroed wavelet data compresses 
well, and this procedure therefore provides a decent lossy compression technique for images. 



Wavelet: 
Haar
Level:3

© 2005 Burd Alex, http://cs.haifa.ac.il/hagit/courses/seminars/wavelets/Presentations/Lecture01_Introduction.ppt

Fingerprint Compression

Motivation:
FBI uses a wavelet 
technique to 
compress its 
fingerprints 
database.



Original Image Compressed Image

Threshold: 3.5
Zeros: 42%
Retained 
energy:
99.95%
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Fingerprint Compression



Energy Compaction and 
Compression Rates



Energy Compaction

Definition: most of the signal information is concentrated in a few 
low-frequency (or otherwise isolated) components of the 
transform, approaching the Karhunen-Loève transform, which is 
optimal in the decorrelation sense.



Karhunen-Loève Transform
• “Gold standard” for energy compaction

• Basis functions: eigenvectors of covariance matrix

• Idea:
Measure statistical properties of the relationship between pixels.
Find the “optimal” relationships (eigenvectors).
Use these as basis functions.

• Signal/image specific!

• a.k.a. Principal Component Analysis (PCA)



Karhunen-Loève Transform

© 2003 www.cs.tau.ac.il/~sorkine/courses/cg/cg2003

x

y

Given a set of points, find the best line that
approximates it – reduce the dimension of the data set…

x’y’



Karhunen-Loève Transform

x

y

… and minimize the sum of distances in the orthogonal 
direction

x’y’
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Energy Compaction
In practice, most transforms produce a more compact 
representation than the original image when series is truncated at 
some point.

Compression in signal/image processing means large part of 
information content in small part of representation

Some spatial representation as wellGoodWavelets

Basis functions are signal-specificOptimalPCA

FastBetterCosine

Convolution TheoremGoodFourier

Easily interpretedPoorImage

And/But …CompactionRepresentation
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Energy Compaction

• The DCT is often used in signal and image processing, 
especially for lossy data compression, because it has a strong 
"energy compaction" property, approaching the Karhunen-Loève
transform (which is optimal in the decorrelation sense).

• For example, the DCT is used in JPEG image compression, 
MJPEG video compression, and MPEG video compression.

• A related transform, the modified discrete cosine transform, or 
MDCT, is used in AAC, Vorbis, and MP3 audio compression.

• For more info and links see http://en.wikipedia.org/wiki/DCT



Signal Compression Rates

128 kbps - 1.5 
Mbps

1.5 MbpsDigital Audio (Stereo):
44.1 k samples/sec
16 bits/sample

8 - 16 kbps5.07 MbpsSlow Motion Video:
10 fps
176 × 120 frames
8 bits/pixel

16 - 64 kbps64 kbpsAudio Conference:
8 k samples/sec
8 bits/sample

2 - 4 kbps64 kbpsVoice:
8 k samples/sec
8 bits/sample

CompressedUncompressedApplication
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Signal Compression Rates

1.5 - 4 Mbps60.83 MbpsDigital Video on CD-ROM:
30 fps
352 × 240 frames
8 bits/pixel

384 kbps30.41 MbpsVideo File Transfer:
15 fps
352 × 240 frames
8 bits/pixel

64 - 768 kbps30.41 MbpsVideo Conference:
15 fps
352 × 240 frames
8 bits/pixel

CompressedUncompressedApplication
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Signal Compression Rates

20 Mbps1.33 GbpsHDTV:
59.94 fps
1280 × 720 frames
8 bits/pixel

3 - 8 Mbps248.83 MbpsDVD / Broadcast Video:
30 fps
720 × 480 frames
8 bits/pixel

CompressedUncompressedApplication

© 2003 http://web.engr.oregonstate.edu/~enm/cs519



Information and Coding



Coding
• All information in digital form must be encoded

• Examples:
Binary numbers
ASCII
IEEE floating-point standard

• Coding can be:
Simple or complex
Loss-less or lossy
Efficient or inefficient: in terms of memory (# of bits) and/or computation 
(# of CPU cycles)

Compression is efficient coding (in terms of memory)
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Information
Information is something unknown

More probabilistically, it is something unexpected

What’s the missing letter?

H  E  L  _  O

Now what letter is missing?

_  A  Y

Different letters and/or different contexts convey different 
amounts of information

© 2003 http://web.engr.oregonstate.edu/~enm/cs519



Information vs. Data
Data: the actual bits, bytes, letters, numbers, etc.

Information: the content

Redundancy: difference between data and information

redundancy = data – information

Compression: keep the information and remove the redundancy 
(as much as possible)

Information Redundancy

Data

© 2003 http://web.engr.oregonstate.edu/~enm/cs519



Types of Redundancy
Remember:

redundancy = data – information

In general, there are three types of redundancy:

More data than we can hear/seePerceptual (visual)

Predictability in the dataInter-sample (inter-pixel)

Inefficient allocation of bits for symbolsCoding

© 2003 http://web.engr.oregonstate.edu/~enm/cs519



Types of Compression
Compression algorithms characterized by information 
preservation:

Loss-less or information-preserving: No loss of information (text, legal, or 
medical applications)

Lossy: Sacrifice some information for better compression (web images)

Near-lossless: No (or very little) perceptible loss of information 
(increasingly accepted by legal, medical applications)

© 2003 http://web.engr.oregonstate.edu/~enm/cs519



Quantifying Compression and Error
• Compression described either using:

Compression ratio: popular but less technical
Rate: bits-per-symbol (bps) or bits-per-pixel (bpp)

• Distortion (Error) is measured by comparing the compressed-
decompressed result    to the original f:

( )∑ ∑

∑ ∑

= =

= =

−

==
M
y

M
x

M
y

M
x

yxfyxf

yxf

error
signalSNR

1 1

2

1 1
2

),(),(ˆ

),(

( )∑ ∑
= =

−=
M

y

N

x
rms yxfyxferror

1 1

2
),(),(ˆ 

f̂

© 2003 http://web.engr.oregonstate.edu/~enm/cs519



Quantifying Compression and Error
Most lossy algorithms let you trade off accuracy vs. compression

This is described as the rate distortion curve: The fewer bits 
required, the more distorted the signal

R
at

e:
R

(D
)

Distortion: D
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Quantifying Information: Entropy
Information content (entropy) of symbol a with probability of 
occurrence p(a):

infoa = –log2 p(a) bits

Examples:
8 possible symbols with equal probability (for each symbol a):

Symbol a with probability     , with 255 other symbols:

bits  3
8
1log2 =−=ainfo

bits  3
8
1log2 =−=ainfo

8
1
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Entropy for a Language
The average bits of information (entropy) for a language with n
symbols a1, a2, …, an is:

where p(ai) is the probability of symbol ai occurring.
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Entropy for a Language: Example
Flip two fair coins and communicate one of three messages: both 
heads, both tails, one each

1 bit1/2One each

1.5 bitsWeighted Average

1/4

1/4

Probability InformationMessage

2 bitsBoth tails

2 bitsBoth heads
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Context
• Information is based on expectation

• Expectation is based on context

• Therefore: Full analysis of information content must consider 
context

Examples of contexts:

Last n letters

Last n values for a time-sampled sequence

Neighboring pixels in an image

© 2003 http://web.engr.oregonstate.edu/~enm/cs519



Calculating Information in Context
Without considering context, the information content of symbol 
ai is

information = –log2 p(ai) bits

where p(ai) is the probability of symbol ai occurring.

Considering context, the information content of the same symbol 
after sequence a0 … ai – 1 is

information = –log2 p(ai| a0 … ai – 1) bits

where p(ai| a0 … ai – 1) is the probability of symbol ai occurring 
immediately after symbols a0 … ai – 1.

© 2003 http://web.engr.oregonstate.edu/~enm/cs519



Entropy Coding
Entropy coding allocates bits per symbol or groups of symbols 
according to information content (entropy)

Huffman Coding: Optimal unique coding on a per-symbol basis

Arithmetic Coding: Encodes a sequence of symbols as an infinite-
precision real number (About 2:1 better than Huffman)

Vector Quantization: Encoding large groups of symbols with (lossy) 
approximations

The theoretical compression limit of entropy coding is the 
entropy of the language (set of symbols) itself
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Huffman Coding
Algorithm for producing variable-length codes based on entropy:

Sort the symbols according to probability of occurrence
Repeat the following until there’s just one symbol left:
- Combine the two symbols with the least probability into a single new 

symbol and add their probabilities
- Re-sort the symbols (insertion sort of new symbol) according to 

probability

The “combinations” form a binary tree structure that can be 
encoded using a single bit for each level
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Huffman Coding (cont.)

Properties:
Decoding is just traversing the tree: When you reach a leaf, emit symbol and 
start a new one

Prefix property (required for variable-length codes): No symbol’s code appears 
as the beginning of a longer one

Each symbol is encoded with approximately ⎡–log2 p(a)⎤ bits

1 bit1/2One each

1/4

1/4

Probability InformationMessage

2 bitsBoth tails

2 bitsBoth heads

HT+TH

HH TT

0 1

0 1
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Arithmetic Coding
• Huffman encodes symbols one-by-one, so you have to “round 

up” the bit allocation

• Arithmetic coding doesn’t use a one-to-one mapping between 
symbols and bit patterns

• The entire string is encoded as one (long) real number

© 2003 http://web.engr.oregonstate.edu/~enm/cs519



Vector Quantization
• Divide the complex signal into n clusters and their cluster centers

• Transmit only the cluster centers (codebook vectors)—this causes loss but 
reduces the space of possible values

• Use a unique code for each vector and transmit that code

• Most VQ systems intelligently select the quantization based on the signal 
content—so you also have to send the codebook (encoding scheme) once



Median Cut
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Color_quantization(Image, n){

For each pixel in Image with color C, map C in RGB space;

B = {RGB space};
While (n-- > 0) {

L = Heaviest (B);
Split L into L1 and L2;
Remove L from B, and add L1 and L2 instead;
}

For all boxes in B do
assign a representative (color centroid);

For each pixel in Image do
map to one of the representatives;

}
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The Median Cut Algorithm



Is this algorithm image dependent?

What is the Heaviest(B) box?
Several factors have to be weighed:

• The total number of image colors in the box.
• The total number of DIFFERENT image colors in the box.
• The physical size of the box.

Which representative should be chosen for a given color?

• The representative of the box containing the color.
• The closest representative under some metric.
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The Median Cut Algorithm



A Better Solution
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k-Means a.k.a. Linde, Buzo & Gray (LBG)

Encoding Distortion Error:
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Advantage: fast, reasonable clustering.
Limitations: depends on initial random positions, 
difficult to avoid getting trapped in the many local minima of E
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k-Means with Splitting
Generalized Lloyd Algorithm (GLA)
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Run-Length Encoding (RLE)
• Encode sequences of identical symbols as (symbol, count) pairs

• Can use fixed-size counts or special prefixes to indicate the 
number of bits for the count:

Fixed: can reduce compression if either too large or too small
Variable: overhead for the prefixes

• Can extend to multiple dimensions
Encode difference from previous line (hopefully long runs of 0’s)
Encode using length or markers from previous line

• Useful for binary signals and black-and-white images (or for signal 
that have only a few possible values)

2-D RLE is used in the CCITT fax standard
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Lempel-Ziv-Welch (LZW)
• Basic idea: encode longest possible previously-seen sequence

• Coding stream is mixture of symbols and back-pointers

• Better yet:
Keep a “codebook” of previously-seen sequences
Store codebook index instead of backwards pointers

• Used in most common text compression algorithms, zip, and the 
GIF image standard
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LZW: Basic Idea

codebook = all single symbols

sequence = empty

while (get(symbol))

if sequence + symbol is in codebook

sequence += symbol

else

output(code for sequence)

add sequence + symbol to codebook

sequence = symbol
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LZW: Example

Mary had a little lamb,

little lamb, little lamb.

Mary had a little lamb,

Its fleece was white as snow.
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Inter-Pixel Redundancy
The basis of inter-sample or inter-pixel redundancy is

Repetition

Prediction
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Predictive Coding
• Use one set of pixels to predict another

• Predictions:
Next pixel is like the last one
Next scan line is like the last one
Next frame is like the last one
Next pixel is the average of the already-known neighbors

• The error from the prediction (residual) hopefully has smaller 
entropy than the original signal

• The information used to make the prediction is the context
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Predictive Coding
Key: Sender and receiver use the same predictive model

Sender:
- Make prediction (no peeking)
- Send the residual (difference)

Receiver:
- Make prediction
- Add the residual to get the correct value

Loss-less: entropy code the residual

Lossy: quantize the residual
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Delta Modulation
• Basic algorithm:

Prediction: next signal value is the same as the last
Residual is the difference (delta) from the previous one
Residual is encoded in a smaller number of bits than the original

• Often used in audio systems (phones)

• Problem: limited-range (or limited-precision) delta can cause under/over-
shoot
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Delta Modulation
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Predictive Image Coding
Predict next pixel based on neighbors that have already been 
seen

Simple predictor: average of the four neighbors

Can use a larger context

Can quantize (lossy) or entropy code (loss-less) the residual

?

a b c

d x?
x ≈ ¼(a + b + c + d)
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Predictive Image Coding (cont.)
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Perceptual Redundancy
Eye is less sensitive to

Color
High Frequencies

So,
Allocate more bits to intensity than chromaticity
Allocate more bits to low frequencies than to high frequencies

Can play similar tricks with the ear and varying sensitivity to different 
frequencies (e.g., the “psycho-acoustic model” plays a key role in MP3)
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Block Transform Coding
• Use some transform to convert from spatial domain to another 

(e.g., a frequency-based one)

• Advantage #1: Many transforms “pack” the information into parts of the 
domain better than spatial representations (e.g. DCT)

• Advantage #2: Quantize coefficients according to perception (e.g., 
quantize high frequencies more coarsely than low ones)

• Problem: artifacts caused by imperfect approximation in one place get 
spread across the entire image

• Solution: independently transform and quantize blocks of the image 
block transform encoding
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Transform Coding: General Structure
Encoder

Decoder

Input
image

(N × M)
Compressed

image
Construct

n × n
subimages

Forward
transform Quantizer Symbol

encoder

Compressed
image

Decompressed
image

Symbol
decoder

Inverse
transform

Merge
n × n

subimages
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Transform Coding (cont.)
Frequently used basis sets (here: for 4 × 4 blocks):

Walsh-Hadamard DCT (Cosines)
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Applications: GIF and JPEG



GIF

• Graphics Interchange Format.
• Uses 256 (or fewer) distinct colors (unsuitable for photographs).
• Uses only lossless data compression (LZW).
• Large file sizes (unsuitable for photographs on the web).
• Best for sharp transitions in diagrams, buttons, etc, where lossy

JPEG compression does poorly.
• LZW royalty disputes historically led to development of 

successor (PNG), but GIF still dominant on web



JPEG

• Joint Photographic Experts Group

• Lossy compression of photographic images

A photo of a flower 
compressed with 
successively lossier
compression ratios 
from left to right.



JPEG Overview

Collapses long runs of zerosRun-length encoding

Huffman coding to more efficiently encode the RLE 
sequences (arithmetic coding also allowed in standard)

Entropy encode what’s 
left

Changes from 2-D to 1-D to group   

similar frequencies together

Zig-zag ordering

Many high frequencies become zero!Quantize AC coefficients

Takes advantage of redundancy in the block averagesPredictively encode DC 
coefficients

Energy compaction by converting to frequency 
representation

8 × 8 block DCT

Convert to YCrCb color model and down-sample (allocate 
fewer bits to) the chromaticity components

Intensity/Chromaticity



JPEG Usage
• JPEG is at its best on photographs and paintings of realistic scenes with 

smooth variations of tone and color. 

• In this case it will produce a much higher quality image than other common 
methods such as GIF which are lossless for drawings and iconic graphics but 
require severe quantization for full-color images).

• JPEG compression artifacts blend well into photographs with detailed non-
uniform textures, allowing higher compression ratios. 

JPEG Level                               100%                   50%                              10%

File size                               100%               16%                               5%



Progressive Methods
Progressive methods allow viewing of the image while 
downloading:

Interlaced GIF:
- Send every 8 scan lines, then every 4, then 2, then all
- Interpolate intermediate lines until they get there

Progressive JPEG:
- Send DC (zero frequency) coefficients
- Send all lowest-frequency AC coefficients
- Send successively higher AC coefficients
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Resources

WWW:
http://en.wikipedia.org/wiki/Wavelet_transform
http://en.wikipedia.org/wiki/GIF
http://en.wikipedia.org/wiki/JPEG

Textbook:
Kenneth R. Castleman, Digital Image Processing, Chapter 17


